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1 The properties of gases

1A The perfect gas

Answers to discussion questions

The partial pressure of a gas in a mixture of gases is the pressure the gas would exert if it
occupied alone the same container as the mixture at the same temperature. Dalton’s law is a
limiting law because it holds exactly only under conditions where the gases have no effect
upon each other. This can only be true in the limit of zero pressure where the molecules of
the gas are very far apart. Hence, Dalton’s law holds exactly only for a mixture of perfect
gases; for real gases, the law is only an approximation.

Solutions to exercises

The perfect gas law [LA.5] is pV = nRT, implying that the pressure would be
nRT

\
All quantities on the right are given to us except n, which can be computed from the given
mass of Ar.

= A& =0.626 mol
39.95 g mol
o D= (0.626 mol) x (8.31x 10 cirré dbarK mol™) x (30 + 273) K_
m

So , the sample would not exert a pressure of 2.0 bar.

Boyle’s law [1A.4a] applies.
pV =constant  so psVs = piVi
Solve for the initial pressure:

. PV, (1 97 bar) x (2.14dm?)

i ) -07 bar
O p=y (2.14+1.80)dm°

(i) The original pressure in Torr |s

( 1atm (760 Torr )
b, = (.07 ban) x| 7573 barJ \Tam )~

The relation between pressure and temperature at constant volume can be derived from the
perfect gas law, pV = nRT [1A.5]
o) peT and DB
Ti Tf
The final pressure, then, ought to be

pT.  (125KkPa) x (11+273)K
- Pile = [120 kP4
=7 (23+273)K

According to the perfect gas law [1.8], one can compute the amount of gas from pressure,
temperature, and volume.

pV =nRT
5 -1 33
© ne pv _ (1.00 atm) x (1.013x 10°Pa atm ™) x (4.00 x 10°m"~) 1,66 x 10°mol
RT (8.3145 J K™mol™) x (20 + 273)K

Once this is done, the mass of the gas can be computed from the amount and the molar
mass:

m = (1.66 x 10°mol) x (16.04 g mol ') = 2.67 x 10°g = |2.67 x 10° kg

The total pressure is the external pressure plus the hydrostatic pressure [1LA.1], making the
total pressure
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P =Pex + pgh .
Let pex be the pressure at the top of the straw and p the pressure on the surface of the liquid
(atmospheric pressure). Thus the pressure difference is

1kg X( tem )
(107 m)

- =1.5x107 atm

The pressure in the apparatus is given by

P = Pex + pgh [1A.1]
where pe, = 760 Torr = 1 atm = 1.013x10° Pa,

i pen=sSsgam Llolzgg] [1;2mmJ

p=1.013x10° Pa+1.33x10* Pa=1.146 x 10° Pa = |115 kPa

V
Rearrange the perfect gas equation [1A.5] to give R = % = pT

All gases are perfect in the limit of zero pressure. Therefore the value of pV,/T extrapolated
to zero pressure will give the best value of R.
The molar mass can be introduced through

p-—p, =pgh=(10gcm" )>< x (9.81ms?)x(0.15m)

3
x 0.100 m x 9.806 m s =1.33x 10" Pa

m

pV = nRT = L RT
M

which upon rearrangement gives M = \?ﬂ = pﬂ

p p

The best value of M is obtained from an extrapolation of p/p versus p to zero pressure; the
intercept is M/RT.
Draw up the following table:

platm (PV/T)/(dm® atm K™ mol™) | (o/p)/(g dm™® atm™)
0.750 000 0.082 0014 1.428 59
0.500 000 0.082 0227 1.428 22
0.250 000 0.082 0414 1.427 90
; ; ( pv \ 3 -1 -1
From Figure 1A.1(a), R= Imgk T”‘ = |0.082 062 dm*” atm K™ mol
p—>
Figure 1A.1
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(b)

1.4288 : : :

plp=0.0013733p + 142755 |
1.4286 --meeeeeened ,.. ............. ............. ,. ......
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platm

From Figure 1A.1(b), Iirrg [%} =1.427 55gdm? atm™
P>

M = lim RT [%] = (0.082062 dm® atm K mol™) x (273.15 K) x (1.42755 g dm™® atm ™)
g

=31.9988 g mol™*

The value obtained for R deviates from the accepted value by 0.005 per cent, better than can
be expected from a linear extrapolation from three data points.

The mass density pis related to the molar volume Vi, by

VAR A A i
n m n p

where M is the molar mass. Putting this relation into the perfect gas law [1A.5] yields

M
DV = RT 50 P _Rrr
P
Rearranging this result gives an expression for M; once we know the molar mass, we can
divide by the molar mass of phosphorus atoms to determine the number of atoms per gas
molecule.

RTp  (8.3145 Pam®mol ) x [(100 + 273) K] x (0.6388kg m®)
p 1.60 x10* Pa
0.124 kg mol™ =124 g mol™

M =

The number of atoms per molecule is
124gmol ™
31.0gmol™

suggesting a formula of E]

=4.00

Use the perfect gas equation [1A.5] to compute the amount; then convert to mass.

1

RT

We need the partial pressure of water, which is 53 per cent of the equilibrium vapour

pressure at the given temperature and standard pressure. (We must look it up in a handbook
like the CRC or other resource such as the NIST Chemistry WebBook.)

p = (0.53) x (2.81x10°Pa) = 1.49 x 10°Pa

pV =nRT SO n=
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_ (149x10° Pa) x (250 m?)
(8.3145 J K™ mol™) x (23+273) K

and  m=(151mol) x (18.0 gmol ) = 2.72x 10° g ={2.72 kg

(i) The volume occupied by each gas is the same, since each completely fills the container.
Thus solving for V we have (assuming a perfect gas, eqn. 1A.5)

=151 mol

V= n, RT
P,
We have the pressure of neon, so we focus on it
0.225¢g

e =T = 1.115x 107 mol
20.18 g mol

Thus

= 2 3 -1 -1
v 1115107 mol xz.;4512a3r2 K*mol* x300K o yos s _[a1a g
. X a

(if) The total pressure is determined from the total amount of gas, n= Nep, + Nar + Mye -

e =—23208 1 995x102 mol n, =19 _ 438510 mol
+ 16.04 g mol™ 39.95 g mol™

n= (1.995 +0.438+ 1.11§)x 102mol = 3.55x 1072 mol

_ NRT _ 3.55x107 mol x8.3145 Pam® K™ mol™ x 300 K
\Y 3.14x10° m®

—|2.82 x10° Pa|=[28.2 kPa

and

This exercise uses the formula, M :%, which was developed and used in Exercise

1A.8(b). First the density must first be calculated.

-3 ( 3 3\
_335x107g 10" cm ) =0.134gdm
250cm dm

0.134g dm®) x (62.36 dm? " mol™) x (298K
Mz( g ) x( 1;}I;ntotrchrrK mol ) x ( ) _ 16.4 g ol

This exercise is similar to Exercise 1.12(a) in that it uses the definition of absolute zero as
that temperature at which the volume of a sample of gas would become zero if the substance
remained a gas at low temperatures. The solution uses the experimental fact that the volume
is a linear function of the Celsius temperature:

V=V, + ab where V= 20.00 dm® and &= 0.0741 dm*®°C™ .
At absolute zero, V=0=V, + a0

\Y/ 20.00 dm?® =
o) d(abs.zero) =— L =——— — = -C270°C
( ) a 0.0741dm?® ;C™*

which is close to the accepted value of —273C.

(i) Mole fractions are

Xy = My [1A.9] me

T (25+15) mol

total

Similarly, x, =m

According to the perfect gas law
ProtV = NtRT



o _ N,RT _ (4.0 mol) x (0.08206 dm?® atm mol™ K™) x (273.15 K) _

P \% 22.4 dm*®

(ii) The partial pressures are

b, =X, P, =(0.63)x (4.0 atm) =
and  p, =(0.37) x (4.0 atm) =

(i) p=p,+p,AA10]=(25+15) atm =

Solutions to problems

1A.2  Solving for n from the perfect gas equation [1LA.5] yields n :%. From the definition of

molar mass n :ﬁ, hence p= Vm = % Rearrangement yields the desired relation, namely
- ,RT
p - ID M .

Therefore, for ideal gases P_ % and M =%. For real gases, find the zero-pressure
P P

limit of 2 by plotting it against p. Draw up the following table.
Yol

p/(kPa) 12223 | 25.20 | 36.97 | 60.37 | 8523 | 101.3
(kgm?) | 0.225 | 0.456 | 0.664 | 1.062 | 1.468 | 1.734
_Plp | 543 | 553 | 557 | 568 | 581 | 584
10° m? s

Bear in mind that 1 kPa = 10° kg m™ s™2.
% is plotted in Figure 1A.2. A straight line fits the data rather well. The extrapolation to p =0

yields an intercept of 54.0x10° m?* s . Then

RT (8.3145 J K™ mol™) x (298.15K)
M = =
5.40x10" m? s 5.40x10°m? s
= 0.0459 kg mol™ ={45.9gmol ™
Figure 1A.2
59

plp=0.0461p +54.0

(plp)i1 03 m? s‘z)
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Comment. This method of the determination of the molar masses of gaseous compounds is
due to Cannizarro who presented it at the Karlsruhe Congress of 1860. That conference had
been called to resolve the problem of the determination of the molar masses of atoms and
molecules and the molecular formulas of compounds.

The mass of displaced gas is pV, where V is the volume of the bulb and p is the density of the
displaced gas. The balance condition for the two gases is

m(bulb) = pV(bulb) and m(bulb) = pV(bulb)
which implies that p = p” Because [Problem 1.2] p= %

the balance condition is pM = pM~,
which implies that M’ = # x M

This relation is valid in the limit of zero pressure (for a gas behaving perfectly).
In experiment 1, p = 423.22 Torr, p’= 327.10 Torr;

hence M’ = 223:22TOM 2 14 gmol™ =90.59gmol ™
327.10Torr

In experiment 2, p = 427.22 Torr, p’= 293.22 Torr;

hence M'= 427.22Torr 70.014gmol™ =102.0g mol™

293.22Torr
In a proper series of experiments one should reduce the pressure (e.g. by adjusting the
balanced weight). Experiment 2 is closer to zero pressure than experiment 1, so it is more
likely to be close to the true value:

|M’zlozgmol‘1|

The molecules CH,FCF; and CHF,CHF, have molar mass of 102 g mol™.

Comment. The substantial difference in molar mass between the two experiments ought to
make us wary of confidently accepting the result of Experiment 2, even if it is the more likely
estimate.

We assume that no H, remains after the reaction has gone to completion. The balanced
equation is

N2+3H2—)2NH3.
We can draw up the following table

N, H, | NHs; Total
Initial amount | n n' 0 n+n'
Finalamount | n—3in" |0 o n+in’
Specifically 0.33mol |0 1.33 mol | 1.66 mol
Mole fraction | 0.20 0 0.80 1.00

( 3 1 -1 \
D= nRT — (1.66mol) x L(0.08206 dm atm22m4o(; 3K ) x (273.15 K)) _[1.66 am
Adm

p(Hz) = x(H)p = [0

P(N,) = X(N,)p = 0.20 x 1.66 atm =
p(NH3) = x(NH3)p = 0.80 x 1.66 atm =
ho BV

The perfect gas law is pV =nRT  so RT

At mid-latitudes

2 -3 -1
e (1.00atm) x{(1.00dm*) x (250 x 10~ cm) /10 cm dm }:

(0.08206 dm°® atm K 'mol™) x (273K)

In the ozone hole
2 -3 -1
ne (1.00atm) x{(l.OOdrrl ) x (10? x 101 cm)/10cm dm }:
(0.08206 dm* atm K~mol™) x (273 K)
The corresponding concentrations are
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D 11210 " mal = (2.8 10 moldm |
V  (1.00dm?) x (40 x 10 m) x (10dm m™)
4
and n_ 44610~ mol = |l.1x 10°° moldm™ |
V  (1.00dm?) x (40 x 10° m) x (10dm m™)
respectively.

The perfect gas law [LA.5] can be rearranged to n = %

The volume of the balloon is V= 4?“ r’= 4?” x (3.0m)* =113 m®

() . (1.0atm) x (113 x 10° dm?) _[4.67 x10° mol
(0.08206 dm® atm mol™ K™) x (298 K)
(b) The mass that the balloon can lift is the difference between the mass of displaced air and

the mass of the balloon. We assume that the mass of the balloon is essentially that of the gas it
encloses:

m=m(H,) = "M (H,) = (4.62 x 10° mol) x (2.02gmol ) = 9.33 x 10°g

Mass of displaced air = (113m?) x (1.22kgm ) = 1.38 x 10% kg
Therefore, the mass of the maximum payload is

138 kg —9.33kg =|1.3x 10° kg

(c) For helium, m=nM (He) = (4.62 x 10° mol) x (4.00g mol™) = 18kg
The maximum payload is now 138 kg —18kg ={1.2 x 10° kg

Avogadro’s principle states that equal volumes of gases contain equal amounts (moles) of the
gases, so the volume mixing ratio is equal to the mole fraction. The definition of partial
pressures is

Py =XPp.
The perfect gas law is

Nh_P %P

pV =nRT so =
V RT RT
CCILF 12
(@) n(CCLF) _ (2631><10 1) X (11.Oatm) :|1.1x10’“ moldm'3|
\% (0.08206 dm* atm K“mol ™) x (10 + 273) K
-12
and n(CCLF,) _ (509 x 1072 x (1.0atm) _[22 10 moldm”]
Vv (0.08206dm? atm K *mol ™) x (10 + 273) K
n(CCI,F 12
) (CCLF) _ (261><310 )xE0.0S(l)atm) :|8.0><10’13 moldm_3|
Vv (0.08206dm? atm K mol ) x (200 K)
-12
and n(CCLF,) _ (509 x 10%) x (0.050atm) _ |1.6 <102 moldm’3|
\% (0.08206 dm® atm K 'mol™) x (200 K)

1B  The kinetic model

Answers to discussion questions

The formula for the mean free path [eqn 1B.13] is

PRLL

op
In a container of constant volume, the mean free path is directly proportional to temperature
and inversely proportional to pressure. The former dependence can be rationalized by
noting that the faster the molecules travel, the farther on average they go between collisions.
The latter also makes sense in that the lower the pressure, the less frequent are collisions,
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and therefore the further the average distance between collisions. Perhaps more fundamental
than either of these considerations are dependences on size. As pointed out in the text, the
ratio T/p is directly proportional to volume for a perfect gas, so the average distance
between collisions is directly proportional to the size of the container holding a set number
of gas molecules. Finally, the mean free path is inversely proportional to the size of the
molecules as given by the collision cross section (and therefore inversely proportional to the
square of the molecules’ radius).

Solutions to exercises

The mean speed is [1B.8]
(8rRT)”
mean M
The mean translational kinetic energy is
_ 2\ _ A _ o, m(3RT) 3T
<Ek>_<}§mv >_}§m<v >— }émvm—ELVJ [1B.3] = —

The ratios of species 1 to species 2 at the same temperature are

2
Vmean,l _ (&\ and <Ek >1 -1
Yoz (M) (E),
. Vmean H ( 2006\ v
i —2t=|——| = -7.079
® Vineantig L 4.003 J
(i) The mean translation kinetic energy is independent of molecular mass and

depends upon temperature alone! Consequently, because the mean translational kinetic
energy for a gas is proportional to T, the ratio of mean translational kinetic energies for
gases at the same temperature always equals 1.

The root mean square speed [1B.3] is
(3RT)"”
Vrms = L
M

For CO, the molar mass is
M = (12.011 + 2x15.9994)x 10~ kg mol™ = 44.010x10"® kg mol™

( a1 a1 \\]JZ
- v - L3(8.3145J K™ mol™)(20 + 273) KJ _

44.01x10°° kg mol™

For He

 (3(8.3145 JK* mol™)(20+ 273) K )

e 4.003x 107 kg mol™ ~|1.35x10° ms*|=|1.35 km ™!
. X g mo

The Maxwell-Boltzmann distribution of speeds [1B.4] is

( M \3/2 ,
f (V) — 477:L Z”RTJ VZe—MV 12RT

and the fraction of molecules that have a speed between v and v+dv is f(v)dv. The fraction of

molecules to have a speed in the range between vy and v, is, therefore, J'VZ f(v)dv. If the
Vi

range is relatively small, however, such that f(v) is nearly constant over that range, the
integral may be approximated by f(v)Av, where f(v) is evaluated anywhere within the range
and Av = v, — v, . Thus, we have, with M = 44.010x102 kg mol™ [Exericse 1B.2(b)],

44.010x10°kg mol™
27(8.3145 J K 'mol ™)(400 K)

3/2
.[VVZ f(V)dv = f(V)Av = 471( j (402.5ms™)?
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( _3 1 -1 2\
xexpL— (44.010 x 10 kgjnol ?E402.5 ms™) J « (405 400) m s
2(8.3145 J K™ mol™)(400 K)

= , just over 1%

The most probable, mean, and mean relative speeds are, respectively

(2rT)” (8rRT)" (8rRT)"
Vmp = LvJ [189] Vmean = Lm) [188] Vrel = L;z'_lu) [1BlOb]

The temperature is T = (20+273) K = 293 K.

(2(8.3145 I K™ mol*)(293K)) "~
0V, :L : J =(1.55x10° ms™

2x1.008x10° kg mol™

(8(8.3145 I K mol*)(293 K)\ "
and v :L ' J =|1.75x10° ms™

7(2 x1.008 x 10 kg mol™)
For many purposes, air can be considered as a gas with an average molar mass of 29.0 g
mol™ . In that case, the reduced molar mass [1B.10b] is
~ M, M, (29.0 gmol™*)(2x1.008 g mol™)
M, +M_,  (29.0+2x1.008) g mol™

(8(8.3145 I K* mol*)(293 K)\"”
and v :L : =(1.81x10° ms™

7(1.88 107 kg mol™) J
Comment. One computes the average molar mass of air just as one computes the average
molar mass of an isotopically mixed element, namely by taking an average of the species
that have different masses weighted by their abundances.
Comment. Note that v, and vpeq, are very nearly equal. This is because the reduced mass
between two very dissimilar species is nearly equal to the mass of the lighter species (in this
case, Hy).

. (8rRT)" (8(8.3145 J K mol™)(208 K)\ "
i Vv _=|——| [1B.8]= = -475 ms™*
@ mean k 7™ J [15.8] L (2 x14.007 x10°° kg mol’l)J

(i) The mean free path [1B.13] is
_KT kT (1.381x107 JK™)(298 K) L Tom
op zd’p 7(395x10 m)’(1x10° Torr) 133.3Pa

- 16.3x10° m|=[63 km|
The mean free path is much larger than the dimensions of the pumping apparatus used to
generate the very low pressure.

(iii) The collision frequency is related to the mean free path and relative mean speed by
[1B.12]

u =1.88gmol™

A

12

Vo v, v
A=-—" 50 z=-"5=—"% [1B.10a]
z A A
1/2 -1
=2 UBPMS ) _[1 70075
6.3x10° m
The collision diameter is related to the collision cross section by
o= d? so d = (o/2)"* = (0.36 nm*/z)"* = 0.34 nm .
The mean free path [1B.13] is
PRLLE
op

Solve this expression for the pressure and set A equal to 10d:
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_23 _
kT (1.381x 102 JK™)(293 K) _33x10° .]m*3:

ol 0.36 x (10° m)*(10 x 0.34 x 10° m)

Comment. This pressure works out to 33 bar (about 33 atm), conditions under which the
assumption of perfect gas behavior and kinetic model applicability at least begins to come
into question.

The mean free path [1B.13] is

A aman® k@i pooe

op 0.43x(10° m)®(12.1x10° Paatm™)

Solutions to problems

The number of molecules that escape in unit time is the number per unit time that would have
collided with a wall section of area A equal to the area of the small hole. This quantity is
readily expressed in terms of Zyy, the collision flux (collisions per unit time with a unit area),
given in eqn 19A.6. That is,

N -A

aN _ -7, A= 7‘3]]2
dt (272mKkT)

where p is the (constant) vapour pressure of the solid. The change in the number of molecules

inside the cell in an interval At is therefore AN =-Z,, AAt, and so the mass loss is

12 12

[ m
aw=maN==Ap| og) A=A gerr) M

Therefore, the vapour pressure of the substance in the cell is

_( AW) (2;:RT)“2
P=Uant M

For the vapour pressure of germanium

. 43%10° kg (27(8.3145 I K mol*)(1273 K)\ "
L;r(O 50 x 107 m)(7200 S)J k 72.64 x 107 kg mol™

~7.3x10" Pa =[7.3mPa

We proceed as in Justification 1B.2 except that, instead of taking a product of three one-
dimensional distributions in order to get the three-dimensional distribution, we make a product
of two one-dimensional distributions.

f(v,,v,)dvdv, = f(vi)f(v])dv,dv, = [2;](1_] e’"“VZ/Zdevxdvy

where v = v; +v;. The probability f(v)dv that the molecules have a two-dimensional speed, v,

in the range v to v + dv is the sum of the probabilities that it is in any of the area elements
dv,dvy in the circular shell of radius v. The sum of the area elements is the area of the circular
shell of radius v and thickness dv which is z{v+dv)? — 7/ = 2d v. Therefore,

( m\ 2 ( M \ 2 M m
fOV) = || — jve ™k | | 2 e MvireRT | TV T
) L kTJ L RTJ R k
The mean speed is determined as
® (m) = 2, ~mv2/2KT
Voo = IO vi(v)dv = LEJ jo ve dv
Using integral G.3 from the Resource Section yields

(m) () (2|<T\‘°”2 |2k || 2RTY
Ve =37 )72 L “2m) T 2w

The distribution [1B.4] is

10



312
2, —Mv2/2RT
j ve .

f(v)=4
V) ”[ 27RT
The proportion of molecules with speeds less than vy is
3/2
v M v, 2
P _ ms f Y dV — 4 ms Vze—Mv /2RT dV
J," W) ”[2;:RT] J

Defining a= R/ 2RT ,

( \\3 3/2
™\ 20 S ms fav
P= 4”UJ J' dv 4”L7r daj

Defining »* =av’. Then, dv=a"*dy and

P__M[;Tzda%j eld"}
2] Yo € 1o

Then we use the error function [Integral G.6]:
Vrrnsal/2 2 _ 1/2 12
[ e d;(—(ﬂ 12)pri (v, a%).

d e (dv,a?) e 1(c)
Galo €7 dr= LT} € =51=)"

where we have used %J; f(y)dy= f(2)

Substituting and cancelling we obtain P = erf(v a”z) - (Zvrmsa”2 | 72 )

rms

Now v —(ﬁ\ S0 v a“—s— x—\ ==
m =\ "m) m® =m ) Rt T2
(3) 12
and  P=erf {\FJ (6] e¥2-092-031=
T
Therefore,
(@) 1-P= have a speed greater than the root mean square speed.
(b) P= of the molecules have a speed less than the root mean square speed.
(c) For the proportions in terms of the mean speed Vpean, replace Vs by
Vo= (8kT / 7zm)v2 = (8/ 37:)”2 v, s0 Vmeand -2 = 2/ 72 .

Then  P=erf(v a”z)—(Zv a? [ 7% Jx (&)

mean mean

—erf (2 / 7[“)» (4/ )" =0.889-0.356 = |0.533

That is, of the molecules have a speed less than the mean, and have a speed greater
than the mean.

1B.8  The average is obtained by substituting the distribution (egn 1B.4) into eqn 1B.7:

vih=["vf vdv:47z( M) " yrr2gmMEIRT gy
()= viwdv=dr oon ) )

For even values of n, use Integral G.8:

(n+2)

N (MY e 2rT\ 2 (27T (RT
<V>_4”L2;zRTJ 2[7@ m) ) Dy

where (n+D)=1x3x5...x(n+l)

Thus <v”>un = {(n+1)!![%}} evenn

NS
Naind?

N—
—
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1B.10

1B.12

For odd values of n, use Integral G.7:

(L—i_l\l n+3
(v)=4 (v J'(ZRT\(T)_L(E\M
CImM ) T2 Uw ) Tl
R e

Question. Show that these expressions reduce to Vpmea, and vy, for n = 1 and 2 respectively.

Dry atmospheric air is 78.08% N,, 20.95% O,, 0.93% Ar, 0.04% CO,, plus traces of other
gases. Nitrogen, oxygen, and carbon dioxide contribute 99.06% of the molecules in a volume
with each molecule contributing an average rotational energy equal to kT. (Linear molecules
can rotate in two dimensions, contributing two “quadratic terms” of rotational energy, or kT
by the equipartition theorem [Topic B.3(b)]. The rotational energy density is given by

B 0.9906N <8R> ~ 0.9906NKT

ROV \
=0.9906(1.013x 10° Pa) =1.004 x 10° J m~* = 0.1004 J cm®

The total energy density is translational plus rotational (vibrational energy contributing
negligibly):

Po =Py + Py =0151cm*+0.10Jcm ™ =[0.25Jcm”®
The fraction of molecules (call it F) between speeds a and b is given by

Flab)=[ f(v)dv

a

where f(v) is given by egn 1B.4. This integral can be approximated by a sum over a discrete
set of velocity values. For convenience, let the velocities v; be evenly spaced within the
interval such that vi,; = v; + Av:

Fa,b)~ Y f(v,)Av
On a spreadsheet or other mathematical software, make a column of velocity values and then a
column for f(v) [1B.4] at 300 K and at 1000 K. Figure 1B.1 shows f(v) plotted against v for
these two temperatures. Each curve is labeled with the numerical value of T/K, and each is
shaded under the curve between the speeds of 100 and 200 m s™. F(a,b) is simply the area
under the curve between v = a and v = b. One should take some care to avoid double counting
at the edges of the interval, that is, not including both endpoints of the interval with full
weight. example, beginning the sum with the area under the curve at those speeds. Using a
spreadsheet that evaluates f(v) at 5-m s intervals, and including points at both 100 and 200 m
s with half weight, F(100 ms™, 200 ms™) ~ at 300 K and at 1000 K.

=0.9906 p

Figure 1B.1
0.004 1
300
00035 |
0.003

0.0025 1

0.002 1 ~
1000 T

Taxwell-Boltzmann fiv)

z 00015

N

0.001 1

0.0005 1

~—

o+ | | | T
0 100 200 300 400 S00 GO0 700 R00 900 [[LVH
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1C.2

1C.4

1C.1(b)

1C.2(b)

1C.3(b)

1C Real gases

Answers to discussion questions

The critical constants represent the state of a system at which the distinction between the
liquid and vapour phases disappears. We usually describe this situation by saying that above
the critical temperature the liquid phase cannot be produced by the application of pressure
alone. The liquid and vapour phases can no longer coexist, though supercritical fluids have
both liquid and vapour characteristics.

The van der Waals equation is a cubic equation in the volume, V. Every cubic equation has
some values of the coefficients for which the number of real roots passes from three to one.
In fact, any equation of state of odd degree n > 1 can in principle account for critical
behavior because for equations of odd degree in V there are necessarily some values of
temperature and pressure for which the number of real roots of V passes from n to 1. That is,
the multiple values of V converge from n to 1 as the temperature approaches the critical
temperature. This mathematical result is consistent with passing from a two phase region
(more than one volume for a given T and p) to a one phase region (only one V for a given T
and p), and this corresponds to the observed experimental result as the critical point is
reached.

Solutions to exercises

The van der Waals equation [1C.5a] is
_ _nRT__an’
P=7 o Ve
From Table 1C.3 for H,S, a = 4.484 dm® atm mol™ and b = 0.0434 dm?® mol™.
(1.0 mol) x (0.08206 dm® atm mol™* K*) x (273.15 K)

i
® 22.414 dm® — (1.0 mol) x (4.34 x 10 dm® mol™)
(4.484 dm® atm mol~?) x (1.0 mol)®
- = -0.99 atm
(22.414 dm®)?
i) p- (1.0mol) x (0.08206 dm® atm mol™ K™) x (500 K)

0.150dm® — (1.0 mol) x (4.34 x 102dm® mol™)

3 -1 2
_ (4484 dm (;tggngl 3)): (1.0 mol)” _ (2 sig. figures)
150 dm

The conversions needed are as follows:

1atm=1.013x10°Pa, 1Pa=1kgm™s? 1dm°= (10" m)°=10°m°® 1 dm®= 102 m?.
Therefore,

1.013x10° kgm™ s 5 10° m®

a=1.32 atm dm® mol x
1 atm dm®

=|1.34x10" kg m® s? mol’2|

10° m?

and  b=0.0426 dm® mol™ x — = |4.26><1O’5 m® mol™
m

The compression factor Z is [1C.1]
\Y pvV.

\Y RT

(i) Because V_ =V° +0.12 V° = (L.12)V.", we have Z =[1.12]
(i) The molar volume is

13



Vo= (L12V° = (1.12) x [ﬂj

112~ { (0.08206 dm® atm mol™ K ) x (350K)}

12atm
Since V_>V>° forces dominate.

1C.4(b) (i) According to the perfect gas law

V;’:RT (8.3145 K™ mol ™) x (298.15K) (1dm _M

p (200 bar) x (10° Pa bar ) 10 ! J

(if) The van der Waals equation [1C.5b] is a cubic equation in V,. Cubic equations can be
solved analytically. However, this approach is cumbersome, so we proceed as in Example
1C.1. The van der Waals equation is rearranged to the cubic form

U”ﬂJ (S

or xg—Lb+ JX J{ajx_a_b: with  x=Vy/(dm® mol™).
p
It will be convenient to have the pressure in atm:
200 bar x —2M_ _ 1977 atm
1.013 bar

The coefficients in the equation are

(0.08206 dm?® atm mol™ K™) x (298.15 K)
197.4 atm

=(3.183x1072 +0.1239) dm® mol™ = 0.1558 dm® mol™

b+ % =(3.183x107% dm® mol™) +

6 -2
a_ 1.360 dm _atm mol —6.89 x 10 dm® mol

p 197.4 atm
6 -2 -2 3 -1
a_b _ (1.360 dm® atm mol )x_(3.183><10 dm* mol™) 2193 %10 dm® mol”?
p 197.4 atm

Thus, the equation to be solved is x> —0.1558x* + (6.89 x 10°)x — (2.193x10™*) =0.

Calculators and computer software for the solution of polynomials are readily available. In
this case we find

x=0.112 and Vi =10.112 dm® mol ™.

The perfect-gas value is about 15 percent greater than the van der Waals result.

\Y
1C.5(b) The molar volume is obtained by solving Z = % [1C.2], for V,, , which yields

_ZRT _ (0.86) x (0.08206 dm® atm mol™* K™) x (300K)
m p 20atm

(i) Then, V =nV._ = (8.2x107 mol) x (1.06 dm® mol™) =8.7 x 10~ dm’ =
(if) An approximate value of B can be obtained from eqgn 1C.3b by truncation of the series
expansion after the second term, B/V, in the series. Then,

Y
B= VLRT

\Y; =1.06 dm® mol™

1} —V_x(Z-1)

— (1.06 dm® mol ™) x (0.86 — 1) = |-0.15 dm® mol

1C.6(b) Equations 1C.6are solved for b and a, respectively, and yield
b=V,/3 and a=27b%p. = 3Vp. .
Substituting the critical constants

3 -1
b= M =49.3 cm® mol™ = 0.0493 dm® mol™

14



1C.7(b)

and  a=3x(0.148 dm® mol™)? x (48.20atm) = 3.17 dm® atm mol
But this problem is overdetermined. We have another piece of information
8a

©” 27Rb
If we use T, along with V as above, we would arrive at the same value of b along with

L 27ROT, _9RVT,
8 8
~9(0.08206 dm® atm mol™ K™)(0.148 dm® mol*)(305.4 K)
- 8

=4.17 dm® atm mol~
Or we could use T, along with p.. In that case, we can solve the pair of equations for a and b
by first setting the two expressions for a equal to each other:

27RbT
a=27b’p, = g c

Solving the resulting equation for b yields
RT,  (0.08206 dm*® atm mol™ K™)(305.4 K)

~8p, 8(48.20 atm)
and then
a = 27(0.06499 dm?® mol™)%(48.20 atm) = 5.497 dm® atm mol™
These results are summarized in the following table

=0.06499 dm* mol™

Using a/dm°atm mol™  b/dm® mol™
V.&p, 317 0.0493
V.&T, 417 0.0493
D.&T. 5497 0.06499

One way of selecting best values for these parameters would be to take the mean of the
three determinations, namely a = [4.28 dm® atm mol™| and b = [0.0546 dm> mol™’|.

By interpreting b as the excluded volume of a mole of spherical molecules, we can obtain
an estimate of molecular size. The centres of spherical particles are excluded from a sphere
whose radius is the diameter of those spherical particles (i.e., twice their radius); that
volume times the Avogadro constant is the molar excluded volume b

[ az(ary) 1 3 )T
=N T ) "2\ 2N, )

( 3 4 \1/3
_ 1[ 3(0.0546 dm® mol™) } 1.39x10° dm =10.139 nm

r=—
2 L4n(6.ozz x10% mol’l)J

The Boyle temperature, Tg, is the temperature at which the virial coefficient B = 0. In order
to express Tg in terms of a and b, the van der Waals equation [1C.5b] must be recast into
the form of the virial equation.

__RT _a
ID"vm—b V2
Factoring out RT yields p:ﬂ 1 2
v, V. |1-b/V_~ RTV_

So long as b/V,, < 1, the first term inside the brackets can be expanded using
(A1) =1+ x+x3+ ...,

which gives
p:ﬂ 1+(b—i\ x[i\ +L
P rr) V)
,_| m m
We can now identify the second virial coefficientas B=h- %

15



At the Boyle temperature
a 21T

a
B=0=b-— so T =—=
] ="bR 8
(i) From Table 1C.3, a = 4.484 dm® atm mol™ and b = 0.0434 dm® mol™. Therefore,

6 -2
(4.484 dm°® atm mol?) ={1259K

T, = 11 3 1
(0.08206 L atm mol™ K™) x (0.0434 dm® mol™)

(ii) As in Exercise 1C.6(b),
[ ax(ary?) 1l 3 )Y
b=N\"3 ) B EU;;NAJ

1( 3(0.0434 dm® mol*) )

r== =1.29x10°dm=1.29x10"m = -0.129 nm
2 L4n(6.022 x10% mol’l)J

States that have the same reduced pressure, temperature, and volume [1C.8] are said to
correspond. The reduced pressure and temperature for N, at 1.0 atm and 25°C are [Table

1C.8(b)
p 1.0atm —0030 and T = l _ M =2.36
272 CA At ", 126.3K

P = p ~ 3354atm

c

The corresponding states are
(i) For H,S (critical constants obtained from NIST Chemistry WebBook)
T=2.36(373.3K) =881 K

p = 0.030(89.7 atm) =

(ii) For CO,
T =2.36(304.2 K) =[718 K
p = 0.030(72.9 atm) =

(iii) For Ar
T = 2.36(150.7 K) =356 K|
p = 0.030(48.0 atm) =

1C.9(b) The van der Waals equation [1C.5b] is
RT a

",
which can be solved for b
RT__ 4.00x10™* m®mol™ -

1C.2]

(8.3145 J K™ mol™) x (288 K)
0.76m® Pamol? )

(
4.0x10° Pa +
L(4.00 x 107 m®mol™)?

b=V_ -
a
P+ye

m

= |1.3>< 10 m? mol’1|
The compression factor is
pV, (4.0 x10° Pa) x (4.00 x10* m*® mol™)
Z=—="[1C.2]= = -0.67
RT e (8.3145 J K™ mol™) x (288K) -

Solutions to problems
From the definition of Z [1C.1] and the virial equation [1C.3b], Z may be expressed in virial

1C.2
form as

( (
Z=1+B| —|+C| —
z=18(y el
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Since V_ = % (by assumption of approximate perfect gas behavior), VL = %; hence upon

m

substitution, and dropping terms beyond the second power of [Vi)

Z=1+ BL J+CLRTJ

— 14+ (=217 x 10" dm* mol ) x 100atm )
L(O 08206 dm? atm mol™ K™) x (273 K)J

+(1.200 x 10~* dm°® mol?) x 100atm \?
L(O 08206 dm? atm mol™ K™) x (273 K)J

=1-0.0968 +0.0239 = |0.927

= (0. 927){ﬂ}
~ ((0.08206 dm® atm mol™ K™)(273 K))
- (0927)| P J=lo

Question. What is the value of Z obtained from the next approximation using the value of V,,
just calculated? Which value of Z is likely to be more accurate?

1C.4  Since B'(Tg) = 0 at the Boyle temperature [Topic 1.3b]: B'(T,)=a+ be ™ =0

1/2
1/2

_ _ 2
Solving for Tg: Ty = Ca) = (1131K") =|5.0x10% K
S ol )

N —(-0.1993bar™)
(0.2002bar™)

1C6 FromTable1C.4 T, = LsJ {3&} {%}X@?}

. (12bp,
(?)Zb_??) may be solved for from the expression for p. and yields L RpC) '

(2) (12pb) (8) (pV,)
e =5 R )R

(8) [ (40 atm)x (160 x 10 dm® mol™)) =
= -210K
\BJ L 0.08206 dm?® atm mol™ K™ J

By interpreting b as the excluded volume of a mole of spherical molecules, we can obtain an
estimate of molecular size. The centres of spherical particles are excluded from a sphere
whose radius is the diameter of those spherical particles (i.e., twice their radius); that volume

times the Avogadro constant is the molar excluded volume b
3

(4n(§r)3] O r= %(4:&) [Exercise 1C.6(b)] = %{47\:&“}

( 3 a1 \1/3
1 160 cm® mol =1.38x10%cm =0.138 nm

2 L4n(6.022 x10% mol’l))

3

b=N,

1C.8  Substitute the van der Waals equation [1C.5b] into the definition of the compression factor
[1C.2]
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1C.10

-1 2
which upon expansion of 1—%} =1+L+[L) +--- yields

2
Z:1+(b—ajx 1 +b? 1 oo
RT )V, v,

We note that all terms beyond the second are necessarily positive, so only if

a _b (b)Y
> | — | +---
RTV, V, \\V,
can Z be less than one. If we ignore terms beyond VL , the conditions are simply stated as

m

Z<1 Wheni>b Z>1 Wheni<b
RT RT

Thus Z < 1 when attractive forces predominate and when there is insufficient thermal energy
to disrupt those forces, and Z > 1 when size effects (short-range repulsions) predominate.

The Dieterici equation is
RTe—a/RTVm
=———— [Table 1C4
v ]
At the critical point the derivatives of p with respect to V,, equal zero along the isotherm
defined by T =T, . This means that (dp/dV, ), =0 and (6°p/oV}), =0 at the critical point.

(op)  |av, —ab—RTV?
\av, ), = P Vi, —oyRT)
and

(azp] [ap ] {avm—ab—RTan} (-2aV;? +4V, ab+RTV, - 2ab? )
Vg )i (Vi ) | Vi (Vi —b)(RT) (V[ v, —b)*(RT) ]}

Setting the Dieterici equation equal to the critical pressure and making the two derivatives
vanish at the critical point yields three equations:
RT e—a/RTEVC
p=— aV —ab—RTV?=0
C VC _ b C c C
and —2aV’ +4V ab+ RTV® - 2ab’ =0
Solving the middle equation for T, substitution of the result into the last equation, and solving
for V, yields the result
V.=2b or b=V./2
(The solution V. = b is rejected because there is a singularity in the Dieterici equation at the
point Vy,, = b.) Substitution of V. = 2b into the middle equation and solving for T, gives the
result

T.=a/l4bR or a=2RT.V,
Substitution of V. = 2b and T, = a / 4bR into the first equation gives
B ae™? B ZRTCe_2
P ~ v

The equations for V, T, p. are substituted into the equation for the critical compression factor
[1C.7] to give
\Y
z =Pl _pe2 _0.2707.
° RT,
This is significantly lower than the critical compression factor that is predicted by the van der

Waals equation: Z (vdW)=pV_/RT =3/8=0.3750. Experimental values for Z. are
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summarized in Table 1C.2 where it is seen that the Dieterici equation prediction is often

better.
1C.12 PV _ 11 Bip+Cip? +--- [1C.34]
RT
%:1+%+\/C_j+"' [1C.3b]
Thus B'p+Cp°+---= Vi+\§:—2+

Multiply through by V,,, replace pV,, by RT{1+(B/V,,) + ...}, and equate coefficients of
powers of 1/Vy,:

! D272
g7 +BBRTLCRT® | . C ...

VITI m
. . B
Hence, B’RT =B, implying that |B' = —
RT
22 _ 2 22 C- 82
Also  BB'RT + C'RT"=C =B+ C'RT", implying that |C' = ——-
RT

(V) (V)
1C.14  Write  V,=f(T, p); then dV _ =L o J dT +k

Restricting the variations of T and p to those which Ieave Vp, constant, that is dV,, = 0, we
obtain

(av\ ~ L Vo)
From the equatlon of state
(ﬁ\ _ RT _2(a+bT) V RT+2(a+bT)

2 23

v, V2 Ve Ve
and (ap\ 3 b _RV_+b
(aTJ v, Vi e
Substituting
(ov) [ A VRV +b) RVZ 4+ bV

\ G JP - (vaT 2@+ V2 ] TV RT +2(a+bT)
From the equation of state, a + bT = pVin> = RTVp,

(ov ) RV 2+ bV RV +b
Then L mJ — m > m — m m
oT V_RT +2pV°-2RTV_ |2pV —RT
\Y
1C.16 Z= V—”; [1C.1], where V,,° = the molar volume of a perfect gas

m

From the given equation of state
V. =b+ % =b+V’

For V., =10b, we have 10b =b + V;,°, s0 V,° = 9b .

Then z =100 _ (10 _4 44
9 |9
1C.18 The virial equation is
B C
V =RT|1l+—+—+---[[1C.3b
R
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pVv B C

— M et

RT V.ooVv2

will have B as its slope and 1 as its y-intercept. Transforming the data gives

m m

p/IMPa V. /(dm* mol™)  (1/Vy)/(mol dm™)  pV./RT

0.4000 6.2208 0.1608 0.9976
0.5000 4.9736 0.2011 0.9970
0.6000 4.1423 0.2414 0.9964
0.8000 3.1031 0.3223 0.9952
1.000 2.4795 0.4033 0.9941
1.500 1.6483 0.6067 0.9912
2.000 1.2328 0.8112 0.9885
2.500 0.98357 1.017 0.9858
3.000 0.81746 1.223 0.9832
4.000 0.60998 1.639 0.9782

Figure 1C.1(a)

1

0.995 4

0975

- pValRT = ~0.01324/V;, +0.99948
IRP=05989 | : :

The data are plotted in Figure 1C.1(a). The data fit a straight line reasonably well, and the y-
intercept is very close to 1. The regression yields B = |—1.324><10‘2 dm? mol

(b) A quadratic function fits the data somewhat better (Figure 1C.1(b)) with a slightly better
correlation coefficient and a y-intercept closer to 1. This fit implies that truncation of the virial
series after the term with C is more accurate than after just the B term. The regression then

yields

i
] 0.2 0.4 0.6 0.8 1 12 14 1.6 L8

(1/V)/imel dm™)

20
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(a) If we assume that the series may be truncated after the B term, then a plot of % VS
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Figure 1C.1(b)
1
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B = -1.503x107 dm° mol ] and  C={1.06x10"° dm® mol
1C.20 The perfect gas equation [LA.5] gives
RT _ (8.3145) K™ mol™)(250 K)
p 150 x 10° Pa
The van der Waals equation [1C.5b] is a cubic equation in V,,. Cubic equations can be solved

analytically. However, this approach is cumbersome, so we proceed as in Example 1C.1. The
van der Waals equation is rearranged to the cubic form

RT) (a) ab

vV, = =0.0139 m° =13.9 dm’

b+—|VZ+| =V —-——=0
L J Up) "
(a) ab
or x3— b+— X2 + -== with  x=Vy/(dm* mol™) .
P ) ) A )
It will be convenient to have the pressure in atm:
150 kPa x —2M_ _ 1 487 atm
101.3 kPa
The coefficients in the equation are
RT 5 w3 . (0.08206 dm® atm mol™ K™) x (250 K)

b+—=(5.42x107 dm® mol™) + —
p 1.481 atm

=(5.42x107 +13.85) dm® mol™ =13.91 dm® mol™

6 -2
a_ 6.260 dm _atm mol — 4.93dm® mol

p 1.481 atm

-2
ab (6 260 dm® atmmol?) x (5.42 x 10 dm® mol™) 2297 %102 dm® mol®
p 1.481 atm

Thus, the equation to be solved is x* —13.91x* +4.23x — (2.291 x107°) =0.

Calculators and computer software for the solution of polynomials are readily available. In
this case we find

x=13.6 and Vy, =[13.6 dm® mol™.

Taking the van der Waals result to be more accurate, the error in the perfect-gas value is

%xmo‘%:
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