Introduction

What’s new in the fourth edition?

For the fourth edition, new expository material was added at crucial places.
For instance, the first section of chapter 26 was completely rewritten. Some other
famous difficulties have been handled a little better too, and there are new problems
on topics of current interest. But the principal change is to the data. Statistics, like
people, show wear and tear from aging. Fortunately or unfortunately, data are easier
to rejuvenate.

Why did we write this book?

The world is full of elementary statistics books. Why did we write another one?
The answer is that we came to want a book which would explain the basic ideas in
the subject to an intelligent but nonmathematical reader, and make the ideas vivid
through real examples. These objectives seem innocent enough; achieving them
turned out to be much harder than we had expected. We proceeded largely by trial
and error, going through many cycles of classroom testing and revision before first
publicationin 1978. Each successive draft was used for a year with many hundreds of
Berkeley undergraduates, in courses at different levels of difficulty (with or without
a calculus prerequisite), the class sizes ranging from 30 to 300.!

Each year, we watched the students working on the materials, listened carefully
as the friendlier ones told us what was wrong with the exposition, and scribbled
frantically away at the next year’s draft.

Along the way, we were forced to notice some unpleasant facts. The first shock
was discovering how much trouble the students had with arithmetic. In self-defense,
we started giving pre-tests. By now, such tests have been given to several thousand

! The book was mainly developed in the Statistics 2 course at Berkeley. This
course, which is divided into two or three large lecture sections, enrolls about 500—
1000 students each semester, drawn mainly from the social sciences and the less-
quantitative natural sciences. Still, about 40% of these students have taken a calculus
course, and 20% of them have completed two or more additional college-level math-
ematics courses. The book is also used in Statistics 20, 21, and 131. Statistics 20 has
class sizes of 30—150; virtually all students have had calculus, and about half are in
quantitative fields like mathematics, statistics, computer science, and engineering.
Statistics 21 is a large lecture course for business students, with about 300 students.
Statistics 131 is an upper-division course for students in the social and life sciences,
with class sizes in the range 30-60.
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students. Here are four questions from the pre-test.!

1. 300 is what percent of 2,000?

2. 4/100,000 is about:
(i) 30 (i1) 300 (iii) 1,000 (iv) 3,000 (v) can’ttell

3. In the United States, 1 person out of every 500 is in the navy and one-sixth
of naval personnel are officers. What fraction of the United States population
consists of naval officers? Or can this be determined from the information
given?

4. A quart of vodka is 40% alcohol. Write a formula for the percentage of alcohol
in a mixture of V quarts of vodka and J quarts of orange juice.

Only three students in four can do the percentage in question 1, and only two in
three can handle the square root in question 2. Question 3 tests whether they know
when to multiply fractions; only one student in four gets it right. Many elementary
statistics texts claim their sole prerequisite to be “high school algebra.” Question 4
is a very gentle probe into what the students remember from high school algebra:
one student in six can write down the formula.

The pre-test even seems to understate the problem. One issue it misses is
reliability. A student may be quite good at doing one-line arithmetic problems, like

/2500 =

But an exercise that requires doing half a dozen steps of similar difficulty is rather
a different project. Another issue is context. When students have trouble deciding
which arithmetic operations to perform in response to word problems, many stop
being able to do arithmetic at all. It is as if they get exhausted during the analysis
phase.

Now when we started writing, we tried to teach the conventional notation,

1 n
D i —5)?
n—1 —

and all the rest. But it soon became clear that the algebra was getting in the way.
For students with limited technical ability, mastering the notation demands so much
effort that nothing is left over for the ideas. To make the point by analogy, it is as
if most the undergraduates on the campus were required to take a course in Chinese
history—and the history department insisted on teaching in Chinese.

So we decided to try writing in ordinary English. For three probabilists, this
presented some unexpected difficulties. And it led to a surprise in the classroom: the
students wanted the equations, even though they found the symbolism baffling. Per-
haps we shouldn’t have been surprised. Nonmathematical students seem to flounder
in numbers courses. They survive only by ruthless pragmatism. Their objective is to
pass the final. Usually, the final is a series of word problems, and the course is seen

I Pretests from 1977, 1988, and 1995 are reproduced at the end of the manual.
Over the period, there have been many changes in admissions standards, but the
pre-test results have stayed about the same.
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as a series of equations. The instructor may think that the equations express some
general truths, but this tends to be lost on the students. For them, the main issue is
learning how to associate the equations in the course with the word problems on the
final, and recognizing which numbers in the word problem are to be substituted for
which variables in the equation. There is a Berkeley student word for this syndrome:
pluginski.!

By the time students get to a statistics course, pluginski is so ingrained that any-
thing like an equation tends to shortcut thought: students just grab the equation and
run. Without equations, students really have to work at understanding the concepts
in order to solve the problems. This is exactly what we want to achieve, even though
the students find it irritating. As a result, whenever possible, we banish equations.?
However, in many cases we do have a substitute: short summary sentences for the
major points. There is a definite advantage to this approach: it is hard to memorize
an English sentence without paying some attention to what the words mean.

By now, we had been through several drafts, and thought the worst was over.
It wasn’t. By our lights, we had succeeded in translating quite a lot of statistics into
acceptable English. But, as we discovered, the students were still having a hard time
with our materials. We got discouraged enough to start grumbling to colleagues
in other departments, showing them the “easy” passages the students couldn’t read.
The colleagues couldn’t read them either. Where we saw simplicity, they saw a maze
of complexity.

This was a low point, but things improved from there. We realized that the
problem wasn’t “dumb students”; it was more a case of nonstatisticians seeing the
world very differently from statisticians, needing different kinds of explanations,
and wanting to learn different kinds of skills. Very few members of our audience are
actually going to derive formulas, or carry out large scale data analysis. Many, how-
ever, are going to have to deal with statistical findings, because nowadays it is hard
to read research journals—or even newspapers—without coming across statistical
arguments.

We began to rethink our strategy. We had been making a tacit assumption,
that the exposition should start from the points which were clear and obvious—
“elementary”—to us, building up to more complicated and interesting ideas. How-
ever, elementary mathematical points are often rather hard, even when expressed in
English. Insisting on these points just confuses things and distracts attention from
the main issues. Also, we were still focusing on the procedures, leaving it to the stu-
dents to infer the purposes of the activities—the scientific questions being answered.
This is fine for people who find technique easy, and therefore have time to think
about what they’re doing. For our readers, students and nonstatistical colleagues
alike, this was a failure.

We decided to start at the other end. What are the main ideas that our field
has to offer the intelligent outsider? Everything else, no matter what its technical
interest, had to be set aside. Then, the reader has to be persuaded that each idea is

! The phrase of the new millenium is plug’n chug.
2 Some instructors who have used the book do the equations in lecture, and tell
us the students accept this as complementing the text.



4 INTRODUCTION

worth knowing. To do that, we had to make explicit the question behind the statistical
procedure. Often, we were able to find some vivid example embodying the question.
Similarly, many statistical concepts formalize some understanding about the world;
and in many cases we were able to find the right example to crystallize this insight.
Once motivated, the ideas had to be presented in reasonably smooth language, free of
annoying technicalities. And it all had to be fitted together into a coherent narrative,
so that at each stage the reader would know enough to appreciate the next question.

Carrying out this program turned out to be a real adventure, because it forced us
to reconsider the basics of the field from a different perspective. In the end, we think
we brought it off. The book covers a good set of topics for a first course, arranged
in logical order, and properly illustrated by examples. It works quite well for us,
and for many friends who have tried it elsewhere.! Sample tests, with pass rates,
are reproduced below.> As far as we can see, the book is intelligible to its intended
audience: nonstatisticians who want to learn some statistics in order to go about
their affairs. This includes students in college classrooms—as well as professionals
in other fields.

To some statisticians, the book looks like an easy read—too easy to use as a
college text. This criticism is off the mark. The material is not easy. We know from
our courses that students, even those with good mathematical preparation, have to
work quite hard to read the book and solve the exercises. In part, this is because there
are many pedagogical difficulties we just could not overcome. Then too, statistics
does involve some deep ideas. Instructors who use the book will have to help their
students master those ideas.

Scheduling

At Berkeley in the 1970s, Statistics 2 was taught in ten-week quarters, with
three hours of lectures a week, and three hours of laboratory. In the 1980s, the
university went back to fifteen-week semesters. The book can be used successfully
with both calendars. It is written so that most chapters take about an hour of lecture
time. However, this is a fairly quick pace. To maintain it, the more difficult sections
in some chapters have to be skipped, or carried over to a second lecture.

There are 29 chapters to the book, so something has to go to fit it into a quarter.
In a semester, the whole book can be covered; there may even be some time to spare

I Indiana, Minnesota, Sonoma State College, Stanford, UC Los Angeles, UC
Santa Barbara, Utah State, Winnipeg, Wisconsin, Yale.

2 In typical Statistics 2 finals, the class averages were around 60 out of 100, with
an SD of 20. Students with calculus averaged around 65, each additional college
mathematics course contributing around 2 points to the average. On similar tests,
Statistics 20 students, who know calculus and are majoring in quantitative fields,
averaged about 70. Most of the test questions were taken from exercises in the
book, so the students had seen them before. An interesting sidelight: about 70%
of the Statistics 2 students take the course to fulfill a requirement; the others take it
voluntarily. Those taking it as a requirement only averaged about 55; the volunteers
averaged over 65.
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at the end, to do some of the mathematical formalism. Dependencies among the
various parts of the book have been minimized in the writing, leaving instructors
fairly free to pick and choose. As far as we are concerned, the logical core of the
book consists of—

Chapters 1-2 Design of experiments

Chapters 3—4-5
Chapter 13

Chapters 16-17-18
Chapters 19-20-21, 23

Descriptive statistics
What are the chances?
Chance variability
Sampling

We see chapters 1, 2, and 19 as the most important. The big point is that the design
of a study determines its reliability, and likewise for samples.

Sometimes when we teach the course, we cover parts [-VII, but omit part VIII
on testing. At other times, we have covered everything except part III (correlation
and regression). A third strategy, which we can recommend, is to cover the whole
book, omitting—

Chapter 12 The regression line

Chapter 15 The binomial coefficients

Chapter 25 Chance models in genetics

Section 26.6 The t-test

Sections 27.3—4 The z-test for experiments

Chapter 28 The chi-square test
Exercises

We discovered early on that unless we could write an exercise to test a point,
students were not likely to learn it. So we worked quite hard to create a variety of
good exercises. Most sections close with an exercise set, the answers being at the
back of the book. All chapters but 1 and 7 include a set of “review exercises.” In
many chapters, the review exercises cover previous material too. This prevents the
material from disappearing, and makes the students learn to judge when the different
procedures apply. Answers to the review exercises do not appear in the book, but
are in this manual, below. We usually make out homework assignments from the
review exercises, and put some of them on the tests as well. Generally, we assign
about half the review exercises in the book as homework.

Most exercise sets include a few problems which can be solved by a straightfor-
ward application of the procedures just covered in the book. However, there usually
are harder problems too. Some exercises, for instance, ask the students to choose
among competing procedures, or decide whether a proposed procedure is sensible.
Other exercises ask the students to make rough guesses as to the magnitudes of cer-
tain quantities, still others call for qualitative judgments. Such exercises cannot be
solved by mechanical application of formulas: they require understanding. In the
student vernacular, these are “concept questions.”

Many exercise sets can be used as diagnostic aids, to pinpoint the difficulties
students are having with the concepts. We often get the students to do the exercises
in laboratory periods, working together in small groups. We go around from group
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to group, talking to them about what they are doing. The exercises provide a good
framework within which to discuss the ideas we want to get across.

Supervision

One key to teaching a large lecture course is supervision of the teaching as-
sistants who handle section meetings (or “labs,” in the Berkeley vernacular). Our
experience is that TAs want to lecture. Not unnaturally, they want to teach mathe-
matics, and are a little impatient with our nonmathematical approach. On the other
hand, we think we’ve already given the lectures, and just want the TAs to help the
students work problems.

To make this stick, we drop in on the labs from time to time, and observe the
TAs at work, or talk to the students ourselves. More formally, we meet the TAs once
a week, and review with them the problems to work in lab. This means going over
the statistical content of the problems, and the pedagogical issues: what does this
problem illustrate? where is it discussed in the text? what will students find hard?
how can you break the problem down into smaller pieces? These sessions and the
lab visits were eye-openers—for us and the teaching assistants alike.

Grading

At Berkeley, the students turn in homework; this is graded by “readers,” often
undergraduate majors.! The readers work on a very tight time-table, and come out of
a tradition where word problems have numerical answers which are right or wrong.
However, we want solutions to be written out in reasonable style, with the logic
explained.

Some of the answers at the back of the book are quite complete, and could serve
as models for students handing in assignments or tackling exam questions. Others
are sketchy. Generally, we provide complete answers for some of the questions in
each section, particularly those covering new material. Similar comments apply to
answers in this manual.

The focus is on the concepts. When grading, we do not penalize students for
minor numerical errors. For many of our students, interpolating in a table is a lot of
trouble. So we tolerate rather crude rounding. This attitude may have affected some
of our numerical solutions.

We tend to write out complete solutions for assigned homework, or delegate this
task to the TAs. These solutions—not the Instructor’s Manual—go to the readers.
Solutions are returned with the graded homework. The readers are then better able
to judge what we want from the students, and there is less chance of solution files
appearing in the student community. For similar reasons, we ask you not to circulate
material from this manual.

' When budgets have to be cut, university management tends to view readers in
lower-division courses as a luxury; managers think differently from the rest of us.



How to use the book

This section of the manual has detailed comments on the different chapters in
the book, outlining the contents, pointing to nonstandard language and pedagogical
difficulties.

Part . Design of Experiments

The material in part I of the book is interesting and not very technical, so we
find it a natural introduction to the subject. The material looks easy, and students
may get the wrong impression. Some instructors may wish to start right in with
descriptive statistics (part II), and talk about design issues as they come up. The
book is organized with that possibility in mind.

Chapter 1. Controlled Experiments

This chapter explains the key elements in a randomized controlled double-blind
design, and why each is necessary. The context is the Salk vaccine field trial. Other
examples are presented to reinforce the ideas. Conventional wisdom dictates that
the investigator should control the key variables and randomize the rest. The text
focuses on the randomization, which is the hard idea. Some instructors will want to
pay more attention to the possibility of controlling variables by stratifying subjects
before randomization.

Chapter 2. Observational Studies

In this chapter, observational studies are distinguished from controlled exper-
iments. With an observational study, it is harder to draw conclusions about cause-
and-effect relationships. The “cause” and “effect” may both be the result of some
hidden third factor—a confounder. We return to confounders in chapter 9. Students
often seem to interpret a “confounder” as any alternative explanation for an effect.
Of course, the idea is more subtle: in order for X to confound the association be-
tween Y and Z, X has to be associated both with Y and with Z: that is the point of
section 5. See exercise 8 on p.22 or exercise 10 on pp.26-27. (Note 9 to the chapter
has more discussion.)

Notes on review exercises. Exercises 1 and 2 may seem unnecessary, but many
students do not realize that you take percentages to adjust for differences in group
sizes. Some such students think that with a bigger denominator, the percentage will
be bigger; others, perhaps more sophisticated, think the reverse. The usual recipe
for computing percent—7 x 100%—obscures the idea that a percent is a rate: 10
percent means 10 per 100. (Exercises 14—15 on p.24 teach this idea,) We regret
to say, however, that the idea will probably get overwhelmed by the repetition of
5 x 100%.

Many of the review exercises are tough, because students don’t see any alterna-
tive explanation to the causal one; or, they find a “confounder” that is not associated
with the putative cause. We keep editing the problems to make our points more
sharply. Even so, many students will have trouble; they are not used to reading at
all carefully. In grading, we aren’t sympathetic to rote repetition of slogans—even
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ones we believe, like “association isn’t the same as causation.” Exercise 12 covers
Simpson’s paradox (section 2.4).

Notes on lecturing. Instructors have asked us how we handle this part of the
book in lecture, and we have done it several ways. One is to give a straightforward
presentation of the material: each chapter can be covered in one lecture, omitting
a section or two if time runs out. There are enough ideas here for the students to
benefit from lectures as well as reading. Another approach is to bring out the main
ideas in discussion. Take the Salk vaccine field trial, for example. We present the
background to the trial, as outlined in the text. Then we say:

Suppose they gave the vaccine to everybody, and the incidence of polio
went down. Would that show the vaccine was effective?

The class usually figures out why not. Then we present the design which puts the
consent group in treatment and the no-consent group in control and ask about that.
The first objection is almost always that the treatment and control groups are different
sizes. After dealing with that, the class will figure out that the two groups will differ
in some more important way, although they may not be able to say exactly how;
we explain that polio is a disease of hygiene (p.4 of the text). Then we present the
NFIP design (grade 2 in treatment, grades 1 and 3 in control), and ask for comments
on that. We talk about running a proper controlled experiment, and ask the class
whether the assignment should be done by the toss of a coin, or by expert judgment.
Then we go on to talk about placebos and double-blinding; these ideas are hard to
elicit.

If the class is too small or too large, discussion can collapse; however, we have
had good discussions with classes ranging from 20 to 200 students. The length of the
discussions has never been a problem: if time runs out we just drop some sections in
the chapter, assigning them for reading. On the other hand, an instructor who wants
to present additional material on design will find many examples in the exercises;
others are cited in the footnotes.

Part Il. Descriptive Statistics

For students, descriptive statistics is much easier to understand than probability
or inference, and it may be a more important topic. This part of the book is about
descriptive statistics for one variable—the histogram, average, standard deviation—
and their relation to the normal curve.

A first pass is made at the topic of measurement error, in chapter 6. This may
seem out of place in an introductory course, but it embodies one of the great lessons
of statistics: every empirical number is subject to error, whether it is generated in
a physics lab, a market survey, or a census. If the number is determined again, it
comes out a bit different. In fact, the variability in repeated measurements is a basis
for judging the likely size of the error.

Chapter 3. The Histogram

The main object of this chapter is teaching students how to read a histogram,
but we found this hard to do without also teaching them how to draw one. Drawing
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a histogram—or any graph—is hard work. Students will need pencil, graph paper,
and eraser (or a computer with a graphics package and an eraser tool). At first,
students will have to be helped with the rudimentary mechanics, like laying out
axes. We talk about “class intervals”; some instructors find “bins” and “bin widths”
less intimidating.

We originally tried to fudge the definition of a histogram, but kept getting caught
in contradictions. Eventually, we were forced to follow the definition quite strictly,
which is perhaps unusual in an elementary text. For us, percentages are represented
by areas. In this setup, the height of a histogram shows crowding or density. The
word “density” has a technical sound, and is downplayed for that reason. Moreover,
the units—for instance, % per $1000—are complicated; we couldn’t get around that.
Our experience is that “% per $1000” goes down better than “%/$1000.”

There are two advantages to the area approach:

e There is only one kind of histogram to deal with (other books move from

“frequency” to “relative frequency” to “density”).
* The histogram can be matched up against the normal curve so that area under
the curve becomes intelligible.
Histograms will be used a lot in this book, so it is important to get the students used
to looking at them.

Chapter 3 also introduces the idea of a variable, with the following classifica-

tion:

Variables

Qualitative Quantitative

Discrete Cortinuous

Our students didn’t seem to like this much, but then they didn’t seem to like any
distinctions. (Perhaps they lack the experience needed to appreciate the usefulness
of the distinctions, and don’t want to be examined on things they don’t quite grasp.)

Notes on review exercises. Exercises 1 and 4 teach the interpretation of his-
tograms. Exercises 2 and 3 are for practice in drawing the graphs. Exercise 5 is
about the density scale, and 6 shows how the histogram groups the data—and blurs
distinctions within groups. Exercises 7-12 are hard. Exercise 7 makes them look at
the tails of a histogram. Number 8§ is about the difference between histograms and
bar graphs. With number 9, students explained the spike at 2 by the fact that lots of
respondents gave 2 as the GPA. This is now the answer to parts (a—b). Part (c) there-
fore has to have another answer. With number 10, students will prefer explanations
in terms of any real factors—epidemics, immigration, whatever—to the statistical
explanation in terms of digit preference. Likewise, the statistical explanation for
number 12 (few very hot days) will not be obvious.

Notes on data. Some instructors use data sets of their own to illustrate the
statistical techniques discussed in the book; this works out well. Some do stem-and-
leaf plots on small data sets before presenting histograms, and report good results



10 CHAPTER 3. THE HISTOGRAM

from this approach.

Notes on graphics. Liberal use is made of smooth curves to indicate the shapes
of histograms (as on p.34), and some students will need reassurance about this. The
point of sketching the histogram is usually to show some qualitative feature, such
as the weight in the tails. For this, a smooth curve is just as good as the histogram,
and is easier on the eye (sketch below). In general, the art work has been kept fairly
informal, in the hope that working diagrams will not look too forbidding.

EXACT HISTOGRAM SKETCH

Al . )

100 140 180 220 100 “0 180 220
WEIGHT (LBS) WEIGHT (LBS)

Chapter 4. The Average and the Standard Deviation

The chapter focuses on interpreting these two statistics. “Standard deviation”
is abbreviated to “SD,” read “ess dee.” Variance is not introduced, for two reasons:

* Students get confused between Var and SD— “Is SD = +/Var or Var = +/SD?”
* Var comes out in the wrong units, and the wrong order of magnitude.

For instance, American men average 190 pounds in weight, with an SD of 40 pounds.
So the variance of weight is—1600 square pounds. To a mathematician, taking the
square root is an easy fix. However, we think it is quite hard to visualize the impact of
a square root (or even a linear transformation), without actually doing the arithmetic.
For instance, is 17 degrees Celsius warm or cold? In a Fahrenheit world, you might
reach for a calculator before answering.

So we decided to focus on the SD, deferring the concept of variance to later
courses. And even before presenting the calculation of the SD, the book explains the
interpretation: the SD measures how far away, on the whole, the numbers are from
their average. This interpretation can be fleshed out in the usual way:

* For many lists of numbers, about 68§% of the entries are within one SD of
average, and 95% are within two SDs.

The book points out that this rule isn’t exact or universal. We hope it won’t be
misconstrued as slavish devotion to the normal curve. In fact, it works surprisingly
well for many data sets that don’t follow the normal curve at all (footnote 10 to
the chapter). We often talk about the SD as the “typical” departure from average,
and hope instructors will not mind the potential confusion with “probable error”—a
concept not used in the book.

The root-mean-square operation is presented in section 4, as a mathematical
preliminary to computing the SD. In fact, taking the r.m.s. is a basic operation in
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statistics. For instance, it comes up again for the regression line (chapter 11). We
used to introduce it there, but found that the students had a terrible time distinguish-
ing between the r.m.s. error of the regression line and the SD of y. Moving the
r.m.s. forward helped solve that problem—but caused a new one: some students
now confuse the r.m.s. and the SD. This is easier to sort out (exercises 9 and 10 on
p-73) but the instructor should be prepared to help.

Students may ask, “Instead of doing the r.m.s., why not just drop the signs and
average?” We do not have such a good answer, except to say that the r.m.s. fits in
better with the theory; orthogonality is discussed in note 8 to the chapter, but that
is a tough sell. Later in the course, instructors can explain that with large samples,
it is the SD of the population which determines the asymptotic distribution of the
sample average around the population average. Competing measures of spread, like
the average absolute deviation from average, just won’t do the job (footnote 9 to
chapter 18).

The technical definition of the SD, as the r.m.s. deviation from average, is
presented on pp.71-72. This reinforces the interpretation of the SD as a measure
of the overall size of the deviations from average. Test results indicate that virtually
all the students learn to calculate the SD correctly. But if not made to practice, they
forget the algorithm within a few weeks. The book only teaches the “r.m.s. deviation”
procedure for computing the SD. Another one,

x2 — %2,

is mentioned on p.74. We used to explain this, as well as procedures for grouped
data, but only managed to confuse the students and make them learn less rather than
more. They never seemed to believe that the two formulas would give the same
answer, so they worried about which one to use, or combined them in unfortunate
ways:

s =y Iy -9 -7

For us, alternative formulas represent a diversion from the main objective: teaching
the students how to use the SD. After all, computers make it less important for people
to learn efficient algorithms—you just have to enter the data and push a button. The
trick is interpreting the output.

Notes on review exercises. Many of the exercises focus on the qualitative ideas.
Exercise 3, for instance, requires students to make a rough guess as to the answer: this
forces them to think, instead of rushing to the formula and plugging in. Exercise 12 is
hard, because students won’t fit it into the cross-sectional vs. longitudinal framework.

Notation. When working at the blackboard, we write “ave” and “SD.” We no
longer use x, s, i or ¢ in the beginning courses—too exhausting for the audience.

Which SD? The text defines the SD with n (the number of entries in the list) in
the denominator, rather than n — 1. The n — 1 is introduced much later (section 26.6)
as one of the modifications needed to handle small samples. We felt that in the
main line of exposition, there should be only one formula for the SD. To see why
we went for n, consider the average of m draws made at random with replacement
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from the box —1, +1. When m is reasonably large, this average will be in the range
—1/4/m to +1//m with probability about 68%. We want this interval to be of the
form +o/4/m, where o is the SD of {—1, +1}. So, the SD of {—1, +1} has to be
computed with 2 in the denominator, not 2 — 1. In other words, when calculating
the SD of a population in order to determine the asymptotic behavior of the sample
average, the right denominator is .

The conventional argument for n — 1 is that ﬁ ' (x; — %)? is unbiased.
So it is, unless a regression is involved, in which case n — p is needed. And the
minute someone takes square roots to get the SD, bias comes back. We know it looks
old-fashioned, but 7 is the right denominator for present purposes.

Chapter 5. The Normal Approximation for Data

This key chapter ties together histograms, the average, the SD, and the normal
curve. The passage on pp.80-81, which justifies the 68%—95% rule, is difficult to
teach. For instance, take figure 2. The shaded area under the histogram between
60.5 inches and 66.5 inches represents the percentage of women with heights in that
range, which is the interval within 1 SD of the average. By inspection, the shaded
area is about equal to the area under the normal curve between —1 and 1. This last
area is 68%, justifying the rule. However, when asked, “What does the area under
the histogram between 60.5 inches and 66.5 inches represent?”’, many students will
respond “68%.” Their anxiety to get to the numerical answer shortcuts the logic.
Review exercise 1 of chapter 3 is designed to prevent this; also see review exercise 5
in the present chapter. (Review exercise 1 in chapter 4 is designed to help with the
language: “the percentage of entries within 1 SD of average” isn’t exactly student
English.)

Our method for teaching the normal approximation is graphical. On the black-
board, we draw diagrams just like the ones in examples 8-9 on pp.85-87. Unless
pushed, students seem to resist drawing these diagrams (or any others). Then later
on in the course, with more complicated problems, they lose track of which areas
they want. The diagrams help.

Section 4 takes up percentiles. It also shows that many histograms are far
from the normal curve, a point which comes up again in section 6.3. The point is
important, because some students take the word “normal” very literally indeed (p. 89
of the book). For thisreason, we try to avoid phrases like “normal histograms,” saying
instead “histograms which follow the normal curve.”

Section 5, on finding percentiles for the normal curve, will be tough going
for some students. This material is used again—glancingly—in part III. However,
exercises on percentiles are interspersed with later material.

Note on terminology. In this book, a histogram “follows” the normal curve if
it is close to the curve.

Notes on review exercises. Exercises 10—11 are hard. To help students work
exercise 11, we ask them to mark (by eye) the average on the histogram, as well as
the region within one SD of the average. Then we get them to work out ave &+ SD,
using the values given in the problem.
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Chapter 6. Measurement Error

Students may confuse chance error and bias. They may also need help in seeing
that the SD of a series of repeated measurements gives the likely size of the chance
error in each one (pp. 100101 of the book, and chapter 24).!

The text has the equation

individual measurement = exact value + bias + chance error.

Some tactis needed when presenting this, because many students want to solve for the
unknowns on the right, and feel cheated when they discover this to be impossible.
The equation is a useful conceptual tool. Even though the unknowns cannot be
precisely determined, they can often be estimated quite well.

Outliers are discussed in section 3, emphasizing the point that many histograms
just do not follow the normal curve.

Notes on review exercises. The special review exercises cover most of the ideas
in parts I and II. Exercise 3 may make standard units more vivid; #4 is not easy, due
to the interplay between numbers and percents. Exercises 6—7 prove difficult for
students who want to operate formally with the SD, instead of seeing it concretely as
a measure of spread. Such students think the SD should stay the same. To help, we
tell them to think about having all the men and women in a classroom, then sending
the women out; what does this do to the spread in heights? Exercise 9 is a warm-up
for #11 on p.138.

With exercise 10, the HANES data are cross-sectional, so the older people in
the study were born earlier, when there was more social pressure to be right-handed.
This exercise, like many others in the book, may provoke students who want a self-
contained mathematics course, free of background facts. Exercise 12 illustrates digit
preference; also see exercise 10 in chapter 3. Exercise 13 was edited, to make it
easier and to bring out the points more sharply: the elegant fact about the uniforms is
now part of the exercise. Exercise 14 raises some interesting issues about the design
of clinical trials. This is a hard one: students often say that the bias favors screening,
“because there will be more cancers to detect and more lives saved.” In exercise 15,
the tables are quoted from the source, and the numbers really do not add up.

Chapter 7. Plotting Points and Lines

The presence of this chapter may be a bit of a shock. However, many of the
elementary statistics students at Berkeley have trouble with graphs. Some teachers
may want to spend an hour on this chapter. Our approach is to review points and lines
as we cover part III; students who need extra help can read chapter 7 by themselves.

I “Likely size” is just meant to convey similarity in magnitude: chance errors
similar in size to the SD are common; chance errors several times larger than the SD
are quite rare. The same point comes up again on pp. 16 and 20 below.
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Part Ill. Correlation and Regression

This part of the book is about bivariate data—scatter diagrams, the correlation
coefficient, and the regression line. The treatment is purely descriptive. Many
teachers may wish to postpone or even skip part III. It is possible to move directly
from part II to chapter 13 (probability), and then to part V (chance variability). It
is also possible to do just chapters 8 and 10 from this part of the book. However,
part IIT does follow naturally from part II, and it is easier for the students than
parts IV=VIII.

In chapter 8, the correlation coefficient is presented as a key descriptive statistic
needed to summarize the relationship between two variables. Then r is used to get
the regression line going in chapter 10, and to determine the spread around the line
in chapter 11. We used to do the regression line before introducing the correlation
coefficient, but this proved too mathematical for the audience, and we had a hard
time explaining r after presenting the line. For instructors who think of regression
equations as invariant across data sets, with the SD of the residuals—and hence r—as
situation-specific, our order of topics may seem a bit artificial (note 9 to chapter 12).
If so, please bear with us.

Chapter 8. Correlation

The main job is to teach students how to read (and draw) scatter diagrams. Then,
association is discussed carefully. Students who work exercise set A on pp. 122-24
will get comfortable with these ideas. Next, the correlation coefficient is interpreted
graphically, as measuring clustering around a line. Itis clearer to say that r measures
clustering—rather than spread—because as r goes up to 1, clustering increases while
spread decreases. Scatter diagrams are summarized by the five statistics on p. 126; the
warning about outliers or nonlinear association is deferred to section 9.3. Section 8.4
gives an algorithm for computing the correlation coefficient. We do not discuss r:
the fraction of variance explained by a regression is at bottom a rather mysterious

statistic. See D. A. Freedman, Statistical Models (Cambridge, 2005, §4.3).
Note on terminology. We found it helpful to introduce two nonstandard terms:

* The point of averages (ave. of x, ave. of y) picks out the center of the scatter
diagram (p. 125).

* The SD line indicates the drift of the scatter diagram (section 8.3). This line
goes through the point of averages, and its slope is (SD of y)/(SD of x); the
sign is the same as that of r. (If r is 0, either sign can be used.)

Many nonstatisticians (and some statisticians) who fit a line to a scatter diagram
by eye will approximate the SD line rather than the regression line. The contrast
between the two is the regression effect (section 10.4). For us, the main point of the
SD line is to help in defining the regression effect.

Notes on review exercises. The graphical interpretation of r is covered by
exercises 1, 7 and 8; the computation of r, by exercise 9—although part (c) can be
done qualitatively. Exercises 2 and 5 are about association. Exercises 3—4 and 11
try to get at the connection between r and linearity. Exercise 11 is not easy; to help
students work it, we ask them to plot some data points. Exercise 9 on p.106 was
preparatory; so were exercises 7—8 on p. 130, but these turn out to present interesting
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difficulties of their own. For instance, with #8, students want r to measure the impact
of hypothetical changes in incomes, rather than the association between incomes in
a fixed data set.

Chapter 9. More about Correlation

Section 1 explains that » is a pure number, invariant under scaling, symmetric
in x and y. (The last point has some force, because students will interpret r as a
measure of causation.) Since r is invariant under change of scale, “clustering” must
be interpreted relative to the SDs. This is somewhat delicate, as indicated by figure 3
on p.145. Section 3 explains that » may not be useful if there is a strong nonlinear
association, or outliers.

Section 4 discusses the ecological fallacy—the idea that individual behavior
can be inferred from group behavior. (The term “ecological” is mysterious, and
is downplayed in the text.) This may be a controversial section, because many
investigators in the social sciences use ecological correlations without batting an
eye: see notes 3 and 4 to the chapter for some cites.

For many students, a real intellectual effort is needed to compute r. They
conclude that it must be a very powerful tool. It is. But there are limits, and
section 5 points some of them out.

A subliminal theme in this chapter is attentuation, the reduction of r due to
restriction of range or measurement error. See exercise 9 on p. 144, exercises 1-2 on
pp- 145-46. Ecological correlations generally exceed individual-level correlations:
this is attenuation in reverse—at least, if the individual-level data are obtained from
group averages by adding noise.

Notes on review exercises. Exercise 4 is on attenuation-in-reverse. Exercise 9
discusses the relationship between student evaluation of TAs and student gains in
learning; the correlation is negative. Exercise 10 is a little trick. Students tend to
“explain” the negative correlation between SAT scores and percentage of students
taking the test by saying, “students did worse in the states where more of them took
the test.” That is the answer to the first question in part (a), so a different response
is needed for the rest. Exercise 11 is about ecological vs. individual correlations;
exercise 12 helps students to interpret different regions in a scatter diagram.

Chapter 10. Regression

Section 1 presents a verbal equivalent of the regression equation for estimating
the average of y from x. If x goes up by one SD, on the average, y does not go up
by a whole SD, but only by part of an SD, namely, r x SD of y. Section 2 develops
a more intuitive feeling for the regression method, using the graph which displays
the average of y against x. This is called the graph of averages. Exercise 1 on p. 163
shows the graph for incomes of husbands and wives. Section 3 takes up regression
estimates for individuals, along with percentiles (which are a bit difficult). The
material on percentiles can be skipped, although some of the later review exercises
cannot then be assigned. Exercise 4 on p. 168 paves the way for exercise 7 on p. 567,
and demonstrates that there can be some art to examining scatter diagrams.
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The regression fallacy is discussed in section 4. This is the most interesting—
and difficult—idea in parts IT and III. When x goes up by one SD, most people want
y to go up by a full SD too. The fact that it doesn’t is the regression effect. The
text explains that the regression effect is due to the spread of the scatter diagram
around the SD line: see figure 5 on p. 171 and figure 6 on p.172. People resist this
statistical explanation, and want some real cause for the regression effect: that is the
regression fallacy. The regression effect is implicit in section 1, but there it is kept
in a very low key; we wanted the students to learn the mechanics before confronting
the mystery.

Section 5 explains that there are two regression lines, one for y on x, another
for x on y. There is ample room for confusion here. For example, in figure 8, the
regression line of height on weight is steeper than the SD line; how come? (Answer:
weight is plotted on the vertical axis.)

Notes on review exercises. Exercise 1 helps students interpret regions in the
scatter diagram; also see review exercise 12 in chapter 9. Exercise 2 tries to connect
regression estimates for groups and for individuals. Many students will do the
same arithmetic twice—and feel puzzled; we want them to make the connection
(section 10.3). Exercises 4 and 7-8 demand a real understanding of the regression
effect, and are difficult. Exercises 9 and 10 are on percentiles, the latter putting
another spin on the regression effect.

Note on the regression equation. The equation behind the prose treatment is

y—y X —X
— = .
SD y SD x

We used to teach the equation. Students would ask what r meant, as well as SD x
and SD y, to say nothing of x and y. This was fair enough. Then they would ask
what x was, at which point we got a bit discouraged. Finally, they would ask what
y was. We gave the equation up as a bad job.

Note on terminology. The “graph of averages” is not a standard term, but we
found it useful in discussing the regression line. In principle, this graph depends on
how finely you subdivide the x’s.

Chapter 11. The R.M.S. Error for Regression

This chapter introduces residuals, as well as the formula for the r.m.s. error of
the regression line: the r.m.s. error is interpreted as the amount by which a “typical”
point deviates, up or down, from the regression line. (Compare pp.10-11 above, on
the SD.) Students may want to know why they need both r and the r.m.s. error: one
answer is that r is in relative terms—relative to the SDs—while the r.m.s. error is in
the same units as y. Residual plots are taken up in section 3, although their power
only becomes apparent with multiple regression.

The definition of “homoscedastic” on p. 190 is a problem for some students. As
far as they can see, the scatter diagram in figure 8 (p.191) shows more spread in a
strip over 68 inches than in the strips over 64 or 72 inches. They are using range to
measure spread. The range is bigger in the middle of the diagram, because there are
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more people there. This is taken up in the text when homoscedasticity is defined;
also see exercise 8 on p.71.

For “football-shaped scatter diagrams” (bivariate normal distributions) section 5
shows how to calculate the distribution of y when x is confined to a narrow strip:
of course, that is the conditional distribution of y given x. The calculation is a bit
intricate. Students will have a hard time connecting the r.m.s. error and the “new
SD:” the first is global, describing the whole diagram; the second is local, describing
one strip. Exercises 1-3 on p.193 are designed to make the connection. Many
students will ignore the heteroscedasticity in exercise 3, and just do the arithmetic.
The lesson continues with exercises 4—6 (p. 194). Exercise 4 requires the students to
interpret the strip in the diagram. Exercise 5 requires estimation of averages, SDs,
and r by eye. Exercise 6—which is the punchline in this series—makes you look at
the local SD; part (b) is intended to ward off the obvious misinterpetation—that the
SD of any subgroup is smaller than the SD of the whole. Exercise 7 on p.195 is a
real puzzler—the regression effect in acute form.

The focus of chapter 11 is descriptive, not inferential. The r.m.s. error measures
the spread of the points around the regression line. The chapter does not consider
uncertainty in the position of the regression line, which increases with distance from
the point of averages; see note 5 to the chapter. Despite the relatively narrow focus,
chapter 11 will take some time to teach.

Notes on review exercises. Exercise 8 is about measurement error; a common
student response to (a) is “to see the regression effect.” Charitably interpreted, this
isn’t so bad; the point is that the two measurements are likely to differ. Exercise 10
requires students to see that regression estimates fall on a line. Exercise 11 requires
the students to look at a scatter diagram—and use what they know about U.S. schools.
(Compare figure 5 on p.39.)

Chapter 12. The Regression Line

The regression equation is presented in section 1, as an aid to computing: the
exercises were set up with this in mind. The slope and intercept of the regression line
are interpreted as descriptive statistics, with a warning about confounding. Section 2
discusses fitting a straight line to data in order to estimate the slope and intercept of
an ideal linear relationship, and makes the point that the regression line minimizes
the r.m.s. error. This material will not be easy. Section 3 restates the difficulties in
drawing causal inferences from slopes. Exercise set B tests the understanding of the
material in section 2; also see review exercise 8.

Review exercises 9 and 10 are hard, because students do not recognize the
regression line from its description. We encourage them to sketch a scatter diagram
for the income-IQ data, find the point of averages, draw the line defined by the
exercise, and mark the strip corresponding to children with the given 1Q. Then we
ask the students to find the center of that strip. Exercise 11 makes the point that the
regression line goes through the point of averages. Special review exercises 1-17 at
the end of chapter 15 cover the material in chapters 1-12, and will be of interest to
instructors who give midterms covering the first 12 chapters.



18 CHAPTER 13. WHAT ARE THE CHANCES?

Part IV. Probability

As probabilists, we like the subject a lot; but students find it confusing. And
whatever the advocates of the new math used to say, sets and functions make things
worse for beginners. We also found that very little probability is needed to handle the
statistics presented later in the book. So we went back to a more primitive approach.
Chapter 13 handles the basics—independence being the most important idea—and
sometimes we skip the rest of part IV. Section 14.1 on counting and chapter 15 on
the binomial distribution help just a little, when setting up probability histograms in
chapter 18. Students will realize that there is some depth to the material, when they
hit part IV. Manifestations of “test anxiety” are to be expected.

Chapter 13. What Are the Chances?

Section 1 explains the frequency interpretation of chance. We could only afford
one interpretation, and this seemed to be the smoothest. We hope that colleagues
who belong to other schools of thought will not be offended. Section 2 presents con-
ditional probabilities. Example 2(a) responds to students who have trouble thinking
about the chance that the second card dealt from a deck will be the queen of hearts:
“What’s the first card?” So we try to explain what an unconditional probability is,
which takes a bit of work.

Section 3 does the multiplication rule. Independence—the key idea—comes
in section 4. Collins is discussed in section 5, showing that the assumption of
independence matters. This opens one of the major themes of the book. When does
the theory of chance apply? What happens if the theory is used in a situation where it
does not apply? The application to DNA testing is mentioned on p.234; the chapter
notes give citations to the literature.

Notes on review exercises. These exercises are simple and qualitative, in order
to encourage thinking about the issues. (Displays of professional cleverness are
especially disastrous when teaching probability; the students just wonder how they’ll
ever manage.) Exercise 2 is puzzling to some readers: we explain that it is harder
to jump two hurdles than one.

Exercise 7, from Kahneman and Tversky, points to a common misconception.
Exercise 9 asks for the chance of not getting 10 sixes on 10 rolls of a die. Many
students will answer this by calculating the chance of getting 10 non-sixes, (5/6)°.
(From their perspective, the opposite of 10 sixes seems to be—no sixes.) To help
such students sort things out, we ask them if the dice can land so as to get some
sixes, but not 10 of them. We try to elicit concrete answers, e.g., 3 sixes followed
by 7 aces. Part (c) is a further effort to sort out the confusion. Exercise 11 prepares
for expected values and box models.

Notation. On the blackboard, we write fragments like “chance of heads” or
“ch. of ace on Ist roll and ace on 2nd roll.” We try to avoid “P(A),” “P(heads),”
“A N B,” “red U black.”

Chapter 14. More about Chance

Thinking about the set of all possible ways that a chance experiment can turn
out is a very useful technique, and section 1 presents it. Section 2 has the addition
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rule. Example 5 is non-trivial, because many students want the chance of getting at
least one ace in two rolls of a die to be 1/6 + 1/6. The double-counting argument
is a bit abstract; at this point, the sample-space representation of chances would be
quite powerful, and figure 1 is a reasonable substitute.

Section 4, on the paradox of the Chevalier de Méré, is an example of how to
compute probabilities using the method of complements. Students find this a bit
too clever: instead of being impressed that the problem can be done at all, they are
annoyed at not having a simpler way to do it.

The focus in chapters 13 and 14 is qualitative, getting across the new concepts
of “independent” and “mutually exclusive” events, and trying to separate them.
Students have a hard time with these two ideas. After all, both seem to express ideas
of unrelatedness; there is a natural temptation to merge any two new ideas: and
another temptation to think that if one doesn’t apply, the other must. Exercises are
designed to ward these temptations off, with partial success; and see the “FAQs” in
section 3. Moreover, basic probability really does involve fractions, and this may
demoralize some students.! The rest of the book features decimals, which are easier.

Notes on review exercises. Exercise 3 may seem like over-kill; trust us, many
students still don’t get it. Exercise 4 teaches that two chances are better than one; after
all, that is why students like midterms. Exercises 5 and 6 help distinguish between
“independent” and “mutually exclusive” events. The language—*all,” “not all,”
“none”—is still foreign to the students; that will be the key difficulty in exercise 11.
(Exercises 1-2 on p.250 may help.) Exercise 12 will get to them, because they have
trouble separating conditional and unconditional probabilities. Exercises 13 and 14
are quite subtle.

Chapter 15. The Binomial Formula

This chapter explains how to calculate binomial probabilities. We skip the
derivation of the coefficients; some instructors may wish to do this in class.

Notes on review exercises. Students want to scan the problem, grab the numbers,
and run to a formula. You can’t do probability that way, or statistics either. Many of
our problems (like number 9) are set up to defeat the student strategy. Exercise 11
brings in the sign test. The context is twin studies on the health effects of smoking.
(Also see exercise 6 on pp.258-59.) The sign test is an attractive introduction to
significance-testing, but there is a hitch. Students want to get the P-value by com-
puting the probability of the observed outcome. They do not like tail probabilities,
and who can blame them? We prefer to deal with this issue in a setting where the
chance of any particular outcome is too small to be interesting (section 26.1).

The special review exercises cover all of parts [-IV. Exercise 3—from the Bou-
man case—is a variation on Simpson’s paradox. Exercise 6 reinforces the distinction

' According to the NAEP, only 68% of the seventeen-year-olds in school in the
United States can add 1/2 and 1/3. Berkeley students can add fractions; even for
them, however,

120f1/3=1/2 x 1/3 =1/6

is rote learning—*"‘of means times.” For proof, see the pre-test results.
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between cross-sectional and longitudinal studies. (The Current Population Survey,
of course, is cross-sectional.) Older people were born earlier, got less education, and
their skills may have become obsolescent. Students want to “explain” the results in
terms of employment status: older people work less. So, in this edition, we consider
only people working full time. Exercises 7 and 9 involve percentiles; one of the
difficulties in number 7 is that students will not be quite sure about the difference
between “percent” and “percentile.” In exercise 10, the data were extracted from
the CPS file, with no hitches. The idea is to prevent the students from saying,
automatically, that every diagram in an exercise is wrong. In exercise 13, many
students will want r for diagram (i) to be nearly 1, because there is a strong—
nonlinear—association. (Exercise 3 on p. 148 gave some warning.) Exercise 16 (by
Amos Tversky) is a cunning example of the regression fallacy. Exercises 15 and 17
cover material in chapter 11; these are hard.

Part V. Chance Variability

One famous difficulty in teaching elementary statistics is getting across the
idea that the sample average is a random variable. Randomness, after all, is quite a
complicated idea. It is easily overwhelmed, either by the definiteness of the data, or
by the arithmetic needed to calculate the average.

In our experience, the most intelligible short explanation goes something like
this:

You took a sample and computed the average. That is a number. But it
could have come out a bit differently. In fact, if you did the whole thing
all over again, it would come out differently.

This variability is the key point to get across, and it tends to be obscured by the
technical sound of the phrase “random variable.” As a result, we have given that
phrase up—and many other hallmarks of civilization too. For the phrase, at least,
there is a good substitute: drawing at random from a box of tickets, where each
ticket has a number written on it. This may seem crude, but conveys a clear image.

To bring variability into sharper focus, we use the idea of chance error. For
instance, when we talk about the sample average (chapter 23 in part VI), we tell the
students:

Draw some tickets at random from a box, and take the average of the
numbers you get. This will be close to the average of all the numbers
in the box, but it will be a little bit off. This amount off is chance error:

average of draws = average of box + chance error.

How big is the chance error likely to be? This question is answered by a number
we call the standard error (abbreviated to SE, read “ess eee”). The upshot is that
the average of the draws will be around the average of the box, give or take an SE
or so. Technically, a “chance error” is the difference between a random variable X
and its expected value E(X). The “standard error” of X is /E{[X — E(X)]?}. (At
the risk of the obvious, the formula disappeared from the text at a very early stage,
followed soon after by the random variables themselves.)
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“Standard error,” of course, is not the usual term; most authors use “standard
deviation” both for data and for random variables. In our experience, however,
students have a lot of trouble separating the standard error for the sample average
from the SD of the sample. Calling the two by the same name makes it hopeless.
So in this book we are quite rigid:

¢ The SD is for data.
¢ The SE is for random variables.

Some instructors prefer the more conventional terminology; we ask their indulgence
in this matter among many others.

Drawing tickets from a box, chance variability, expected values, standard errors,
the normal approximation. . .. Thatis a lot of ideas. It takes times to get them across,
and it is very hard to deal with them adequately in the middle of a complicated
discussion on sampling. So we develop these ideas first, in part V, focusing on the
sum of draws made at random with replacement from a box.! We start with the sum
because chance variability is easier to recognize for sums than averages.

We handle chance variability with more care than is common in elementary
books. Our pedagogical motives should be clear by now: the ideas are hard, and
need time to sink in. But we also have to admit an ideological motive. We think that
statistical inferences should be based on explicit chance models, for reasons given
in the text; sections 21.4-5, 22.5, 23.4, 24.4, and 29.4-5.

Now students are busy people, slightly cynical, with a definite short-term goal:
passing the final. Their previous mathematical education stresses arithmetic proce-
dure, not logical deduction. It is useless to tell them, “Statistical inferences should
be based on chance models.” This is empty rhetoric, with a lot of fancy words: no
sensible exam question can be based on that kind of statement. We want students to
take chance models seriously, so we spend course time on the topic. We also have
exercises where getting the model wrong leads to the wrong answer—and losing
points.

A final remark. PartV is independent of part IV. Instructors who want to spend
the minimum amount of time on “pure probability” should, in our opinion, skip part
IV but do part V. Part V only takes three or four hours of class time, and it is a very
good investment.

Chapter 16. The Law of Averages

Students often think that with a good sample, the sample percentage will equal
the population percentage. This makes it difficult for them to appreciate the standard
error calculations in part VI. Part of the trouble is that they don’t understand chance
variability. Section 1 of chapter 16 takes this up. We have a coin. On each toss, it
is as likely to land heads as tails. Now we toss it 10,000 times. Are we likely to get
exactly 5,000 heads? Surely not. As the number of tosses goes up, the difference
between the number of heads and the expected number tends to get larger and larger

I Technically, this is our substitute for a sum of independent, identically dis-
tributed random variables. We are sacrificing some generality: our random variables
only take finitely many values, with rational probabilities. That is quite enough.
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in absolute terms, that is, as a number. However, the difference tends to get smaller
and smaller in percentage terms, relative to the number of tosses. For many students,
this distinction is new and difficult. It is central to the careful discussion of the law
of averages in section 1. This section also discusses the concept of chance error,
with the equation

number of heads = half the number of tosses + chance error.

The likely size of the chance error is used informally in the text. (The technical
equivalent is the standard error.)

The balance of the chapter is spent setting up box models and introducing the
sum of the draws from the box. A box model consists of draws made at random from
a box of tickets; each ticket in the box shows a number. The chance variability in
coins, dice, roulette wheels (and later, sampling processes) is related to the chance
variability in draws from a box. Eventually, this produces real economy of thought:
there is a general theory, instead of a lot of special cases. At first, students find this
approach rather strange, but they quickly get used to it.

Many examples in this chapter are based on gambling at roulette: the sum of
the draws from the box corresponds to the net gain. For instance, take example 1 on
p-283. The net gain in 100 plays at roulette, staking $1 on a single number at each
play, is like the sum of 100 draws from the box:

|1 ticket 37 tickets |

The phrase “is like” has a precise technical meaning: the net gain and the sum
have the same probability distribution. Of course, we do not insist on this in the
text, but make the point through problems like exercise 6 on p.281 or exercise 2 on
pp.284-85.

Students find the gambling interesting, although a bit technical. (One touchy
point is adding up negative numbers.) It is a digression from the mainline statistical
issues. However, setting up a proper model for a mainline statistics problem is hard.
Setting up a model for roulette is much easier, and it’s good practice. As we tell the
students, the first step is to write the box down. (Of course, you can quickly generate
a lot of free-floating boxes; nobody said this was an easy subject to teach.)

Notes on review exercises. Exercise 1 tests the distinction between absolute
and relative errors, and will be easier for the students when translated into a problem
about coin-tossing. Exercises 4, 6, and 9 are variations on the law of large numbers;
the last may have some technical interest (note 6 to the chapter). Exercises 7 and 8
are about box models, and #10 foreshadows chapter 23.

Chapter 17. The Expected Value and Standard Error

This chapter presents the formulas for the expected value and standard error
for the sum of draws made at random with replacement from a box. The first idea is
that the sum of the draws from a box will be around its expected value, but will be
off by a chance error:

sum = expected value + chance error.
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The likely size of the chance error is given by the SE for the sum. As we write over
and over again on the blackboard,

The sum of the draws will be around give or take or so.

There is a downside: some students will later view expected values as random
variables, computed up to some margin of error. Among other things, after the
sample has been drawn, students will want the expected value for the parameter
to equal the estimate. Given our (slavish?) devotion to the frequency theory, we
developed many ward-off exercises. See, for instance, exercise number 6 on p.294,
number 8§ on p.328, number 1 on p.366. ...

We tell the students that chance errors of an SE or so in size are fairly common,
but chance errors bigger than several SEs in size are very unusual. The SE for the
sum of draws made at random with replacement from a box is computed by the
square root law (p.291) as

~/number of draws x SD of box.

Students need help seeing what the square root means: when the number of
draws goes up by a factor of 100, say, the SE for the sum of the draws only goes
up by the factor /100 = 10. In particular, as the number of draws goes up, the
SE for the sum goes up in absolute terms, but goes down relative to the number of
draws. When the number of draws is large, the normal approximation can be used
(section 3), although a full discussion is postponed to chapter 18. Exercise 8 (p.297)
reinforces the law of averages, and may have some appeal on its own: see note 6 to
the chapter.

As a matter of style, it is wise (though cumbersome) to write “SE for sum,” not
just “SE.” (We try to make the students do this, although we often sin by omission.)
Later on, we will have both the SE for sums and the SE for averages. Students will
want to merge those two entities. Insisting on full names helps prevent this.

Many boxes in gambling problems (roulette, for instance) have only two kinds
of tickets, and there is a short cut formula for the SD of the box. More technically,
if P{X =a}=pand P{X =b} =1— p,the SEis

la —bly/p(1 = p).

This formula appears (in words) on p.298.

We attempt to treat standard errors in a unified way, tracing everything back to
sums. In section 5, a coin lands heads with probability p and is tossed n times: what
is the standard error for the number of heads? This problem fits into the general
framework of sums by the 0—1 coding trick, counting heads as 1 and tails as 0. The
number of heads is like the sum of n draws made at random with replacement from
a box where the fraction of tickets marked 1 is p, and the fraction marked Ois 1 — p.
The SE for the sum is, of course, /i x the SD of the box: now use the short cut.

Unfortunately, the 0-1 coding isn’t so simple, in part because adding up 0’s and
1’s only seems sensible to mathematicians. So the section goes through the coding
in some detail. The students have trouble remembering to put 0’s and 1’s on the
tickets. This isn’t so bad with coin-tossing: some numbers are needed, O and 1 seem
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reasonable. It is harder when rolling die and counting the number of 6’s, still harder
when taking a sample and counting the number of high-income people. In such
examples, the students may already be thinking about some quantitative variable:
0’s and 1’s pale by comparison. The “classifying and counting” slogan should help,
and so does the cartoon on p.301.

There are two other downsides to the 0-1 coding:

(i) When computing the SD of a 0—1 box, students insist on the factor “1 — 0”
in the formula (1 —0)+/p(1 — p). They love substitution; it’s what they’ve
been trained to do in math courses.

(i) Students may automatically change to 0’s and 1’s, even for quantitative
data. (The crunch comes in part VIII.) To help students use 0—1 boxes only
when needed, we try to mix up the exercises a little. For instance, review
exercise 9 in chapter 21 is on quantitative variables, even though chapter 21
is about qualitative variables. Conversely, review exercise 5 in chapter 23
involves qualitative data.

Section 5 closes by relating the law of averages to the square root law. It is the
square root which makes the SE for the number of heads go up in absolute terms, but
down in relative terms. Chapter 17 has a lot of material, and it may spill over into a
second lecture. (On the other hand, chapters 16 and 18 go fairly quickly.) We put
some emphasis on the idea of “observed values,” introduced on p.292. Also see, for
instance, exercise 4 on p.293, or 4 and 7 on p.303—4. We think this will help when
it comes to statistical inference in parts VI-VIIL.

Notes on review exercises. Some students have trouble getting started on exer-
cise 4: the connection between percentages and probabilities may be problematic.
Exercise 9 will be difficult for students who think that two games with the same
expected value must offer the same chance of winning. This exercise should demon-
strate why the SE is needed. (For a preview, see exercise 4 on p.299.) The contrast
between expected and observed values is drawn in exercises 6 and 12. Number 10
focuses onthe v/ in the square root law. Number 11 is a hard exercise on setting
up box models, as is #14. Number 13 is an interesting variation on the law of large
numbers (perhaps too interesting).

Chapter 18. The Normal Approximation for Probability Histograms

‘We introduce probability calculations for sums through the normal curve. When
the number of draws is large, there is about a 68% chance for the sum to be within
one SE of the expected value, and so on. This topic is broached in chapter 17 and
discussed in chapter 18. The key idea is the “probability histogram”—a graph which
represents chance by area. These histograms are drawn deus ex machina, by the
computer. However, we find graphs easier to use in the classroom than hypothetical
lists of all possible samples. (The sample space representation appears as a technical
note on p.414; some instructors prefer this approach: our advice would be to do it in
the context of quantitative data.) Probability histograms are introduced in figures 1
and 2, as the limit of empirical histograms from simulations. The reason for thinking
about products (figure 2) is to see that not everything is normally distributed. The
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normal curve is tied to sums. Students should work exercise set A to pin down the
interpretation of probability histograms.

Sections 3—4-5 present a “local” version of the central limit theorem: the
probability histogram for the sum of a large number of draws from a box will follow
the normal curve very closely. However, as the chapter points out, if the distribution
of tickets in the box is highly skewed, then many draws may be needed before the
approximation takes hold. (This will cause some test anxiety—how can they tell
when it is safe to use the curve?) The continuity correction is introduced in section 4,
to estimate the chance that the sum will take a given value. The official name itself,
“the continuity correction,” appears in the text. The phrase is a bit intimidating, but
we wanted students to be able to look it up in case of need, and we wanted them to
have some way of packaging the idea. Similarly, we have—with a little publication
anxiety—the phrase “central limit theorem.”

Some instructors are troubled by the approach in chapter 18, because they want
the “global” central limit theorem: a sum will be in an interval with probability
close to the corresponding area under the normal curve. In our experience, students
see that if the probability histogram for the sum is close to the curve, areas under
the histogram——probabilities—must be close to areas under the curve. The local
theorem does imply the global one, both intuitively and formally.

With our approach, probability histograms have to be put into standard units
before matching them to the normal curve: that is because we only have one normal
curve—with mean 0 and SD 1. The scaling is done in figure 3 on p.315, which is
like figure 2 in chapter 5. The elided difficulty is non-trivial: Is the density of a +bX
xX—a

b

1
equal to 5 f ( )? orisit bf (a+ bx)? Scaling is our substitute for the equation

S — —
P{S,,<x}=P{” L E "“}.

o/n o/n

(See note 8 to the chapter.) In our experience, the equation is a loser; scaling works.

Note on the SD. The normal approximation shows why the SD is so useful. The
shape of the probability histogram for the sum of a large number of draws from a
box depends only on the average and SD of the numbers in the box. Other measures
of spread, like average absolute deviation from average, have very little to do with
it. (See note 9 to the chapter.)

Notes on review exercises. Exercise 3 tries to reinforce the idea that the his-
togram gives the exact answer, and the normal curve is just an approximation. Since
the probability histogram is a difficult idea, students will confuse it with the his-
togram for the data—the draws from the box. Exercise 4 is on the continuity correc-
tion. Many students will be confused by the “and”; others will want to use the box

13 0’s 12 1’s |, a confusion that may resurface in parts VI-VIII. Distinguishing
between the data and the model is not so easy; exercise 5 may help. Exercise 6 pre-
views hypothesis testing. Exercises 9 and 10 are about the number of draws needed
for the central limit theorem to take over. (Also see exercises 5 and 6 on p.324; the
best thing for the students is to look at some pictures.) Exercise 11 reviews observed
values, and #15 previews significance testing.
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Part VI. Sampling
Chapter 19. Sample Surveys

There are a lot of ideas about sampling which are obvious to statisticians but
not to others, and are well worth teaching in an elementary course. For example:

* The method used to draw the sample matters.

* Some methods are terrible.

» Handpicking the sample to get a representative cross-section tends not
to work very well.

* Haphazard selection may be even worse.

* The best methods for drawing a sample involve the planned introduction
of chance.

* If the non-response rate is high, the results may not be trustworthy.

Jumping straight into the calculations prevents the students from coming to grips with
the basic ideas. That is why chapter 19 opens with a qualitative discussion, pinned to
historical examples like the Literary Digest poll’s choice of Landon (section 2), and
the Gallup poll’s “election” of Dewey (section 3). Probability methods are discussed
in section 4, and their success is documented in section 5.

Elementary books (ours is no exception) concentrate on simple random sam-
pling. Of course, the technical meaning of “random” is quite a bit more specialized
than the usual meaning:

“Without definite aim, direction, rule, or method.”
—Webster’s

An effort is required to make students appreciate the technical meaning of “ran-
dom.” We take our best shot in sections 19.4 and 20.1; also see the discussion of
“convenience samples” in section 23.4. Review exercise 6 on p.352 may reinforce
the point.

Once they know what the terms mean, students think that with a simple random
sample, the sample percentage is very likely to equal the population percentage.
(They are capable of thinking so, yet going on to compute 95% confidence intervals
in response to word problems.) Chapter 16 was designed to prevent this confusion,
and section 19.8 continues the work. Again, the chance-error language creates the
image of the sample percentage coming close to the population percentage, but
missing by a little:

sample percentage = population percentage + chance error.

(There is no bias term with simple random sampling.)

Real sample surveys, of course, use methods much more complicated than sim-
ple random sampling. Our book faces up to this issue. Multistage cluster sampling
is introduced in section 4; it will be discussed again in chapter 22. Section 6 points to
some of the difficulties faced by the Gallup poll, and section 7 discusses telephone
surveys. Some of our teaching assistants confuse quota sampling with stratified
sampling, and then wonder why we are attacking stratification. We aren’t. The
two methods are very different, although they start out the same way. The crucial
difference is that with quota sampling, the interviewer is free to choose respondents
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to make up the quota. For a stratified sample, the choice of sampling units within
each stratum is done objectively, using chance.

Review exercises 10 and 11 are designed to ease the students into confidence
intervals; but the connection may need to be pointed out—later. Review exercise 12
is about non-response bias; so is exercise 12 on p.351. Students like chapter 19, and
they have little trouble with the exercises. They do have trouble with the terminology:
sample percentage, population, population percentage, and parameter are all a bit
remote.

Chapter 20. Chance Errors in Sampling

Section 20.1 reviews the definition of simple random sampling, and drives home
the idea that the sample percentage will differ from the population percentage. Sec-
tion 20.2 presents our version of /pq/n, except that the formula doesn’t appear.
(Well, it does, but only in a technical note on p.362.) This may seem a bit idiosyn-
cratic, and we would like to explain why we moved from the conventional formula
to our version.

The students seemed to find ,/pqg rather hard to swallow. So we taught them
to make a model with 0’s and 1’s in the box. Since we were working in percents, the

formula became
SD of 0-1 box

N
We presented it that way for several years, but there was still a hitch. The students
were willing to compute an SE as SD x /n in part V. When they hit part VI, there
was a tremendous shifting of gears needed to compute the SE as SD//n. Once they
changed over, they stopped being able to compute the SE for a sum as SD x /n—
they insisted on dividing. We tried hard to explain that there was one formula to use
with sums and another for averages, but they wouldn’t buy it.

Eventually, we decided to have only one formula: the SE for a sum. Everything
else is worked out from that. For instance, section 2 gives an example where 400
people are chosen at random from a population consisting of 3091 men and 3581
women; the problem is to compute the SE for the percentage of men in the sample.
When presenting this problem in a lecture, we begin by writing on the blackboard:

x 100%.

Percent of men in sample will be around give or take or SO.
Then we proceed as follows:

Step 1. Set up a box. First we write an empty box on the board:

| |

We ask how many tickets there should be in the box. (Many students will answer
400.) Eventually, we arrive at

| 3581 [0]'s 3091 [1]'s |

The number of men in the sample is like the sum of 400 draws from this box.
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The last is a key sentence: it connects the box to the problem. (If students can
be persuaded to write this sort of sentence on homework or tests, they will be in
relatively good shape; also see exercise 1 on p.391.)

Step 2. Now the calculation can be made:

expected value for sum of 400 draws = 400 x average of box
=400 x 0.46 = 184.

SE for sum of 400 draws = /400 x SD of box

=+/400 x+/0.46 x 0.54
~ 20 x 0.5 = 10.

We pause to interpret the results: the number of men in the sample will be around
184, give or take 10 or so.

Step 3. Convert to percent: 184 out of 400 is 46%, and 10 out of 400 is 2.5%. So
the percentage of men in the sample will be around 46%, give or take 2.5% or so.

This works reasonably well for many students. Others will just compute “the
SE” using a formula, and have one chance in four of picking the right formula out of
the tool box. There are some exercises to discourage random formulas, for instance,
numbers 3 and 5 on p.361. Exercise 7 on p.362 brings back the SE for the sum of
quantitative variables.

Students have a hard time connecting the normal approximation for percentages
with the mathematics in chapter 18—percentages look quite different from numbers.
Figure 3 on p. 365 tries to make the connection, and seems to work reasonably well.
(Also see figure 1 on p.411.)

So far, we have been a bit sloppy about whether the draws are to be made with
or without replacement. When the sample is only a small part of the population, it
makes little difference. Section 4 discusses this issue, and eventually comes up with
the correction factor

\/ number of tickets in the box — number of draws
number of tickets in the box — one '

In our opinion, this formula is somewhat technical for elementary students,
and pushing it too hard obscures the really interesting point. When estimating
percentages, accuracy depends mainly on the absolute size of the sample, rather
than size relative to the population. On the other hand, when estimating numbers,
the game changes (see, e.g., note 5 to the chapter).

Notes on review exercises. Exercise 1 covers the procedure for calculating the
SE for a percentage, connecting it to the SE for a number. Exercise 2 puts in a plug
for box models. Exercises 5 and 12 require computing the SE for a sum. Likewise,
exercises 9-11 are about numbers. (Such exercises help to prevent the students from
forgetting about part V.) Exercise 6 tests the point that accuracy depends mainly on
the absolute size of the sample rather than the relative size.
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Chapter 21. The Accuracy of Percentages

This chapter contains the first technical treatment of inference from the sample
to the population. Section 1 states the question to be answered: how accurate is
an estimated percentage likely to be? (Before that, however, the section reminds
the student of the basic problem—the estimate is apt to be a bit off.) The chapter
explains the answer: (i) accuracy is determined by the SE; (ii) the estimate is likely
to be about right, but off by an SE or so.

The procedure for estimating the standard error from the sample—substitution
of estimates for parameters in the formula— is called “the bootstrap method.” (In our
context, the procedure does happen to be a special case of the bootstrap; the samples
are large, so the bootstrap works like a charm.) Many students will have trouble,
because they do not distinguish between what is known and what is unknown. The
point is somewhat delicate. After all, there is a substantial shift from the last chapter
to this one. For instance, suppose there is a town with 10,000 residents of voting age
and unknown political preferences. To estimate the percentage of Democrats in the
town, a simple random sample of size 100 will be used. Consider two strategies:

* Determine the political leanings of every one of these 10,000 people, draw
100 at random and take the percentage of Democrats in the sample.

* Draw 100 at random, determine their political leanings and take the percent-
age of Democrats in the sample.

The first is zany, the second very practical. The usual standard-error calculation is
made by thinking about the first process, the result being carried over to the second.
Mathematically, that is fine—the probability distribution for the sample percentage
of Democrats is the same in both setups. Students may feel the jolt.

We confront the distinction between the known and the unknown, at least to
some degree (pp.377-79 and 416). We even have some exercises where the students
have to say what is given exactly and what must be estimated from the sample: see,
for instance, exercise 1 on p.379, exercise 9 on p.380, or exercise 1 on p.383. The
distinction between “observed” and “expected” values comes in handy at this point.

Next, we discuss some problems in teaching the main worked example in the
section (p.378). The example is repeated here for ease of reference.

Example 1. In fall 2005, a city university had 25,000 registered students. To
estimate the percentage who were living at home, a simple random sample of 400
students was drawn. It turned out that 317 of them were living at home. Estimate
the percentage of students at the university who were living at home in fall 2005.
Attach a standard error to the estimate.

In working such examples, teaching assistants often demonstrate a natural desire
for mathematical efficiency:

V400 x4/0.79 x 0.21
400

We resist, because the parts lose their meaning for the students.

* /0.79 x 0.21 = 0.41 is the SD of the box, estimated by the bootstrap pro-
cedure.

x 100% =~ 2%.
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* /400 x 0.41 &~ 8 is the SE for the number of students living at home. There
were 317 such students in the sample, and the 8 measures the likely size of
the chance error in the 317.

. % x 100% is the SE for the percentage.

Truth to tell, we sometimes dodge the last step by saying, “8 out of 400 is 2 out
of 100, or 2%.” The idea is to keep the interpretation as rates, rather than letting
percents disappear into ritual formalism.

This chapter makes the transition from probability calculations to statistical
inference, and here is one consequence. Students will not take us seriously if we
tell them, in working the example, “the sample number will be around its expected
value give or take an SE or so.” After all, the sample number is right there in front
of them—it is 317. But the 317 is a little shaky, being based on a sample; the 8 tells
us how shaky: and that is how we interpret the SE.

After dealing with standard errors, the chapter explains how to get confidence
intervals for the population percentage at the 68%, 95%, and 99.7% levels by going
1,2, or 3 SEs either way from the sample percentage. (The distinction between 1.96
SEs and 2 SEs, for instance, just didn’t seem worth pursuing—among other things,
the normal approximation may not be right to 3 decimal places.)

The conventional frequency interpretation for confidence intervals is given in
section 3. (Bayesian colleagues are asked to temper justice with mercy.) Even for
a hard-bitten frequentist, this is a difficult passage to teach, because many students
will want to say,

There is a 95% chance that the percentage of Democrats in the town is be-
tween. . ..

This is a natural human hope and we try not to deal with it too harshly. The section
explains that the chance variability is in the sampling process not in the parameter.
Exercises 1 and 2 on p.386 reinforce the frequentist interpretation. Exercises 4—7
on pp.386-87 are useful, but students may find the distinctions somewhat irritating.

Unfortunately, students find confidence intervals quite hard. In struggling with
the complications, they are likely to lose track of the main point. So the section
restates it, on p.386: the SE tells you the likely size of the amount off. From our
perspective, there is nothing wrong with omitting confidence intervals, and focusing
on the SE as a measure of reliability. Just be careful about homework assignments.

As mentioned before, the Gallup poll uses a complex multistage cluster sample,
and / pg/n does not apply. This is hard. Students want to analyze the data, which
is right there in front of them. They do not want to pay attention to the process
generating the data, which is more remote. The point is tackled in section 4; also see
exercise sets D and E. Many elementary statistics books do not face up to the issue,
and perhaps that is one reason why investigators run around computing / pg/n in
situations where the results make little sense.

Notes on terminology. (i) We could not write the chapter without using the sam-
ple percentage-population percentage terminology, which is confusing to some stu-
dents. The percentage of Democrats in the sample and the percentage of Democrats
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in the town are much more tangible, and the students pick up the idea through the
examples. (ii) We try to distinguish between the “true” standard error computed
from the box, and the standard error estimated from the sample. The latter is a
“standard error of estimate,” but this terminological elaboration would be too con-
fusing. (Our use of SE rather than SD for random quantities is consistent with the
standard-error-of-estimate language.)

Notes on review exercises. Exercises 1-2 cover the basics. Exercise 3 reminds
the students that confidence intervals depend on the normal approximation (and see
3—4 in exercise set B on p.383). Review exercises 7 and 9 are meant to teach the
students not to use the standard error formula where it does not apply. Number 8 tries
to block a purely syntactic approach—answering questions on the basis of key words
or phrases, or even layout. Exercise 10 on sums is designed to review techniques from
part V, and keep quantitative variables alive. Exercise 13 distinguishes between the
histogram for the data and the probability histogram. Exercise 14 makes the point
that the expected value and standard error depend on the box, not on the draws.
Exercise 15 distinguishes what is known from what is estimated, in the sampling
context. Some exercises are worded to suggest that calculations may not be feasible;
students will find this disturbing, but the idea is an important one.

Chapter 22. Measuring Employment and Unemployment

Government estimates for the unemployment rate are prepared from the monthly
Current Population Survey. This sample survey is discussed from the ground up.
Such detail is unusual in an elementary text, but it consolidates the understanding of
the material presented in the previous chapters, and gives the students a flying start
on understanding any other large-scale survey. We don’t test the students on details
of the design. Mainly, we want them to learn that real surveys do not use simple
random samples, so \/ pg/n does not apply. The standard errors have to be estimated
differently, and the half-sample method is sketched in section 5. One conclusion is
that the calculation for the standard error should depend on the sample design. If
the design is unknown, or poorly defined, sensible calculations are hard to make.

Many professionals are surprised to find that the complex design used by the
Current Population Survey gives somewhat less accuracy than a simple random
sample. Although the stratification and the ratio estimation reduce sampling error,
the clustering increases it (p.402). Of course, without the clustering nobody could
afford to do the Survey. The real surprise, to us, is that the Current Population Survey
is almost as accurate as a simple random sample. In complex designs, the effective
sample size is often reduced by 15% to 50%. The Current Population Survey design
is amazingly effective. Other statisticians ask why the ratio estimates are practically
unbiased. Our explanation: the sample is very large, so the SEs are rather small,
and the ratio estimates are almost linear in the data.

Notes on review exercises. Exercise 1(a) tests understanding of ratio estimates
(section 4); part (b) does labor force definitions (section 3). Exercises 2—3—4 are
about the half-sample method (section 5). Exercises 5 and 6 review definitions from
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chapter 19. Exercise 6 also makes the point that the SE depends on the sampling
method. Exercises 7 and 8 test the understanding of probability samples. Exercise 9
is about interviewer bias (chapter 19). Exercise 11 tries to stop the parameter from
being the random variable, after the sample is drawn. (Bayesians are permitted a wry
chuckle.) Exercise 12 makes the point that confidence levels depend on the normal
approximation, which will break down if the distribution is sufficiently skewed.

Chapter 23. The Accuracy of Averages

Section 1 explains how to calculate the standard error for the average of draws
made at random with replacement from a box, by working back to the sum (p.410
of the text). The interpretation is that the average of the draws will be around the
average of the box, give or take an SE or so. Students handle this reasonably well,
although by force of habit a few will go

SE for average of draws = (SE for sum/number of draws) x 100%.

Others will want to use the SE for the sum, with little sense that the order of magnitude
is wrong. The formula “o/,/n” appears only in the technical note on p.415 of the
text; we do not teach it for reasons given earlier (pp.27 of this manual).

The application to inference is in section 2. With a simple random sample, the
SE of the average is estimated by substituting the SD of the sample for the unknown
SD of the box. Then, confidence intervals are obtained by going the right number
of SEs either way from the average of the sample. (In this chapter, the samples are
large: small samples are dealt with, by Student’s ¢, in chapter 26.)

At this point, to mix a metaphor, a lot of very tough chickens may come home
to roost. Many students are going (somehow) to want O—1 boxes in section 2. Others
will want to use the SE for the sum rather than the SE for the average. Survivors
will mix up the probability histogram for the average of the sample with a histogram
for the data. Another confusion is between the SD of the sample and the SE of the
average, so confidence intervals get interpreted as follows:

95% of the population is within 2 SEs of the average of the sample.

Some students fly over chapter 18, because they see no new techniques pre-
sented there. But in chapter 23, they have to come to grips with the central limit
theorem. After all, how does the normal curve fit into a problem on educational
levels, if the data are so far from normal? Figure 1 on p.411 tries to explain why the
probability histogram for the average of the draws follows the normal curve, making
the connection to chapter 18 via the obvious (to us but not to them) change of scale.

The ideas in section 2 have all been introduced before, but they are difficult,
and they interact in funny ways. Many students profit from studying figures 1
and 2. Others get things under control by working exercise set B. Section 3—and
exercise set C—will also help: this exercise set reviews the mechanics and tests the
distinctions between what is estimated and what is known. Exercise 4 in set C may
seem primitive, but it forces the students to confront the concepts and pay attention to
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the scale of a histogram. Despite our best efforts, many students see no relationship
among the SEs for sums, averages, numbers, and percents. Section 3 tries once again
for unity.

As discussed earlier, the standard-error calculations presuppose simple random
sampling, and the students are reminded of this in section 4. The calculations for
confidence levels also depend on the normal approximation. Exercises 2-3 in set D
(p-425) make the point. Exercises 4 and 6 reinforce the lesson that the SE depends
on the design of the sample—and the SD.

Note on terminology. Students seem to find “sample average” a bit confusing:
is it a sample of averages, or what? “The average of the sample” is better, and “the
average of the draws” better yet. “Population” also tends to throw things off course.
We find ourselves talking about “the box,” and being understood better.

Notes on review exercises. These exercises force the students to distinguish
between the SE and the SD. They also make the students separate out the histogram
for the sample and the probability histogram for the average of the sample. They
teach that the calculations depend on the normal approximation, and on simple
random sampling. So they are tough, but provide good diagnostics.

The special review exercises cover parts I-VI. We comment on some of the
problems. Numbers 3 and 4 review some issues in study design, and try to sharpen
the understanding of confounders. The material on handedness came up in special
review exercise 10, chapter 6. The twist here is using average age at death. As
epidemiologists know, average age at death is a rather tricky statistic. Exercise 4 is
designed to bring out the difficulty.

Exercise 5 is on the mean vs. the median. Exercise 8 reverses number 2 on
p. 174, defending against the syntactic approach. Exercise 10 reviews material from
chapter 11, and tries to sharpen the connection between inequalities and regions in
the scatter diagram. Exercise 11 is another version of 9-10 in chapter 12.

Exercises 13—15 cover part I'V. Exercise 16 tries to separate the law of the aver-
ages from de Méré’s paradox. Exercise 17 is a hard modeling question. Exercise 22
recaps observed values. Exercise 23 makes them squint at histograms, to see the
connection between sums and averages. Exercise 25 is on selection bias. Exercise 27
tests to see if they know what confidence intervals are for. Exercise 28 has some
interesting data, and tests the idea of cluster samples. Exercise 30, with random digit
dialling, is the flip side of number 6 on p.372.

Exercise 19—an oldie-but-goodie—reviews probability histograms. There are
two stumbling blocks:

(i) seeing that the number of heads when 100 coins are tossed is like the number
of heads when one coin is tossed 100 times;

(ii) separating repetitions of tossing the coin within the group of 100 from
repetitions of tossing the whole group.

The figure on the next page may help.
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Special review exercise 23.19. A group of 100 coins are tossed over and over
again. The top panel shows data on the number of heads with 100 repetitions, i.e.,
100 x 100 = 10,000 individual tosses. The second panel is for 1000 repetitions, i.e.,
1000 x 100 = 100,000 tosses; the third, for 10,000 repetitions, i.e., 10,000 x 100 =

CHAPTER 23. THE ACCURACY OF AVERAGES

1,000,000 tosses. The bottom panel is the probability histogram.
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Part VIl. Chance Models

In part VII, box models are used to study two topics: measurement error (chap-
ter 24) and genetics (chapter 25). These topics are a bit unusual for an elementary
statistics course; instructors who wish to skip them will find that part VIII was writ-
ten with this possibility in mind. Part VII is designed to reinforce the lesson that to
make a good statistical inference, the investigator has to get the box model right.!

Chapter 24. A Model for Measurement Error

With a large number of measurements, the standard error for the average is esti-
mated as in chapter 23. You start by finding the SE for the sum of the measurements—

+/number of measurements x SD.

Then, you divide by the number of measurements, to get from the sum to the average.
As in the sampling context, there is room for confusion between the SE and the SD.
The discussion on pp.442-43 (and the cartoon) try to separate these two quantities.

Despite the familiarity of the arithmetic, there is an issue in this chapter, and it is
dealt with in sections 2-3. The procedure for computing the standard error is based
on the square root law. The justification depends on viewing the measurements as
the observed values of a sequence of independent, identically distributed random
variables.

In our experience, that formulation does not convey much to students. We state
the idea this way: the data are like the results of drawing at random with replacement
from a box of numbered tickets. In particular, if there is any trend or pattern in the
data, the model does not apply (pp.445-49). Dependence between the measurements
also rules the model out. Students can use this principle as a heuristic, relying on
the ordinary meaning of “dependence.”

In many cases, the model fits measurement data rather badly. The investigator
develops some notion of what the next measurement “ought” to be, based on the
previous data, and tends to report this notion instead of the real measurement, de-
stroying the independence. That kind of observer bias is eliminated by the weighing
design used at the National Bureau of Standards. See note 8 to the chapter.

Usually, one objective of measurement error models is to make a clean sepa-
ration between the parameter being estimated (the “exact value” of the thing being
measured) and the chance errors. There is a practical reason for this separation. For
example, if repeated measurements are made by a certain process on a check weight,
the variability in the results can be used to judge the likely size of the chance error
in a measurement on another weight (example 5 on p.451).

We set the model up with this in mind. There is a box of tickets, called the
error box. Each ticket in the box represents a possible chance error, and the average

' Box models look special, because the draws (when made with replacement) are
independent. However, the boxes can be modified to handle dependence. Just for
one example, a pair of dependent random variables can be modeled by drawing at
random from a box of tickets, where each ticket shows a pair of numbers (chapter 27).
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of the numbers in the box is assumed to be 0. Then, each measurement equals the
exact value of the thing being measured, plus a draw with replacement from the box.
This is the Gauss model for measurement error. (The name should not be taken to
imply that the errors follow the normal curve.) In our somewhat primitive notation,
the model looks like this:

/
Meoasurement = exact value + []
Ave. of
evvor box=0

More conventionally, the model would be stated as follows:
Xi=pn+e

where the ¢; are independent, identically distributed, and have expectation 0.

The model is explained in section 3, and the procedure for calculating the SE
is derived from the model. Bias—often a major problem—is taken up at the end of
the section. (Up to this point, bias has been assumed to be negligible.) The role of
the model in making inferences is summarized in section 4.

Notes on review exercises. Parts (a—b) of exercise 1 are the basic blurts; parts
(c—f) try to ward off various misinterpretations of confidence intervals; part (f) is
hard. Exercise 2 tries to isolate the role of the normal curve; also see exercise 10.
Exercise 6 is about the role of the model. Exercises 8 and 9 bring the SE for the
sum back into play; of course, for the students, the first issue is to see that sums are
involved.

Chapter 25. Chance Models in Genetics

This chapter gives a brief account of Mendel’s genetic theory, based on his
experiments with peas. For statisticians, there is an interesting twist to the story:
Fisher argued that Mendel’s data were massaged to make the frequencies closer to
their expected values (section 2). The geneticists do not agree, see note 7 to the
chapter. Fisher also showed that Galton’s law of regression could be explained by
Mendelian theory. One version of the argument is presented in section 3, but it is
out of reach for most students.

The physical source of the randomness in Mendelian genetics is described in
section 4. This is a tough story, but worth telling. One of the great strengths of the
model is the precise description of the physical sources of randomness. As we say
in the text, this chapter is included for two reasons:

* Mendel’s theory of genetics is beautiful science.
* The theory shows the power of simple chance models in action.
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Part VIII. Tests of significance
Chapter 26. Tests of Significance

The basic idea of the z-test is easy. If an observed value is too many SEs
away from its expected value, something is wrong. But students find the vocabulary
bewildering, and the implicit double negative is hard to follow: investigators usually
proceed by rejecting the opposite of what they want to prove. Our objective was to
teach the basic idea, and some of the conventional language—null hypothesis, test
statistic, P-value. A more reasonable objective, perhaps, is just to teach the idea and
skip the language. (Section 26.1 is organized with this possibility in mind.)

We decided to focus on one test first, developing the ideas and the language in
that case, and only then moving on to other tests. We chose to start with the z-test.
One-tailed tests are used throughout this chapter and the next, as students find them
more natural than the two-tailed variety. (There are enough other complications to
justify postponing this one to section 29.2.)

Section 1 introduces the idea of the z-test. In the example, the null hypothesis
says that the average of the box is 50. The alternative hypothesis says that the average
of the box is less than 50. There is a difference between the observed sample average
of 48 and the expected value of 50. The null hypothesis interprets this difference as
chance variation. The alternative says the difference is real, i.e., reflects a fact about
the box.

Section 2 recommends that you set up the null and alternative hypotheses as
statements about a box. Few students will pay attention to this advice, but it is the
key to all that follows. As we see it, a box model is needed to make the z-test,
because the model is what defines the chances. This argument is taken up again in
chapter 29.

Section 3 introduces the test statistic z and the observed significance level or

P-value:
= observed - expected ‘) o - %\

SE z

When the P-value of a test is very small, we tend to quote it as a fraction rather than
a percent (p.479). Some students will need help in seeing the connection.

The conventional frequentist interpretation of P is given (apologies to our
Bayesian colleagues). If the null hypothesis is right, and the experiment is re-
peated many times, then P is the proportion of repetitions giving z’s more extreme
than the observed one. The students are then taught that a test of significance is an
argument by contradiction (not an easy pitch to make, because many of them don’t
know what an argument by contradiction is). Exercises 4—5 in set D try to help with
the frequentist interpretation of P.

Section 4 reviews the steps involved in making a test, and introduces the 5%
and 1% levels. As we tell the students, a result is significant if P is less than 5%,
highly significant if P is less than 1%. (However, we suggest reporting P instead of
just saying how it compares to 5% and 1%.) Many students jump to the conclusion
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that P represents the chance of the null hypothesis being true. Measures are taken
to prevent this mistake, in the text, in exercise 2 on p.481, and in other exercises.
Some students will need to be told, more than once, that small P is bad for the null,
big P is good for the null (e.g., exercise 2 on p.482).

Section 5 shows how to make the z-test for qualitative data. The lead example
is an ESP experiment done by Charles Tart at U.C. Davis. In this example, and many
others, we think there is no natural alternative hypothesis about the box. If a subject
has ESP, there is no reason to suppose the successive guesses are independent,
so p > 1/2 isn’t a plausible hypothesis—there is no p. After the first edition of
Statistics was published, Tart tried to replicate his ESP experiment, but found no
effect—section 29.5. (This is association not causation.) He explained the failure
to replicate by a change in student attitudes: “In the last year or two, students have
become more serious, competitive and achievement-oriented. . ..”

Exercises 1-5 in set E (pp.486ff) go through testing, step by step. Number 9
reinforces the point that the argument is about the box (i.e., the parameters in the
model) not the sample. Also see exercise 4 on p.478. Exercise 11 does the sign test.
Exercise 10 is interesting, and there are two ways for students to go off the rails:

(i) using the sample SD instead of the population SD, and

(ii) making a two-sample test, using the two SDs.
Instructors will get to see the second mistake only by having the exercise on a quiz,
after doing chapter 27.

Our version of the z-statistic is

observed — expected
SE ’

=

Many students find this equation a bit cryptic, and do not see how get started using it.
We ask, “Well, what is observed?” If the observed value is an average, for example,
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then they need the expected value for the average, i.e., the average of the box—and
the SE for the average of the draws. The discussion on p.485 may help. We motivate
the equation this way: z puts the observed value into standard units.

Section 6 does the ¢-test. We consider this to be a fairly technical topic for an
introductory course, and skip it when pressed for time.

Notes on review exercises. The exercises are designed to emphasize the logical
steps involved in making a z-test: formulating hypotheses as statements about a box
model, then computing z and P. In many of the exercises—for instance, numbers
8 or 10—students will have a very hard time setting up the box model. (The issue
for them in working #8 is choosing the right SD.) Exercise 11 boils down to testing
whether a coin is fair or biased. Exercise 12 explains methods for handling paired
data (the sign test, the z-test on differences).

Note on coverage. We do not introduce the terms size or level, or use the
symbol «. The concept of power is not introduced: there is enough to do as it is.
The connection between tests and confidence intervals is not established: students
rarely see the point of isomorphisms.

Chapter 27. More Tests for Averages

Section 1 explains how to calculate the standard error for the difference of
two independent chance quantities. Example 2 and exercises in set A stress the
assumption of independence. Section 2 presents the two-sample z-test. The context
is the decrease in reading scores over the period 1990-2004, as measured by NAEP
(National Assessment of Educational Progress). The section shows how to set up
the model, with two boxes. Another example does the 0—1 coding. Our test statistic
is the standard one, in disguise (note 3 to the chapter). Some students will get lost
in scaling. For instance, they will figure the difference in percentage points, but its
SE in decimals. Exercise 5 on p.507 helps. Ideally, of course, each SE should be
seen as the margin of error in some estimate.

Section 3 applies the two-sample z-test to experimental data. We set up the
model with two possible responses for each subject. One is observed if you put the
subject into the treatment group, the other if you put the subject into the control
group. But you cannot observe both. Suppose there are N subjects: n are chosen at
random for the treatment group, and m for the control group, withn +m < N. If
n + m is much smaller than N, there are in effect two separate boxes, and the theory
of section 27.1 applies directly (for a real example, see review exercise 8). Now
there is a glitch. If n + m is comparable to N—and n + m = N is the usual case
in clinical trials—the treatment and control averages are dependent. Furthermore,
the difference between drawing with or without replacement matters. In principle,
then, it is wrong to model the data as two independent samples drawn from two
large boxes. Fortunately or otherwise, this fine point has no practical consequences.
Ordinarily, treating the two samples as independent and drawn with replacement will
give an excellent approximation to the SE for the difference between the averages.
(For discussion, see notes 11 and 14 to the chapter, which also provide a brief review
of the literature on the model.)
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In example 4 on p.508, the calculation is made blindly. The logic is discussed
afterward, on pp.509-10. This is a difficult passage. Students have to work hard to
see that the sample averages are dependent. Some of them will be irritated to find
that the dependence does not matter—for reasons which may also seem mysterious.
Section 4 presents a real example with qualitative data—an experimental test of
“rational” decision theory. Exercise 3 on p.515 does some calculations for the HIP
trial on mammography (pp.22-23), and points to a design issue. Breast cancer is
a rare disease. Even if screening cuts the death rate from breast cancer in half, the
impact on the total death rate is unlikely to achieve statistical significance—unless
sample sizes are incredibly large. That is why investigators look at cause-specific
mortality rates. Section 5 tries to explain when the z-test applies.

Notes on review exercises. The point of exercise 1 is to make the students distin-
guish between one-sample and two-sample tests. Exercises 2—3 are straightforward
two-sample problems; number 2(b) hints that averages may have better power. In
exercise 4, the test cannot be done—dependence (see exercises 5—6 on pp.515-16).
Review exercises 5-7 are fairly straightforward experimental setups. Number 8§,
again on experiments, is much harder. Students either don’t see what is being com-
pared to what, or find the comparisons too unnatural to make. In grading this one,
we insist on a substantive conclusion—for instance, that people are poor predictors
of their own behavior, but tend to live up to their predictions about themselves—as
one character in the drawing understands. Question 11 is very theoretical. The hope
is to persuade at least some of the students that a significance test is not a ritual, but
an argument that has is own internal logic.

“I’'m not asking for a raise, Sir. I just want to know how you would react if I did.”
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Chapter 28. The Chi-Square Test

Section 1 presents the x 2-test for goodness of fit, when the model is completely
specified. Students have a hard time deciding when to use the y2-test and when to
use the z-test; some help is given on p.523; also see exercises 3—6 on pp.539—-40.
The text explains how to read the x 2-table (p.527), and says that the x 2-distribution
is only an approximation. The mathematical underpinnings for the approximation
are discussed in section 1. The main one is a box model; this is emphasized in the
text. Figure 2 (p.528) for 60 rolls may help. As the number of rolls goes up—=60,
600, 6000—the probability histogram will get closer and closer to the smooth curve.
The figure below plots the probability histogram for 600 rolls. The histogram is
already very close to the curve.

Probability histogram for the null distribution of the x2-statistic in 600
rolls of a fair die. (Continues figure 2 in chapter 28.)
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Section 1 closes with a real example—testing the wheel of fortune. Section 2
describes x2, in some degree of generality, as a goodness-of-fit test. Section 3
discusses the pooling of independent x?2’s, and shows how Fisher used the y2-test
to check up on Mendel (but see note 7 to chapter 25, for the geneticists’ counter-
arguments). Fisher computed a left-hand tail area, rather than a right-hand tail
(p-534). Students see a possible trap, so the issue will get air time. Section 4 shows
how x?2 is used to test for dependence in m x n tables. With the current exposition,
this is fairly easy going.

Notes on review exercises. Exercise 1 confronts the issue of which test to use
when. Exercises 2 and 7 are straightforward goodness-of-fit questions. Number 3
does independence in a 3 x 3 table, while number 9 does a 3 x 2 table. Exercises
4-5 are qualitative, and get the students to focus again on probability histograms
and tail areas. Students may find exercise 6 a little ambiguous, but left-hand tail
areas are called for. Exercise 10 is based on a court case—does the y2-test show
discrimination in the criminal justice system of Northern Ireland? (In a law case,
finding a mistake by an opposing expert is powerful—and guessing how the mistake
was made is dynamite.)
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Chapter 29. A Closer Look at Tests of Significance

Many people find tests of significance both complicated and mysterious. Per-
haps as a result, the limitations of the technique are often ignored. This often creates
unnecessary confusion. So we think it is important to discuss what tests of signifi-
cance don’t do. That is the topic of chapter 29.

Section 1 is about fixed-level testing (a procedure we do not recommend). Sec-
tion 2 covers data snooping. Students find it very hard to understand that significance
levels are compromised by multiple looks at the data. Exercise 5 on p.483 and exer-
cise 1 on p.550 should help, a little; exercises 2—5 on pp.551-52 give some practical
examples. We see the “one-tail-or-two” issue as quite minor.! Many professionals
will not agree with us, and the students like a definite rule for deciding whether to
use a one-tailed or a two-tailed test (pp.547-50). The issue will get some attention.

Section 3 tries to explain that small differences can be statistically significant—
or big differences insignificant—depending on the sample size. This point is hard,
and irritating. Students have invested a lot of time learning how to operate the tool,
they want it to be useful. Section 4 is about the role of the model in testing. Since
the arithmetic of the test seems to generate the chances—the P-value—this section
is quite subtle. Section 5 stresses the role of design, and section 6 is a reminder
about the basic question being addressed by significance tests: is the difference too
large to explain by chance?

Notes on review exercises. Exercises 1 and 2 are straightforward questions,
which can be answered from the reading. Exercise 3 is a math question but a little
tricky, the point being that P-values depend on sample size. Exercise 4 is about
data snooping, among other things; hard. Exercises 5 and 7 are about not doing
tests when you have all the data, an idea the students pick up. Exercises 8-9 are on
sample design, and are hard. Exercises 6 and 10 are about real studies and raise real
questions; very hard.

Finally, we comment on some of the special review exercises, which cover
the whole book. Exercises 1-2 are on study design. Exercise 3 covers Simpson’s
paradox. Exercise 4 makes the point that histograms are different from bar graphs
(also see exercise 8 on pp.52—-53). Exercise 6 is on percentiles for skew distributions.
Exercise 7 makes them look at scatter diagrams (to find the child brides and grooms
at the lower left). Exercises 8—14 cover part III: number 8 involves a lot of work
on a small data set. Exercise 9(a) does attenuation, while 9(b) covers ecological
correlations. Exercise 10 is another variation on the regression effect. Exercise 11
involves percentile ranks, and will be quite a challenge. With exercise 14, students
will have to work out a percentage from the normal approximation, then a number.

Exercises 15-17 cover parts IV and V. Exercise 15 requires careful reading;
compare exercise 11 on p.253. Exercise 16 looks like a binomial problem, but it
isn’t—they will need to think about the ideas in order to work the problem. Exer-
cise 17 requires a box model; not completely transparent. Sampling is the next topic.

I The data-snooping that goes into developing a typical regression model seems
much more serious; of course, the application to cholesterol is far from minor (ex-
ample 2 on p.550).
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Number 18 is on selection bias; 19 is on evaluation of survey results. Exercise 21
puts reverse spin on #30, p.436. Exercise 22 combines ideas from sampling with the
continuity correction. Exercise 23 examines some design issues in sampling. Stu-
dents often make “cluster sample” mean any kind of sample they don’t like, and we
try to block that move. Exercises 25, 26, and 28 try to stop some misinterpretations
of expected values and confidence levels; #28 is based on a court opinion which
got the wrong answer. Exercise 31 is on measurement error, and 32 on genetics.
Exercise 33 tries to make the students understand when to use a one-sample z-test
or a two-sample test. Exercise 34 is to prevent misinterpretations of P. The data
in exercise 36 are interesting, and the idea is not to make a two-sample z-test with
correlated responses.



