
1 The properties of gases 

1A The perfect gas 

Answers to discussion questions 
1A.2 The partial pressure of a gas in a mixture of gases is the pressure the gas would exert if it 

occupied alone the same container as the mixture at the same temperature. Dalton’s law is a 
limiting law because it holds exactly only under conditions where the gases have no effect 
upon each other. This can only be true in the limit of zero pressure where the molecules of 
the gas are very far apart. Hence, Dalton’s law holds exactly only for a mixture of perfect 
gases; for real gases, the law is only an approximation. 

 
Solutions to exercises 

1A.1(b) The perfect gas law [1A.5] is pV = nRT, implying that the pressure would be 

  
p =

nRT
V  

All quantities on the right are given to us except n, which can be computed from the given 
mass of Ar. 

   
n = 25 g

39.95 −1
g mol

= 0.626 mol
 

so 
  
 p =

(0.626 mol) × (8.31×10−2 dm3  bar K−1  mol−1) × (30 + 273) K
1.5 dm3 = 10.5bar  

So no, the sample would not exert a pressure of 2.0 bar. 

1A.2(b) Boyle’s law [1A.4a] applies. 
 pV = constant so pfVf = piVi 
Solve for the initial pressure: 

(i) 
  
pi =

pfVf

Vi

=
(1.97 bar) × (2.14dm3)

(2.14 +1.80)dm3 = 1.07 bar  

(ii) The original pressure in Torr is 

 
  
pi = (1.07 bar) × 1 atm

1.013 bar





×

760 Torr
1 atm






= 803 Torr  

1A.3(b) The relation between pressure and temperature at constant volume can be derived from the 
perfect gas law, pV = nRT [1A.5] 

so 
  
p ∝ T and

pi

Ti

=
pf

Tf

 

The final pressure, then, ought to be 

 
  
pf =

piTf

Ti

=
(125 kPa) × (11+ 273)K

(23+ 273)K
= 120 kPa  

1A.4(b) According to the perfect gas law [1.8], one can compute the amount of gas from pressure, 
temperature, and volume. 
 pV = nRT 

so 
  
n = pV

RT
=

(1.00 atm) × (1.013×105 Pa atm−1) × (4.00 ×103m3)
(8.3145 J K−1mol−1) × (20 + 273)K

= 1.66 ×105 mol  

Once this is done, the mass of the gas can be computed from the amount and the molar 
mass: 

 
  
m = (1.66 ×105 mol) × (16.04 −1g mol ) = 2.67 ×106 g = 2.67 ×103  kg  

1A.5(b) The total pressure is the external pressure plus the hydrostatic pressure [1A.1], making the 
total pressure 
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 p = pex + ρgh . 
Let pex be the pressure at the top of the straw and p the pressure on the surface of the liquid 
(atmospheric pressure). Thus the pressure difference is 

 

  

p − pex = ρgh = (1.0 −3g cm ) × 1 kg
103  g

×
1 cm

10−2  m






3

× (9.81 m s−2 ) × (0.15m)

= 1.5×103 Pa = 1.5×10−2  atm

 

1A.6(b) The pressure in the apparatus is given by 
 p = pex + ρgh [1A.1] 
where pex = 760 Torr = 1 atm = 1.013×105 Pa, 

and 
  
ρgh = 13.55 g cm−3 ×

1 kg
103  g






×

1 cm
10−2  m






3

× 0.100 m × 9.806 m s−2 = 1.33×104  Pa  

   p = 1.013×105  Pa +1.33×104  Pa = 1.146 ×105  Pa = 115 kPa  

1A.7(b) Rearrange the perfect gas equation [1A.5] to give 
  
R = pV

nT
=

pVm

T
 

All gases are perfect in the limit of zero pressure. Therefore the value of pVm/T extrapolated 
to zero pressure will give the best value of R. 
The molar mass can be introduced through 

 
 
pV = nRT =

m
M

RT  

which upon rearrangement gives 
 
M =

m
V

RT
p

= ρ RT
p

 

The best value of M is obtained from an extrapolation of ρ/p versus p to zero pressure; the 
intercept is M/RT. 
Draw up the following table: 
 
 
 
 
 

From Figure 1A.1(a), 
  
R = lim

p→0

pVm

T






= 0.082 062 dm3  atm K−1  mol−1  

Figure 1A.1 
 
(a) 

 
 

p/atm (pVm/T)/(dm3 atm K–1 mol–1) (ρ/p)/(g dm–3 atm–1) 
0.750 000 0.082 0014 1.428 59 
0.500 000 0.082 0227 1.428 22 
0.250 000 0.082 0414 1.427 90 
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(b) 
 

 

From Figure 1A.1(b), 
  
lim
p→0

ρ
p






= 1.427 55 g dm-3  atm−1  

  

M = lim
p→0

RT ρ
p






= (0.082062 dm3  atm K−1  mol−1) × (273.15 K) × (1.42755 g dm-3  atm−1)

                        = 31.9988 g mol−1

 

The value obtained for R deviates from the accepted value by 0.005 per cent, better than can 
be expected from a linear extrapolation from three data points. 

1A.8(b) The mass density ρ is related to the molar volume Vm by 

 
  
Vm =

V
n
=

V
m
×

m
n
=

M
ρ

 

where M is the molar mass. Putting this relation into the perfect gas law [1A.5] yields 

 pVm = RT so 
 

pM
ρ

= RT  

Rearranging this result gives an expression for M; once we know the molar mass, we can 
divide by the molar mass of phosphorus atoms to determine the number of atoms per gas 
molecule. 

 

  

M =
RTρ

p
=

(8.3145 Pa m3 −1mol ) × [(100 + 273) K]× (0.6388kg m−3 )
1.60 ×104  Pa

=  0.124 kg mol−1 = 124 g mol−1

 

 
The number of atoms per molecule is 

 
 

124 −1g mol
31.0 −1g mol

= 4.00  

suggesting a formula of P4. 

1A.9(b) Use the perfect gas equation [1A.5] to compute the amount; then convert to mass. 

 pV = nRT so 
 
n = pV

RT
 

We need the partial pressure of water, which is 53 per cent of the equilibrium vapour 
pressure at the given temperature and standard pressure. (We must look it up in a handbook 
like the CRC or other resource such as the NIST Chemistry WebBook.) 
   p = (0.53) × (2.81×103 Pa) = 1.49 ×103 Pa  
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so 
  
n = (1.49 ×103  Pa) × (250 m3)

(8.3145 J K−1  mol−1) × (23+ 273) K
= 151 mol  

and 
  
m = (151 mol) × (18.0 −1g mol ) = 2.72 ×103  g = 2.72 kg  

1A.10(b) (i) The volume occupied by each gas is the same, since each completely fills the container. 
Thus solving for V we have (assuming a perfect gas, eqn. 1A.5) 

 
  
V =

nJ  RT
pJ

 

We have the pressure of neon, so we focus on it 

 
  
nNe =

0.225 g
20.18 g mol−1 = 1.115×10−2  mol  

Thus

 

  
 V =

1.115 ×10−2  mol × 8.3145 Pa m3  K−1  mol−1 × 300 K
8.87 ×103  Pa

= 3.14 ×10−3  m3 = 3.14 dm3  

(ii) The total pressure is determined from the total amount of gas, 
  
n = nCH4

+ nAr + nNe . 

 

  

nCH4
= 0.320 g

16.04 g mol−1 = 1.995 ×10−2  mol nAr =
0.175 g

39.95 g mol−1 = 4.38 ×10−3  mol

n = 1.995 + 0.438 +1.115( )×10−2 mol = 3.55×10−2  mol
 

and 

  

p =
nRT
V

=
3.55×10−2  mol × 8.3145 Pa m3  K−1  mol−1 × 300 K

3.14 ×10−3  m3

= 2.82 ×104  Pa = 28.2 kPa

 

1A.11(b) This exercise uses the formula, 
 
M =

ρRT
p

, which was developed and used in Exercise 

1A.8(b). First the density must first be calculated. 

 
 
ρ = 33.5×10−3 g

250cm3 ×
103  cm3

dm3







= 0.134 g dm−3  

 
  
M =

(0.134 g dm−3 ) × (62.36 −1
dm3 torr K −1mol ) × (298 K)

152 torr
= 16.4 g mol−1  

1A.12(b) This exercise is similar to Exercise 1.12(a) in that it uses the definition of absolute zero as 
that temperature at which the volume of a sample of gas would become zero if the substance 
remained a gas at low temperatures. The solution uses the experimental fact that the volume 
is a linear function of the Celsius temperature: 
 V = V0 + αθ where V0 = 20.00 dm3 and α = 0.0741 dm3 °C–1 . 
At absolute zero, V = 0 = V0 + αθ 

so 
  
θ(abs.zero) = −

V0

α
= −

20.00 dm3

0.0741 dm3  ¡C−1 = Ğ270°C  

which is close to the accepted value of –273C. 

1A.13(b) (i) Mole fractions are 

   
xN =

nN

ntotal

[1A.9] = 2.5 mol
(2.5+1.5) mol

= 0.63  

Similarly,   xH = 0.37  
 
According to the perfect gas law 
 ptotV = ntotRT 
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so 
  
ptot =

ntot RT
V

=
(4.0 mol) × (0.08206 dm3  atm mol−1  K−1) × (273.15 K)

22.4 dm3 = 4.0 atm  

 
(ii) The partial pressures are 

   pN = xN ptot = (0.63) × (4.0 atm) = 2.5 atm  

and   pH = (0.37) × (4.0 atm) = 1.5 atm  
 

(iii)   p = pH + pN[1A.10] = (2.5+1.5) atm = 4.0 atm  

 
Solutions to problems 

1A.2 Solving for n from the perfect gas equation [1A.5] yields pVn
RT

= . From the definition of 

molar mass mn
M

= , hence 
 
ρ = m

V
= Mp

RT .
 Rearrangement yields the desired relation, namely 

RTp
M

ρ= . 

Therefore, for ideal gases 
 

p
ρ
= RT

M
 and 

 
M = RT

p / ρ
. For real gases, find the zero-pressure 

limit of 
 

p
ρ

by plotting it against p. Draw up the following table.  

p/(kPa) 12.223 25.20 36.97 60.37 85.23 101.3 
ρ/(kg m–3) 0.225 0.456 0.664 1.062 1.468 1.734 

  

p / ρ
103  m2  s−2

 54.3 55.3 55.7 56.8 58.1 58.4 

 
 
Bear in mind that 1 kPa = 103 kg m–1 s–2. 
p
ρ

 is plotted in Figure 1A.2. A straight line fits the data rather well. The extrapolation to p = 0 

yields an intercept of 54.0×103 m2 s–2 . Then 

   

M =
RT

5.40 ×104  m2  s−2 =
(8.3145 J K−1  mol−1) × (298.15K)

5.40 ×104 m2  s−2

= 0.0459 kg mol−1 = 45.9 −1g mol
 

Figure 1A.2 
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Comment. This method of the determination of the molar masses of gaseous compounds is 
due to Cannizarro who presented it at the Karlsruhe Congress of 1860. That conference had 
been called to resolve the problem of the determination of the molar masses of atoms and 
molecules and the molecular formulas of compounds. 

1A.4 The mass of displaced gas is ρV, where V is the volume of the bulb and ρ is the density of the 
displaced gas. The balance condition for the two gases is 

  m(bulb) = ρV(bulb) and m(bulb) = ρ′V(bulb) 

which implies that ρ = ρ′. Because [Problem 1.2] 
 
ρ = pM

RT
 

the balance condition is pM = p′M′ , 

which implies that 
 

′M =
p
′p
× M  

This relation is valid in the limit of zero pressure (for a gas behaving perfectly). 
In experiment 1, p = 423.22 Torr, p′ = 327.10 Torr; 

hence 
  

′M =
423.22 Torr
327.10 Torr

× 70.014 g mol−1 = 90.59 g mol−1  

In experiment 2, p = 427.22 Torr, p′ = 293.22 Torr; 

hence 
  

′M =
427.22 Torr
293.22 Torr

× 70.014 g mol−1 = 102.0 g mol−1  

In a proper series of experiments one should reduce the pressure (e.g. by adjusting the 
balanced weight). Experiment 2 is closer to zero pressure than experiment 1, so it is more 
likely to be close to the true value: 

 
  

′M ≈ 102 g mol−1  
The molecules CH2FCF3 and CHF2CHF2 have molar mass of 102 g mol–1. 
Comment. The substantial difference in molar mass between the two experiments ought to 
make us wary of confidently accepting the result of Experiment 2, even if it is the more likely 
estimate. 

1A.6 We assume that no H2 remains after the reaction has gone to completion. The balanced 
equation is 
 N2 + 3 H2 → 2 NH3 . 

We can draw up the following table 
 N2 H2 NH3 Total 
Initial amount n n′ 0 n + n′ 
Final amount   n −

1
3 ′n  0   

2
3 ′n    n +

1
3 ′n  

Specifically 0.33 mol 0 1.33 mol 1.66 mol 
Mole fraction 0.20 0 0.80 1.00 

 
  
p =

nRT
V

= (1.66 mol) × (0.08206 dm3  atm mol−1  K−1) × (273.15K)
22.4dm3







= 1.66 atm

 
 p(H2) = x(H2)p = 0 
 p(N2) = x(N2)p = 0.20 × 1.66 atm = 0.33 atm 
 p(NH3) = x(NH3)p = 0.80 × 1.66 atm = 1.33 atm 

1A.8 The perfect gas law is pV = nRT so 
 
n = pV

RT
 

At mid-latitudes 

   
n = (1.00atm) ×{(1.00dm2 ) × (250 ×10−3  cm) / 10 cm dm−1}

(0.08206dm3 atm K−1mol−1) × (273K)
= 1.12 ×10−3  mol  

In the ozone hole 

   
n = (1.00atm) ×{(1.00dm2 ) × (100 ×10−3  cm) / 10cm dm−1}

(0.08206dm3 atm K−1mol−1) × (273 K)
= 4.46 ×10−4  mol  

The corresponding concentrations are 
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n
V
=

1.12 ×10−3  mol
(1.00dm2 ) × (40 ×103  m) × (10dm m−1)

= 2.8 ×10−9  moldm−3  

and 
  

n
V
=

4.46 ×10−4  mol
(1.00dm2 ) × (40 ×103  m) × (10dm m−1)

= 1.1×10−9  moldm−3  

respectively. 

1A.10 The perfect gas law [1A.5] can be rearranged to 
 
n = pV

RT
 

The volume of the balloon is 
  
V = 4π

3
r3 = 4π

3
× (3.0 m)3 = 113 m3  

(a) 
  
n = (1.0atm) × (113 ×103 dm3)

(0.08206 dm3  atm mol−1  K−1) × (298 K)
= 4.62 ×103 mol  

(b) The mass that the balloon can lift is the difference between the mass of displaced air and 
the mass of the balloon. We assume that the mass of the balloon is essentially that of the gas it 
encloses: 

   m = m(H2 ) = nM (H2 ) = (4.62 ×103 mol) × (2.02 −1
g mol ) = 9.33 ×103 g  

  Mass of displaced air = (113 m3) × (1.22 −3
kg m ) = 1.38 ×102 kg  

Therefore, the mass of the maximum payload is 

  138 kg − 9.33 kg = 1.3×102 kg  

(c) For helium,   m = nM (He) = (4.62 ×103 mol) × (4.00 g mol−1) = 18kg  

The maximum payload is now 
 
138 kg −18kg = 1.2 ×102 kg  

1A.12 Avogadro’s principle states that equal volumes of gases contain equal amounts (moles) of the 
gases, so the volume mixing ratio is equal to the mole fraction. The definition of partial 
pressures is 
 pJ = xJp . 
The perfect gas law is 

   
pV = nRT so

nJ

V
=

pJ

RT
=

xJ p
RT

 

(a) 
  

n(CCl3F)
V

=
(261×10−12 ) × (1.0atm)

(0.08206dm3 atm K−1mol−1) × (10 + 273) K
= 1.1×10−11 moldm-3  

and 
  

n(CCl2F2 )
V

=
(509 ×10−12 ) × (1.0atm)

(0.08206dm3 atm K−1mol−1) × (10 + 273) K
= 2.2 ×10−11 moldm-3  

(b) 
  

n(CCl3F)
V

=
(261×10−12 ) × (0.050atm)

(0.08206dm3  atm K−1mol−1) × (200 K)
= 8.0 ×10−13 moldm-3  

and 
  

n(CCl2F2 )
V

=
(509 ×10−12 ) × (0.050atm)

(0.08206dm3 atm K−1mol−1) × (200 K)
= 1.6 ×10−12 moldm-3  

 

1B The kinetic model 

Answers to discussion questions 
1B.2 The formula for the mean free path [eqn 1B.13] is  

 
 
λ =

kT
σ p

 

In a container of constant volume, the mean free path is directly proportional to temperature 
and inversely proportional to pressure. The former dependence can be rationalized by 
noting that the faster the molecules travel, the farther on average they go between collisions. 
The latter also makes sense in that the lower the pressure, the less frequent are collisions, 
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and therefore the further the average distance between collisions. Perhaps more fundamental 
than either of these considerations are dependences on size. As pointed out in the text, the 
ratio T/p is directly proportional to volume for a perfect gas, so the average distance 
between collisions is directly proportional to the size of the container holding a set number 
of gas molecules. Finally, the mean free path is inversely proportional to the size of the 
molecules as given by the collision cross section (and therefore inversely proportional to the 
square of the molecules’ radius). 

Solutions to exercises 
1B.1(b) The mean speed is [1B.8] 

 
  
vmean =

8RT
π M







1/2

 

The mean translational kinetic energy is 

 
  

Ek = 1
2 mv2 = 1

2 m v2 = 1
2 mvrms

2 =
m
2

3RT
M







[1B.3] = 3kT
2

 

The ratios of species 1 to species 2 at the same temperature are 

 
  

vmean,1

vmean,2

=
M2

M1








1/2

     and     
Ek 1

Ek 2

= 1  

 (i) 
  

vmean,H2

vmean,Hg

=
200.6
4.003







1/2

= 7.079  

 (ii) The mean translation kinetic energy is independent of molecular mass and 
depends upon temperature alone! Consequently, because the mean translational kinetic 
energy for a gas is proportional to T, the ratio of mean translational kinetic energies for 
gases at the same temperature always equals 1. 

1B.2(b) The root mean square speed [1B.3] is 

 
  
vrms =

3RT
M







1/2

 

For CO2 the molar mass is 
 M = (12.011 + 2×15.9994)×10–3 kg mol–1 = 44.010×10–3 kg mol–1  

so 
  
vrms =

3(8.3145 J K−1  mol−1)(20 + 273) K
44.01×10−3  kg mol−1








1/2

= 408 m s−1  

For He  

 
  
vrms =

3(8.3145 J K−1  mol−1)(20 + 273) K
4.003×10−3  kg mol−1








1/2

= 1.35×103  m s−1 = 1.35 km s−1  

1B.3(b) The Maxwell-Boltzmann distribution of speeds [1B.4] is 

 
  
f (v) = 4π M

2πRT






3/2

v2e− Mv2 /2 RT  

and the fraction of molecules that have a speed between v and v+dv is f(v)dv. The fraction of 

molecules to have a speed in the range between v1 and v2 is, therefore, 
  

f (v)dv
v1

v2∫ . If the 

range is relatively small, however, such that f(v) is nearly constant over that range, the 
integral may be approximated by f(v)∆v, where f(v) is evaluated anywhere within the range 
and ∆v = v2 – v1 . Thus, we have, with M = 44.010×10–3 kg mol–1 [Exericse 1B.2(b)], 
 

 2

1

3/23 1
1 2

1 1

44.010 10 kg mol( )d ( ) 4 (402.5 m s )
2 (8.3145 J K mol )(400 K)

v

v
f v v f v v π

π

− −
−

− −

 ×
≈ ∆ =  

 
∫  
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× exp −
(44.010 ×10−3  kg mol−1)(402.5 m s−1)2

2(8.3145 J K−1  mol−1)(400 K)






× (405− 400) m s−1

= 0.0107 ,  just over 1%

 

 

 

1B.4(b) The most probable, mean, and mean relative speeds are, respectively 

 
  
vmp =

2RT
M







1/2

 [1B.9] 
  
vmean =

8RT
π M







1/2

 [1B.8] 
  
vrel =

8RT
πµ







1/2

 [1B.10b]  

The temperature is T = (20+273) K = 293 K. 

so 
  
vmp =

2(8.3145 J K−1  mol−1)(293 K)
2 ×1.008 ×10−3  kg mol−1








1/2

= 1.55×103  m s−1  

and 
  
vmean =

8(8.3145 J K−1  mol−1)(293 K)
π (2 ×1.008 ×10−3  kg mol−1)








1/2

= 1.75×103  m s−1  

For many purposes, air can be considered as a gas with an average molar mass of 29.0 g 
mol–1 . In that case, the reduced molar mass [1B.10b] is 

 
  
µ =

MA MB

MA + MB

=
(29.0 g mol−1)(2 ×1.008 g mol−1)

(29.0 + 2 ×1.008) g mol−1 = 1.88 g mol−1  

and 
  
vrel =

8(8.3145 J K−1  mol−1)(293 K)
π (1.88 ×10−3  kg mol−1)








1/2

= 1.81×103  m s−1  

Comment. One computes the average molar mass of air just as one computes the average 
molar mass of an isotopically mixed element, namely by taking an average of the species 
that have different masses weighted by their abundances. 
Comment. Note that vrel and vmean are very nearly equal. This is because the reduced mass 
between two very dissimilar species is nearly equal to the mass of the lighter species (in this 
case, H2). 

1B.5(b) (i) 
  
vmean =

8RT
π M







1/2

[1B.8] = 8(8.3145 J K−1  mol−1)(298 K)
π (2 ×14.007 ×10−3  kg mol−1)








1/2

= 475 m s−1  

(ii) The mean free path [1B.13] is 

 

  

λ =
kT
σ p

=
kT

πd 2 p
=

(1.381×10−23  J K−1)(298 K)
π (395×10−12  m)2 (1×10−9  Torr)

×
1 Torr

133.3 Pa

= 6.3 ×104  m = 63 km

 

The mean free path is much larger than the dimensions of the pumping apparatus used to 
generate the very low pressure. 
(iii) The collision frequency is related to the mean free path and relative mean speed by 
[1B.12] 

 
  
λ =

vrel

z
 so 

  
z =

vrel

λ
=

21/2 vmean

λ
 [1B.10a] 

 
  
z = 21/2 (475 m s−1)

6.3 ×104  m
= 1.1 ×10−2  s−1  

1B.6(b) The collision diameter is related to the collision cross section by 
 σ = πd2 so d = (σ/π)1/2 = (0.36 nm2/π)1/2 = 0.34 nm . 
The mean free path [1B.13] is 

 
 
λ =

kT
σ p

 

Solve this expression for the pressure and set λ equal to 10d: 
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p =

kT
σλ

=
(1.381×10−23  J K−1)(293 K)

0.36 × (10−9  m)2 (10 × 0.34 ×10−9  m)
= 3.3×106  J m−3 = 3.3 MPa  

Comment. This pressure works out to 33 bar (about 33 atm), conditions under which the 
assumption of perfect gas behavior and kinetic model applicability at least begins to come 
into question. 

1B.7(b) The mean free path [1B.13] is 

 
  
λ =

kT
σ p

=
(1.381×10−23  J K−1)(217 K)

0.43× (10−9  m)2 (12.1×103  Pa atm−1)
= 5.8 ×10−7  m  

Solutions to problems 
1B.2 The number of molecules that escape in unit time is the number per unit time that would have 

collided with a wall section of area A equal to the area of the small hole. This quantity is 
readily expressed in terms of ZW, the collision flux (collisions per unit time with a unit area), 
given in eqn 19A.6. That is, 

 
  

dN
dt

= −ZW A =
−Ap

(2πmkT )1/2  

where p is the (constant) vapour pressure of the solid. The change in the number of molecules 
inside the cell in an interval t∆  is therefore WN Z A t∆ = − ∆ , and so the mass loss is 

 
  
∆w = m∆N = −Ap m

2πkT






1/2

∆t = −Ap M
2πRT







1/2

∆t  

Therefore, the vapour pressure of the substance in the cell is 

 
1/ 22 RTwp

A t M
π−∆   = ×      ∆

 

For the vapour pressure of germanium 

 

  

p =
43×10−9  kg

π (0.50 ×10−3 m)(7200 s)






×

2π (8.3145 J K−1  mol−1)(1273 K)
72.64 ×10−3  kg mol−1








1/2

= 7.3×10−3  Pa = 7.3 mPa

 

1B.4 We proceed as in Justification 1B.2 except that, instead of taking a product of three one-
dimensional distributions in order to get the three-dimensional distribution, we make a product 
of two one-dimensional distributions. 

 
  
f (vx ,vy )dvxdvy = f (vx

2 ) f (vy
2 )dvxdvy =

m
2πkT







e−mv2 /2kT dvxdvy  

where
  
v2 = vx

2 + vy
2 . The probability f(v)dv that the molecules have a two-dimensional speed, v, 

in the range v to v + dv is the sum of the probabilities that it is in any of the area elements 
dvxdvy in the circular shell of radius v. The sum of the area elements is the area of the circular 
shell of radius v and thickness dv which is π(ν+dν)2 – πν2 = 2πνdν . Therefore, 

 
  
f (v) = m

kT






ve−mv2 /2kT =
M
RT







ve− Mv2 /2 RT   
M
R

=
m
k









  

The mean speed is determined as 

  
  
vmean = vf (v)dv

0

∞

∫ =
m
kT







v2e−mv2 /2kT dv
0

∞

∫  

Using integral G.3 from the Resource Section yields 

 
  
vmean =

m
kT






×

π 1/2

4






×

2kT
m







3/2

=
πkT
2m







1/2

=
πRT
2M







1/2

 

1B.6 The distribution [1B.4] is 
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f (v) = 4π

3/2
M

2πRT






v2e− Mv2 /2 RT . 

The proportion of molecules with speeds less than vrms is 

 
  
P = f (v)dv

0

vrms

∫ = 4π
3/2

M
2πRT







v2e− Mv2 /2 RT dv
0

vrms∫  

Defining   a ≡ R / 2RT , 

 
  
P = 4π

3/2
a
π






v2e−av2
dv

0

vrms

∫ = −4π
3/2

a
π






d
da

e−av2
dv

0

vrms∫  

Defining 2 2 1/ 2. Then, d d  andav v aχ χ−≡ =  

 

  

P = −4π
3/2

a
π






d
da

1
a1/2 e−χ2

dχ
0

vrmsa
1/2

∫{ }
= −4π

3/2
a
π






− 1
2

3/2
1
a() e−χ2

dχ
0

vrmsa
1/2

∫ +
1/2

1
a() d

da
e−χ2

dχ
0

vrmsa
1/2

∫












 

Then we use the error function [Integral G.6]: 

 
  

e−χ2
dχ

0

vrmsa
1/2

∫ = π 1/2 / 2( )erf (vrmsa
1/2 ) . 

 
  

d
da

e−χ2
dχ

0

vrmsa
1/2

∫ =
dvrmsa

1/2

da








 × (e−avrms

2

) = 1
2

c
a1/2







e−avrms
2

 

where we have used 
  
d
dz f ( y)d y

0

z

∫ = f (z)  

Substituting and cancelling we obtain 
  
P = erf (vrmsa

1/2 ) − 2vrmsa
1/2 / π 1/2( )e−avrms

2

 

Now 
  
vrms =

3RT
M







1/2

 so 
  
vrmsa

1/2 =
3RT
M







1/2

×
M

2RT






1/21/2

=
3
2







1/2

 

and 
  
P = erf 3

2


















−

1/2
6
π






e−3/2 = 0.92 − 0.31= 0.61  

Therefore, 
(a) 1 – P = 39% have a speed greater than the root mean square speed. 
(b) P = 61% of the molecules have a speed less than the root mean square speed. 
(c) For the proportions in terms of the mean speed vmean, replace vrms by 

 
  
vmean = 8kT / πm( )1/2

= 8 / 3π( )1/2
vrms  so vmeana1/2 = 2/π1/2 . 

Then 

  

P = erf (vmeana1/2 ) − 2vmeana1/2 / π 1/2( )× (e−av2
mean )

= erf 2 / π 1/2( )− 4 / π( )e−4/π = 0.889 − 0.356 = 0.533

 

That is, 53% of the molecules have a speed less than the mean, and 47% have a speed greater 
than the mean. 

1B.8 The average is obtained by substituting the distribution (eqn 1B.4) into eqn 1B.7: 

 
  

vn = vn f (v)dv
0

∞

∫ = 4π M
2πRT







3/2

vn+2e− Mv2 /2 RT dv
0

∞

∫  

For even values of n, use Integral G.8: 

 

  

vn = 4π M
2πRT







3/2
(n +1)!!

2
n+4

2






2RT
M







n+2
2





 2πRT

M






1/2

= (n +1)!! RT
M







n
2







 

where (n+1)!! = 1 × 3 × 5 ... × (n+1) 

Thus 

  

vn 1/n
= (n +1)!! RT

M


















1/2

 even n 
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For odd values of n, use Integral G.7: 

 
  

vn = 4π M
2πRT







3/2
n +1

2






!

2
2RT

M






n+3
2







=
2
π 1/2

2RT
M







n/2

 

Thus 

  

vn 1/n
=

2
π 1/2

2RT
M







n/2











1/n

=
21/n

π 1/2n

2RT
M







1/2

 odd n 

Question. Show that these expressions reduce to vmean and vrms for n = 1 and 2 respectively. 

1B.10 Dry atmospheric air is 78.08% N2, 20.95% O2, 0.93% Ar, 0.04% CO2, plus traces of other 
gases. Nitrogen, oxygen, and carbon dioxide contribute 99.06% of the molecules in a volume 
with each molecule contributing an average rotational energy equal to kT. (Linear molecules 
can rotate in two dimensions, contributing two “quadratic terms” of rotational energy, or kT 
by the equipartition theorem [Topic B.3(b)]. The rotational energy density is given by  

 

  

ρR =
ER

V
=

0.9906N ε R

V
=

0.9906NkT
V

= 0.9906 p

= 0.9906(1.013×105  Pa) = 1.004 ×105  J m−3 = 0.1004 J cm−3

 

The total energy density is translational plus rotational (vibrational energy contributing 
negligibly):  

  ρtot = ρT + ρR = 0.15 J cm−3 + 0.10 J cm−3 = 0.25 J cm−3  

1B.12 The fraction of molecules (call it F) between speeds a and b is given by 

 
  
F(a,b) = f (v)dv

a

b

∫  

where f(v) is given by eqn 1B.4. This integral can be approximated by a sum over a discrete 
set of velocity values. For convenience, let the velocities vi be evenly spaced within the 
interval such that vi+1 = vi + ∆v: 
 ( , ) ( )ΔiF a b f v v≈ ∑  
On a spreadsheet or other mathematical software, make a column of velocity values and then a 
column for f(v) [1B.4] at 300 K and at 1000 K. Figure 1B.1 shows f(v) plotted against v for 
these two temperatures. Each curve is labeled with the numerical value of T/K, and each is 
shaded under the curve between the speeds of 100 and 200 m s–1. F(a,b) is simply the area 
under the curve between v = a and v = b. One should take some care to avoid double counting 
at the edges of the interval, that is, not including both endpoints of the interval with full 
weight. example, beginning the sum with the area under the curve at those speeds. Using a 
spreadsheet that evaluates f(v) at 5-m s–1 intervals, and including points at both 100 and 200 m 
s–1 with half weight, F(100 m s–1, 200 m s–1) ≈ 0.281 at 300 K and 0.066 at 1000 K. 

 
 Figure 1B.1 
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1C Real gases 

Answers to discussion questions 
1C.2 The critical constants represent the state of a system at which the distinction between the 

liquid and vapour phases disappears. We usually describe this situation by saying that above 
the critical temperature the liquid phase cannot be produced by the application of pressure 
alone. The liquid and vapour phases can no longer coexist, though supercritical fluids have 
both liquid and vapour characteristics. 

1C.4 The van der Waals equation is a cubic equation in the volume, V. Every cubic equation has 
some values of the coefficients for which the number of real roots passes from three to one. 
In fact, any equation of state of odd degree n > 1 can in principle account for critical 
behavior because for equations of odd degree in V there are necessarily some values of 
temperature and pressure for which the number of real roots of V passes from n to 1. That is, 
the multiple values of V converge from n to 1 as the temperature approaches the critical 
temperature. This mathematical result is consistent with passing from a two phase region 
(more than one volume for a given T and p) to a one phase region (only one V for a given T 
and p), and this corresponds to the observed experimental result as the critical point is 
reached. 

Solutions to exercises 
1C.1(b) The van der Waals equation [1C.5a] is 

 
  
p = nRT

V − nb
−

an2

V 2
 

From Table 1C.3 for H2S, a = 4.484 dm6 atm mol–1 and b = 0.0434 dm3 mol–1. 

(i) 

  

p =
(1.0 mol) × (0.08206 dm3  atm mol−1  K−1) × (273.15 K)

22.414 dm3 − (1.0 mol) × (4.34 ×10−2  dm3  mol−1)

   − (4.484 dm6  atm mol−2 ) × (1.0 mol)2

(22.414 dm3)2 = 0.99 atm

 

  

 

(ii) 

  

p =
(1.0 mol) × (0.08206 dm3  atm mol−1  K−1) × (500 K)

0.150dm3 − (1.0 mol) × (4.34 ×10−2 dm3  mol−1)

   − (4.484 dm3  atm mol−1) × (1.0 mol)2

(0.150 dm3)2 = 190 atm  (2 sig. figures)

 

1C.2(b) The conversions needed are as follows: 
1 atm = 1.013×105 Pa, 1 Pa = 1 kg m–1 s–2, 1 dm6 = (10–1 m)6 = 10–6 m6, 1 dm3 = 10–3 m3. 
Therefore, 

 

  

a = 1.32 atm dm6  mol−2 ×
1.013×105  kg m−1  s−2

1 atm
×

10−6  m6

dm6

= 1.34 ×10−1  kg m5  s−2  mol−2

 

and 
  
b = 0.0426 dm3  mol−1 ×

10−3  m3

dm3 = 4.26 ×10−5  m3  mol−1  

1C.3(b) The compression factor Z is [1C.1] 

 
  
Z =

Vm

Vm
° =

pVm

RT
 

(i) Because   Vm = Vm
ο + 0.12   Vm

ο = (1.12)Vm
ο , we have   Z = 1.12  

(ii) The molar volume is 
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Vm = (1.12)Vm
ο = (1.12) × RT

p






= (1.12) × (0.08206 dm3  atm mol−1  K−1) × (350 K)
12atm







= 2.7 dm3  mol−1

 

Since   Vm >Vm
o  repulsive forces dominate. 

1C.4(b) (i) According to the perfect gas law 

 
  
Vm

o =
RT
p

=
(8.3145 J K−1  mol−1) × (298.15K)

(200 bar) × (105 −1Pa bar )
×

1 dm
10−1  m






3

= 0.124 dm3  mol−1  

(ii) The van der Waals equation [1C.5b] is a cubic equation in Vm. Cubic equations can be 
solved analytically. However, this approach is cumbersome, so we proceed as in Example 
1C.1. The van der Waals equation is rearranged to the cubic form 

   
Vm

3 − b + RT
p







Vm
2 +

a
p







Vm −
ab
p
= 0  

or 
  
x3 − b + RT

p






x2 +
a
p







x − ab
p
= 0  with x = Vm/(dm3 mol–1) . 

It will be convenient to have the pressure in atm: 

 
 
200 bar × 1 atm

1.013 bar
= 197.4 atm  

The coefficients in the equation are

 

   

b + RT
p

= (3.183×10−2  dm3  mol−1) + (0.08206 dm3  atm mol−1  K−1) × (298.15 K)
197.4 atm

= (3.183×10−2 + 0.1239) dm3  mol−1 = 0.1558 dm3  mol−1

 

   

a
p
=

1.360 dm6  atm mol−2

197.4 atm
= 6.89 ×10−3  dm6  mol−2  

   

ab
p
=

(1.360 dm6  atm mol−2 ) × (3.183×10−2  dm3  mol−1)
197.4 atm

= 2.193 ×10−4  dm9  mol−3  

Thus, the equation to be solved is   x
3 − 0.1558x2 + (6.89 ×10−3 )x − (2.193 ×10−4 ) = 0 . 

Calculators and computer software for the solution of polynomials are readily available. In 
this case we find 
 x = 0.112 and Vm = 0.112 dm3 mol–1 . 
The perfect-gas value is about 15 percent greater than the van der Waals result. 

1C.5(b) The molar volume is obtained by solving 
  
Z =

pVm

RT
[1C.2], for Vm , which yields 

 
  
Vm =

ZRT
p

=
(0.86) × (0.08206 dm3  atm mol−1  K−1) × (300 K)

20atm
= 1.06 dm3  mol−1  

(i) Then, 
  
V = nVm = (8.2 ×10−3 mol) × (1.06 dm3  mol−1) = 8.7 ×10−3 dm3 = 8.7 cm3  

(ii) An approximate value of B can be obtained from eqn 1C.3b by truncation of the series 
expansion after the second term, B/Vm, in the series. Then, 

   

B = Vm

pVm

RT
−1







= Vm × (Z −1)

= (1.06 dm3  mol−1) × (0.86 −1) = −0.15 dm3  mol−1

 

1C.6(b) Equations 1C.6are solved for b and a, respectively, and yield 
 b = Vc/3 and a = 27b2pc = 3Vc

2pc .  Substituting the critical constants 

   
b = 148 cm3  mol−1

3
= 49.3 cm3  mol−1 = 0.0493 dm3  mol−1  
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and   a = 3× (0.148 dm3  mol−1)2 × (48.20atm) = 3.17 dm6 −2
atm mol  

But this problem is overdetermined. We have another piece of information 

   
Tc =

8a
27Rb  

If we use Tc along with Vc as above, we would arrive at the same value of b along with 

 

  

a =
27RbTc

8
=

9RVcTc

8

=
9(0.08206 dm3  atm mol−1  K−1)(0.148 dm3  mol−1)(305.4 K)

8
= 4.17 dm6  atm mol−2

 

Or we could use Tc along with pc. In that case, we can solve the pair of equations for a and b 
by first setting the two expressions for a equal to each other: 

   
a = 27b2 pc =

27RbTc

8  
Solving the resulting equation for b yields 

 
  
b =

RTc

8pc

=
(0.08206 dm3  atm mol−1  K−1)(305.4 K)

8(48.20 atm)
= 0.06499 dm3  mol−1  

and then 
 a = 27(0.06499 dm3 mol–1)2(48.20 atm) = 5.497 dm6 atm mol–2  
These results are summarized in the following table 
 

Using a/dm6 atm mol–2 b/dm3 mol–1 
Vc & pc 3.17 0.0493 
Vc & Tc 4.17 0.0493 
pc & Tc 5.497 0.06499 

 
One way of selecting best values for these parameters would be to take the mean of the 
three determinations, namely a = 4.28 dm6 atm mol–2  and b = 0.0546 dm3 mol–1 . 
By interpreting b as the excluded volume of a mole of spherical molecules, we can obtain 
an estimate of molecular size. The centres of spherical particles are excluded from a sphere 
whose radius is the diameter of those spherical particles (i.e., twice their radius); that 
volume times the Avogadro constant is the molar excluded volume b 

   
b = NA

4π (2r)3

3






so r = 1

2

1/3
3b

4πNA







 

   
r = 1

2

1/3
3(0.0546 dm3  mol−1)

4π (6.022 ×1023  mol−1)






= 1.39 ×10−9 dm = 0.139 nm  

1C.7(b) The Boyle temperature, TB, is the temperature at which the virial coefficient B = 0. In order 
to express TB in terms of a and b, the van der Waals equation [1C.5b] must be recast into 
the form of the virial equation. 

   
p =

RT
Vm − b

−
a

Vm
2

 

Factoring out 
  

RT
Vm

 yields 
  
p =

RT
Vm

1
1− b /Vm

−
a

RTVm












 

So long as b/Vm < 1, the first term inside the brackets can be expanded using  
 (1–x)–1 = 1 + x + x2 + ... , 
which gives 

   
p =

RT
Vm

1+ b − a
RT






×

1
Vm







+L












 

We can now identify the second virial coefficient as 
 
B = b − a

RT
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At the Boyle temperature 

 
  
B = 0 = b − a

RTB

 so 
  
TB =

a
bR

=
27Tc

8
 

(i) From Table 1C.3, a = 4.484 dm6 atm mol–2 and b = 0.0434 dm3 mol–1. Therefore, 

   
TB =

(4.484 dm6  atm mol−2 )
(0.08206 L atm mol−1  K−1) × (0.0434 dm3  mol−1)

= 1259 K  

(ii) As in Exercise 1C.6(b), 

   
b = NA

4π (2r)3

3






so r = 1

2

1/3
3b

4πNA







 

   
r = 1

2

1/3
3(0.0434 dm3  mol−1)

4π(6.022 ×1023  mol−1)






= 1.29 ×10−9 dm = 1.29 ×10−10 m = 0.129 nm  

1C.8(b) States that have the same reduced pressure, temperature, and volume [1C.8] are said to 
correspond. The reduced pressure and temperature for N2 at 1.0 atm and 25°C are [Table 
1C.2] 

   
pr =

p
pc

=
1.0atm

33.54atm
= 0.030 and Tr =

T
Tc

=
(25+ 273) K

126.3K
= 2.36  

The corresponding states are 
(i) For H2S (critical constants obtained from NIST Chemistry WebBook) 
 T = 2.36(373.3 K) = 881 K 

 p = 0.030(89.7 atm) = 2.67 atm 
(ii) For CO2 
 T = 2.36(304.2 K) = 718 K 

 p = 0.030(72.9 atm) = 2.2 atm 
(iii) For Ar 
 T = 2.36(150.7 K) = 356 K 

 p = 0.030(48.0 atm) = 1.4 atm 

1C.9(b) The van der Waals equation [1C.5b] is 

   
p =

RT
Vm − b

−
a

Vm
2

 

which can be solved for b 

   

b = Vm −
RT

p + a
Vm

2

= 4.00 ×10−4 m3 mol−1 −
(8.3145 J K−1  mol−1) × (288 K)

4.0 ×106 Pa + 0.76 m6 Pa mol−2

(4.00 ×10−4 m3 mol−1)2








= 1.3×10−4  m3  mol−1

 

The compression factor is 

   
Z =

pVm

RT
[1C.2] = (4.0 ×106 Pa) × (4.00 ×10−4 m3  mol−1)

(8.3145 J K−1  mol−1) × (288 K)
= 0.67  

 
Solutions to problems 

1C.2 From the definition of Z [1C.1] and the virial equation [1C.3b], Z may be expressed in virial 
form as 

   
Z = 1+ B 1

Vm







+ C

2
1

Vm







+L  
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Since 
  
Vm = RT

p
 (by assumption of approximate perfect gas behavior), 

  

1
Vm

= p
RT

;  hence upon 

substitution, and dropping terms beyond the second power of 
  

1
Vm







 

  

 

  

Z = 1+ B p
RT






+ C p

RT






2

= 1+ (−21.7 ×10−3 dm3 mol−1) × 100atm
(0.08206 dm3  atm mol−1  K−1) × (273K)








+(1.200 ×10−3 dm6 mol−2 ) ×
2

100atm
(0.08206 dm3  atm mol−1  K−1) × (273K)








= 1− 0.0968 + 0.0239 = 0.927

 

 

  

Vm = (0.927) RT
p







= (0.927) (0.08206 dm3  atm mol−1  K−1)(273 K)
100 atm







= 0.208 dm3

 

Question. What is the value of Z obtained from the next approximation using the value of Vm 
just calculated? Which value of Z is likely to be more accurate? 

1C.4 Since B′(TB) = 0 at the Boyle temperature [Topic 1.3b]:   ′B (TB ) = a + be−c/TB
2

= 0  

Solving for TB: 
( )

1/2
1/2

2
2

B 1

1

(1131K ) 5.0 10 K
( 0 1993bar )ln ln
(0 2002bar )

cT
a

b
−

−

 
   

− −   = = = ×   −  − − .       .  

 

1C.6 From Table 1C.4 
  
Tc =

2
3






×

2a
3bR







1/2

,  pc =
1

12





×

2aR
3b3







1/2

 

( )1 22
3

a
bR

/

 may be solved for from the expression for pc and yields 
  

12bpc

R






. 

Thus

 
  

Tc =
2
3






×

12 pcb
R







=

8
3






×

pcVc

R







                               = 8
3






×

(40 atm) × (160 ×10−3  dm3  mol−1)
0.08206 dm3  atm mol−1  K−1







= 210K  

By interpreting b as the excluded volume of a mole of spherical molecules, we can obtain an 
estimate of molecular size. The centres of spherical particles are excluded from a sphere 
whose radius is the diameter of those spherical particles (i.e., twice their radius); that volume 
times the Avogadro constant is the molar excluded volume b 

 
  
b = NA

4π(2r)3

3






so r = 1

2

1/3
3b

4πNA







 [Exercise 1C.6(b)] = 1

2

1/3
Vc

4πNA







 

   
r = 1

2

1/3
160 cm3  mol−1

4π(6.022 ×1023  mol−1)






= 1.38 ×10−8 cm = 0.138 nm

 
1C.8 Substitute the van der Waals equation [1C.5b] into the definition of the compression factor 

[1C.2] 
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Z =
pVm

RT
= 1

1− b
Vm








− a
RTVm

 [Exercise 1C.7(a)] 

which upon expansion of 
1 2

m m m
1 1b b b

V V V

−
   − = + + +   
   

  yields 

 

2
2

m m

1 11 aZ b b
RT V V

    = + − × + +     
     

  

We note that all terms beyond the second are necessarily positive, so only if 

 

2

m m m

a b b
RTV V V

 
> + + 

 
  

can Z be less than one. If we ignore terms beyond 
  

b
Vm

, the conditions are simply stated as 

   
Z < 1 when a

RT
> b Z > 1 when a

RT
< b  

Thus Z < 1 when attractive forces predominate and when there is insufficient thermal energy 
to disrupt those forces, and Z > 1 when size effects (short-range repulsions) predominate. 

1C.10 The Dieterici equation is 

 
  
p =

RTe−a/ RTVm

Vm − b
 [Table 1C.4] 

At the critical point the derivatives of p with respect to Vm equal zero along the isotherm 
defined by T = Tc . This means that   (∂p / ∂Vm )T = 0  and   (∂

2 p / ∂Vm
2 )T = 0  at the critical point. 

   T

∂p
∂Vm







= p

aVm − ab − RTVm
2

Vm
2 (Vm − b)(RT )












 

and 
( )

{ }
2 3 222

m m mm m
2 2 3 2

mm m m m m

2 4 2

( )( ) ( ) ( )TT

aV V ab RTV abaV ab RTVp p p
VV V V b RT V V b RT

− + + −     − −∂ ∂
= +    ∂∂ −  −      

 

Setting the Dieterici equation equal to the critical pressure and making the two derivatives 
vanish at the critical point yields three equations: 

and   

pc =
RTce

−a/ RTcVc

Vc − b
aVc − ab − RTcVc

2 = 0

−2aVc
2 + 4Vcab + RTcVc

3 − 2ab2 = 0  
Solving the middle equation for Tc, substitution of the result into the last equation, and solving 
for Vc yields the result 
 Vc = 2b or b = Vc / 2 
(The solution Vc = b is rejected because there is a singularity in the Dieterici equation at the 
point Vm = b.) Substitution of Vc = 2b into the middle equation and solving for Tc gives the 
result 
 Tc = a / 4bR or a = 2RTcVc 
Substitution of Vc = 2b and Tc = a / 4bR into the first equation gives 

   
pc =

ae−2

4b2 =
2RTce

−2

Vc

 

The equations for Vc, Tc, pc are substituted into the equation for the critical compression factor 
[1C.7] to give 

 
  
Zc =

pcVc

RTc

= 2e−2 = 0.2707 . 

This is significantly lower than the critical compression factor that is predicted by the van der 
Waals equation:   Zc (vdW) = pcVc / RTc = 3 / 8 = 0.3750 . Experimental values for Zc are 
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summarized in Table 1C.2 where it is seen that the Dieterici equation prediction is often 
better. 

1C.12  2m 1pV B p C p
RT

′ ′= + + +  [1C.3a] 

 m
2

m m

1
pV CB
RT V V

= + + +  [1C.3b] 

Thus 2
2

m m

CBB p C p
V V

′ ′+ + = + +   

Multiply through by Vm, replace pVm by RT{1+(B/Vm) + ...}, and equate coefficients of 
powers of 1/Vm: 

 
2 2

m m

BB RT C R T CB RT B
V V

′ ′+′ + + = + +   

Hence, B′RT = B, implying that 
 

′B =
B

RT
 

Also BB′RT + C′R2T2 = C = B2 + C′R2T2, implying that 
  

′C =
C − B2

R2T 2  

1C.14 Write Vm = f(T, p); then 
  
dVm =

p

∂Vm

∂T






dT +

T

∂Vm

∂p






dp  

Restricting the variations of T and p to those which leave Vm constant, that is dVm = 0, we 
obtain 

   p

∂Vm

∂T






= −

T

∂Vm

∂p






×

Vm

∂p
∂T







= −
T

−1
∂p
∂Vm







×

Vm

∂p
∂T







 

From the equation of state 

   T

∂p
∂Vm







= −

RT
Vm

2 −
2(a + bT )

Vm
3 = −

Vm RT + 2(a + bT )
Vm

3

 

and 
  Vm

∂p
∂T







=
R

Vm

+
b

Vm
2 =

RVm + b
Vm

2  

Substituting 

   P

∂Vm

∂T






=

Vm
3

Vm RT + 2(a + bT )










RVm + b
Vm

2









 =

RVm
2 + bVm

Vm RT + 2(a + bT )
 

From the equation of state, a + bT = pVm
2 – RTVm 

Then 
  P

∂Vm

∂T






=

RVm
2 + bVm

Vm RT + 2 pVm
2 − 2RTVm

=
RVm + bm

2 pVm − RT
 

1C.16  
  
Z =

Vm

Vm
o

 [1C.1], where Vm° = the molar volume of a perfect gas 

From the given equation of state 

 
  
Vm = b + RT

p
= b +Vm

o  

For Vm =10b, we have 10b = b + Vm°, so Vm° = 9b . 

Then 
  
Z = 10b

9b
=

10
9
= 1.11  

1C.18 The virial equation is 

 m 2
m m

1 B CpV RT
V V

 
= + + + 

 
 [1C.3b] 
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or m
2

m m

1
pV B C
RT V V

= + + +  

(a) If we assume that the series may be truncated after the B term, then a plot of 
  

pVm

RT
 vs 

  

1
Vm

 

will have B as its slope and 1 as its y-intercept. Transforming the data gives 
p/MPa Vm/(dm3 mol–1) (1/Vm)/(mol dm–3) pVm/RT 
0.4000 6.2208 0.1608 0.9976 
0.5000 4.9736 0.2011 0.9970 
0.6000 4.1423 0.2414 0.9964 
0.8000 3.1031 0.3223 0.9952 
1.000 2.4795 0.4033 0.9941 
1.500 1.6483 0.6067 0.9912 
2.000 1.2328 0.8112 0.9885 
2.500 0.98357 1.017 0.9858 
3.000 0.81746 1.223 0.9832 
4.000 0.60998 1.639 0.9782 

 
 Figure 1C.1(a) 

  
The data are plotted in Figure 1C.1(a). The data fit a straight line reasonably well, and the y-
intercept is very close to 1. The regression yields B = –1.324×10–2 dm3 mol–1. 
 
(b) A quadratic function fits the data somewhat better (Figure 1C.1(b)) with a slightly better 
correlation coefficient and a y-intercept closer to 1. This fit implies that truncation of the virial 
series after the term with C is more accurate than after just the B term. The regression then 
yields 
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Figure 1C.1(b) 

 
 

 B = –1.503×10–2 dm3 mol–1 and C = –1.06×10–3 dm6 mol–2 

1C.20 The perfect gas equation [1A.5] gives 

 
  
Vm =

RT
p

=
(8.3145 J K−1  mol−1)(250 K)

150 ×103  Pa
= 0.0139 m3 = 13.9 dm3  

The van der Waals equation [1C.5b] is a cubic equation in Vm. Cubic equations can be solved 
analytically. However, this approach is cumbersome, so we proceed as in Example 1C.1. The 
van der Waals equation is rearranged to the cubic form 

   
Vm

3 − b + RT
p







Vm
2 +

a
p







Vm −
ab
p
= 0

 

or 
  
x3 − b + RT

p






x2 +
a
p







x − ab
p
= 0  with x = Vm/(dm3 mol–1) . 

It will be convenient to have the pressure in atm: 

 
 
150 kPa × 1 atm

101.3 kPa
= 1.481 atm  

The coefficients in the equation are

 

   

b + RT
p

= (5.42 ×10−2  dm3  mol−1) + (0.08206 dm3  atm mol−1  K−1) × (250 K)
1.481 atm

= (5.42 ×10−2 +13.85) dm3  mol−1 = 13.91 dm3  mol−1

 

   

a
p
=

6.260 dm6  atm mol−2

1.481 atm
= 4.23 dm6  mol−2  

 
  

ab
p
=

(6.260 dm6  atm mol−2 ) × (5.42 ×10−2  dm3  mol−1)
1.481 atm

= 2.291 ×10−2  dm9  mol−3  

Thus, the equation to be solved is   x
3 −13.91x2 + 4.23x − (2.291 ×10−2 ) = 0 . 

Calculators and computer software for the solution of polynomials are readily available. In 
this case we find 
 x = 13.6 and Vm = 13.6 dm3 mol–1 . 
Taking the van der Waals result to be more accurate, the error in the perfect-gas value is 

 
 

13.9 −13.6
13.6

×100% = 2%  
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