Chapter 1

Systems of Linear Equations

1.1 Practice Problems

1.

(a)
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o
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—
o
~

—2x1 + 810 =5 = x5 = % + %xl. Substitute into the second equation to obtain 3z
12 (g + iml) =4 = —12—5 # 4. Thus no solution exists.
T1—229 =3 = 29 = %xl —%. Substitute into the second equation to obtain —3x1+6 (%xl —

—9 = —9 = —9, which is true for all ;. Therefore we may set z; as a free variable, x;
1 3

and then zp = 551 —

njee
SN—

5.
The fourth equation, 0 = —2, does not hold true, so no solutions exist.
r9 and x4 are free variables, so let xo = s; and x4 = s3. From the third equation, z5 =
Substitute into the second equation to obtain
xr3 — 252 + 4 = 2
r3 = 282 — 2.

Now substitute into the first equation to obtain
$1—81—2(252—2)+82—2(4) = 1
r1 = 5+ 51+ 3ss.

False, by Property (c) of triangular systems.
True. It will have 5 pivot variables, so it must have 3 free variables.

False. For example

r+y =
20 + 2y =
z—y = 1
has exactly one solution.
False. In the system
Ir = 1
To = 2

there are no free variables or free parameters.

There are 4 leading variables.

There are 5 free variables.
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(c) There are 5 free parameters.

(d) There are infinitely many solutions.

5. Let x be the number of floor seats, and y the number of balcony seats. We have x + y = 280, because

the theater capacity is 280. And we have 22z + 14y = 5320, because the sales total $5320. From the
first equation, y = 280 — z. Substitute into the second equation to obtain

22z +14(280 — ) = 5320
8r +3920 = 5320
8r = 1400

r = 175

So there are 175 floor sears, and y = 280 — 175 = 105 balcony seats.

Let x be the number of nickels, y the number of dimes, and z the number of quarters. Because the
quarters are worth $2.75, we have 25z = 275, so z = 11. The dimes and quarters are worth $3.65, so
we have

10y + 25z = 365
10y +275 = 365
10y = 90
y = 9

There are 31 coins, so z + y + z = 31, and because z = 11 and y = 9, we have x = 11.

1.1 Lines and Linear Equations

1. 2(1) = 5(—2) =12 # 9, so (1, —2) does not lie on the line 221 — 5z9 = 9.
2(=3) —5(—=3) =9, so (—3,—3) lies on the line 227 — bzy = 9.
2(—2)—5(=3) =11 #9, so (—2,—3) does not lie on the line 2z, — 5z = 9.
2. (1) = 3(—2) +4(0) =7, so (1,—2,0) lies on the plane 1 — 3z + 4z3 = 7.
(4) —3(2) +4(1) =2 # 7, so (4, 2 1) does not lie on the plane x1 — 3xo + 4x3 = 7.
(2) —3(—5) +4(1) =21 # 7, s0 (2,—5,1) does not lie on the plane x1 — 3xs + 4z = 7.
3. 3(—=1)+(2) = —1 and (—5)(—1) +2(2) = 9 # 20, so (—1,2) does not lie on both lines 3z; + z2 = —1

5) = -1 and (=5)(—2) + 2(5) = 20 = 20, so (—2,5) lies on both lines 3z1 + zo = —1 and

3(1) + (=5) = =2 # —1 and (—5)(1) + 2(—5) = —15 # 20, so (1,—5) does not lie on both lines
3x1 +x2 = —1 and —5x1 + 222 = 20.

. 2(3)=5(1) =1 and —4(3)+10(1) = —2, so (3, 1) lies on both lines 221 —5z2 = 1 and —4x; +10z3 = —2.

2(2) = 5(—4) = 24 # 1 and —4(2 )+ 10(—4) =
2x1 — bxo = 1 and —4x1 + 1025 = —2.
2(—4) — 5(5) = —33 # 1 and —4(—4) + 10(
2x1 — b5x9 = 1 and —4x; + 1025 = —2.

= —48 # —2, so (2,—4) does not lie on both lines

5) = 66 # —2, so (—4,5) does not lie on both lines

—2(1) 4+ 9(2) — (3) = 13 # —10, so (1,2,3) does not satisfy the first equation of the linear system.
2(1)+9(—1)— (1) = =12 # —10, so (1, —1,1) does not satisfy the first equation of the linear system.
(—1) —5(=2)+2(—6) = =3 # 4 s0 (—1,—2,—6) does not satisfy the second equation of linear system.
3(1) — (-2)+2(-1)=3#1,s0 (1,—-2,—1 3) does not satisfy the first equation of the linear system.
3(—1) — (0) +2(2) =1 and 2(—1) +3(0) — (1) = =3 so (—1,0,2, 1) satisfies the linear system.
3(=2)—(=1)+2(4) =3 # 1,0 (=2, —1,4, —3) does not satisfy the first equation of the linear system.
(

a) Not a solution, since —2(—3 + s1 + $2) + 3(s1) + 2(s2) = s1 + 6 # 6 for every s;.
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10.

11.

12.

13.

14.

15.
16.
17.
18.

19.
20.
21.
22.
23.
24.

25.
26.

27.

(b) A solution, since —2(—3 + 351 + s2) + 3(2s1) + 2(s2) = 6.
(c) A solution, since —2(3s1 + s2) + 3(2s1 + 2) + 2(s2) = 6.
d) A solution, since —2(s1) + 3(s2) +2(3 — 3s2/2 + s1) = 6.
)
)

(
(a) Not a solution, since 3(5 — 2s1) + 8 (7 + 3s1) — 14(s1) = 4s1 + 71 # 6 for every s;.

(b A solution, since 3(—5—5s1)+8 (s1)—14(—(3+51)/2) = 6 and (—=5—551)+3 (s1)—4(—(3+s1)/2) =
(c) A Solution, since 3(10+10s1)4+8 (—3 — 2s1)—14(s1) = 6 and (10+10s1)+3 (—3 — 2s1) —4(s1) = 1.
(d) Not a solution, since 3((6 — 4s1)/3) + 8 (s1) — 14(—(5 — s1)/4) = 451 + 4L # 6 for every s1.

3r1+ 519 =4 = x5 = % — 55(51 Substitute into the second equation to obtain 2x; — 7( §acl) =

5
13 = 21 =3. Thus 22 = (4 — 3(3))/5 = —1.

=3x1+2x2 =1 = w3y = 511 + 2 Substitute into the second equation to obtain 5z; + ( T+ )

4 = 1= g5 Thusos = 5 (—53) + 3 = — 55

—10z1+420 =2 = a9 = %a:l + %.Substitute into the second equation to obtain 15x; — 6 (%xl + %) =

—3 = —3 = —3,which is true for all ;. Hence we may set x; as a free variable, 1 = s; and then
5 1

T2 = 551 + 3-

—3x1+425, =0 = x5 = . Substitute into the second equation to obtain 9x; — 12 ( xl) =0+# -2

4
. Thus no solution exists.
Tx1—3x9 = —1 = x5 = %xl + . Substitute into the second equation to obtain —5x1 +8 ( T + )
0= xlzf%. ThUS$2:g(*%)+%:*%.

6x1 — 312 =5 = X9 =217 — % Substitute into the second equation to obtain —8x + 4 (23:1 — %) =
723—0 2 1. Thus no solution exists.

Echelon form. Leading variables: x; and xs. No free variables.

Not in echelon form since z; is a leading variable in both equations.

Echelon form. Leading variables: x; and x3. Free variable: xs.

Not in echelon form, since the leading variable x5 in equation 2 lies to the right of the leading variable
Z9 in equation 3.

Not in echelon form since x5 is a leading variable in both equations 2 and 3.
Echelon form. Leading variables: x1, xs, 3, and x4. No free variables.
Echelon form. Leading variables: x1 and z3. Free variables: zo and x4.
Echelon form. Leading variables: x1,x3 and z4. Free variables: xo, x5 and .

Equation 2 = x5 = 5. Substitute into equation 1, =521 —3(5) =4 = z; = —

S

Equation 3 = x3 = —3. Substitute into equation 2, —x5 + 4(—3) = 1 = x5 = —13. Substitute into
equation 1, x1 +4(—13) — 7(-3) = -3 = x; = 28.

To is a free variable, so let o = s1. Substitute, —3z; +4s1 =2 = x; = %sl - %

x9 is a free variable, so let x5 = s1. Equation 2 = x5 = 2. Substitute into equation 1, 3z1 —2(s1)+2 =
4 = T = %81 -+ %

T3 is a free Varlable so let x3 = s1. Equation 3 = x4 = 5. Substitute into equation 2, —2x4 —|— $s1—5b=
-1 = x5 = 751 — 2. Substitute into equation 1, z; + 5 ( s1 — 2) —251=0 = 1 =10— 731
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28.

29.

30.

31.

32.

33.

34.
35.

36.
37.

r9 and x3 are free variables, so let zo = s; and x3 = s5. Substitute, 221 — s1 + 655 = —3 =
T, = %51 —382 — %
o and x4 are free variables, so let xo = s; and x4 = so. Equation 2 = —3x3+ sy = —4 = 23 =
%82 + %. Substitute into equation 1, —2xz1 + s1 + 2 (%52 + %) =1= z= %sl + %82 + %

9, x5 and xg are free variables, so let zo = s1, x5 = $9, and xg = s3. Equation 3 = 2x4+5s, =1 =

Ty = 35— 352. Substitute into equation 2, —5x3 — (% — 352) +6s3+3s3 =0 = x3 = %52 + %53 - %.

Substitute into equation 1, —7x1+3s1+8 (% - %52) —2s89+13s3 = —6 = a1 = %517252+§53+1—70.
(a) Interchange equations 1 and 2, to obtain:
3$1 + 2352 =1
*5172 =4

Equation 2 = x5 = —4/5, and substituting into equation 1, 3z +2(—4/5) =1 = z; = 1.

(b) Interchange equations 1 and 3 to obtain:

3x1 + 229+ Tx3 =0
—T2 — 41‘3 =13
—3&63 =-3

Equation 3 = x3 = 1. Substitute into equation 2, —x5 — 4(1) = 13 = x5 = —17. Substitute
into equation 1, 3z1 + 2(—17) +7(1) =0 = z; =09.

(a) Interchange equations 1 and 2 to obtain:

T+ 3x9 — 223 + 224 = —1
2x9 +x3 — Hxg =0

r3 and x4 are free variables, so let x3 = s1 and z4 = ss. Sub§titute into equation 2, 2xo+51 —bHsy =
0 = x = 359 — 1. Substitute into equation 1, 21 + 3 (355 — $51) — 281 + 285 = -1 = 21 =
7

19
581 — 732 —1.

(b) Interchange equations 1 and 2, and also equations 3 and 4, to obtain:

x1—5x2—6x3+3$4:3
To —4x3 + 3x4 =2

5.’173 — 4.%‘4 =10
—3$4 =15
Equation 3 = x4 = —5. Substitute into equation 2, 5x3 — 4(-=5) = 10 = x3 = —2.

Substitute into equation 2, xo — 4(—2) 4+ 3(—5) = 2 = x2 = 9. Substitute into equation 1,
21— 5(9) — 6(=2) + 3(=5) =3 = 11 =51

x3 is a free variable, so let z3 = s1. Equation 3 = x4 = 0. Substitute into equation 2, zo+2s1 —2(0) =
2 = x5 = 2 — 2s;. Substitute into equation 1, z1 +2(2—-2s1) —s1 +0=1 = z; =5s1 — 3.

Because the third equation, 0 = 1, is not satisfied, there are no solutions.

x3 is a free variable, so let x3 = s1. Substitute into equation 2, xo + 53 =1 = x9 = 1 — s1. Substitute
into equation 1, z1 + (1 —s1) —s1 =4 = x1 = 2s1 + 3.

Because the third equation, 0 = —5, is not satisfied, there are no solutions.

(a) From the first equation, 6x; — 5z5 = 4, we obtain x; = %xz + % Substitute into equation 2,
9 (%xg + %) +kro =1 = (1—25 + k) x9 = —5. Hence the system is consistent provided 1—25 +k #0,
which means k # —%.
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38.

39.
40.

41.

42.

43.

44.

45.

46.

47.

(b)

(a)

(b)

From the second equation, —9x; + 12292 = —1, we obtain z; = %xz + %. Substitute into equation
2

1,6 (%xg + %) — 8wy =k = 5 =k. The system is consistent provided k = %

Subtract the equations to obtain (2 — h)z; = —1 — k. If h # 2, the system will be consistent. If
h =2, then 0 = —1 — k, and the system has no solutions if —1 — k # 0, i.e. k # —1. Hence, the
system has no solutions if and only if h =2 and k # —1.

Alternatively, there will be no solution if and only if the two lines are parallel and distinct. Thus
we conclude that h =2 and k # —1.

If h = 2 and k = 5, then we have both 2x; + 529 = —1 and 2z; + 5z = 3. Because —1 # 3, there
are no solutions.

There are 9 variables, as every variable is either a leading variable or free variable.

There are 3 free variables. Since there are 5 equations and the system is in echelon form, there are 5
leading variables. The number of free variables plus the number of leading variables must equal the
total number of variables, 8.

There are 7 leading variables, since the number of leading variables of a system in echelon form is equal
to the number of equations.

There are 5 equations. Since there are 4 free variables, there must be 5 leading variables, as there are
9 variables altogether. Since the number of leading variables of a system in echelon form is equal to
the number of equations, we must have 5 equations.

For example,

For example,

For example,

X1 0

X9 0

I3 0
T + 23 = 0
o + x3 = 0
r1 — X9 = 0
X1 + X9 = 0
r1 + X2 — I3 = 0
r3 = 0
1 + T + X3 = 0

For example

T
A

o + x3 + x4

+
+ X9

N
— ==

r3 + x4

On Monday, I bought 3 apples and 4 oranges and spent $0.55. On Tuesday I bought 6 oranges and
spent $0.60. How much does each apple and orange cost?

Solution: let x1 be the price of an apple, and x5 the price of an orange, then we have the following
system in echelon form:

3z + 422 = 0.55
622 = 0.60

From equation 2, zo = 0.10. Substitute into equation 1, 3z1 + 4(0.10) = 0.55, = x; = 0.05. Hence
apples cost 5 cents each and oranges cost 10 cents each.
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48

49

50

ol.

52.

53.

54.

95.

56.

. The simplest such example,

X1 = 71
X9 = 3
. For example,
T — T2 = -3
3.131 - X3 = 4
. For example,
T - 2%2 =0
21‘1 — 45(}2 = 0
(a) False. Example:
T = 0
X9 = 0
Ty + 2 = 0

(b)

(a)

False. Example:
T =

o + T3 + X4 + Ts

r + x2 + x3 + Ty + x5 =

Il
—oo

False. Consider the equation 1 + x5 = 1. One can set 1 = s; and then zo =1 — s7. Or one can
set o = 51 and then 1 =1 — s;.

True. The last equation will uniquely determine the last variable. Substitution into the next to
last equation will determine the next to last variable uniquely. And one can continue to determine
uniquely all variables.

True. The leading variable moves one column to the right each time you descend one row.

False. Example:

1 + ® + z3 = 0
56320

False. Each equation in an echelon system has a unique leading variable, so back substitution is
always possible. Hence a solution always exists.

False. Each equation in an echelon system must have a unique leading variable, so the number of
equations cannot exceed the number of variables.

True. The last equation would be c,x, = by, so z, = z—n is rational. And then using back
substitution, each proceeding variable would be rational, as it is determined from a sum of rational
numbers, divided by an integer. In this manner, we see that each variable, z; in the solution is a
rational number.

True. Example:
1 + 2 = 0

True, because the free parameter can be assigned any real value, so there will be correspondingly
infinitely many solutions.

False. Suppose one of the equations is ax + by = ¢, with either a # 0 or b # 0. Because (1,2) is a
solution, a+2b = ¢. Also, (4, 8) is a solution so 4a+8b = ¢. We obtain a+2b = 4a+8b = 4 (a + 2b) ,
so a+2b = 0. Thus a = —2b and ¢ = 0, and the equation becomes —2bx + by = 0. Because (—1,5)
is also a solution, —2b(—1) + b(5) = 0. This implies b = 0, so also a = 0. But this contradicts
either a # 0 or b # 0, and we conclude that these three points cannot all be solutions.
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o7.

58.

59.

60.

61.

62.

63.

64.

65.

Let x be the number of adults who attended, and y the number of children who attended. Since the
total number of people who attended is 385, we have x 4+ y = 385. The total revenue from the sale
of tickets will be the revenue due to the adult tickets purchased and the children’s tickets purchased.
We obtain a second equation, 11x + 8y = 3974. Solving the first equation for z, we have z = 385 — y.
Substitute into the second equation, we have 11 (385 — y) + 8y = 3974 = 4235 — 3y = 3974, =

y = 87. Solving now for x, we determine x = 385 — 87 = 298. So 298 adults and 87 children attended.

Let = be the number of coach tickets sold, and y the number of business class tickets sold. Because 150
people were sold, we have x +y = 150. Because the total revenue was $24, 960, we have 160x + 220y =
24,960. We solve the system

r+y = 150
160z + 220y = 2,4960

and obtain x = 134 and y = 16. So 134 coach tickets were sold, and 16 business class tickets sold.

Using f(0) = 5, we have 5 = a;e%©) + a2e73(0) = a; 4 ay. Using f'(0) = —1,we have —1 = 2a,e>(®) —
3ase 30 = 2a; — 3ay. Solving the first equation for a;, we have a; = 5 — ap. Substitute into the
second equation, —1 =2 (5 —as) — 3as = as = 15—1 Therefore aq = 5 — & 15—4.

11
5

From f (0) = 3 we obtain 3 = a; +ag. And from f’ (0) = —1 we obtain —1 = —5a3 +2as. Solve the first
equation for a; to get a; = 3—as. Substitute into the second equation, and get —1 = —5 (3 — az)+2ay =
Tas — 15. Thus 7as = 14, s0 ap = 2. Thus a; =3 -2 =1.

The total amount of glycol needed is now 0.29(300) = 87.0 liters. Thus the system of equations becomes

300
87

T + Yy =
0.18z + 0.50y =
Solving the first equation for x, we obtain x = 300 — y. Substitute into the second equation to get
0.18(300 — y) + 0.50y = 87, = y = 103.125 liters. Hence z = 300 — 103. 125 = 196. 875 liters.

The total amount of glycol needed is now 0.46(300) = 138.0 liters. Thus the system of equations
becomes
T + y = 300
0.18x + 0.50y = 138.0

Solving the first equation for x, we obtain x = 300 — y. Substitute into the second equation to get
0.18(300 — y) + 0.50y = 138.0, = y = 262.5 liters. Hence x = 300 — 262.5 = 37.5 liters.

Let x be the amount invested in the safe bond, and y the amount invested in the risky bond. Then
x + 1y = 100000. The annual return on her investment is 1.03x + 1.09y. We desire to have this be a 7%
annual return, so 1.03xz + 1.09y = 1.07(100000) = 107000. From our first equation, z = 100000 — y.
Substitute into the second equation, 1.03 (100000 —y) + 1.09y = 107000, = y = 66667. Thus,
x = 100000 — 66667 = 33333.

Let x be the amount invested in the safe bond, and y the amount invested in the risky bond. Then
z+y = 200,000. The annual return on the investment is 1.04x + 1.11y. We desire to have this be a 8%
annual return, so 1.04x + 1.11y = 1.08(200, 000) = 216, 000. From our first equation, z = 200,000 — y.
Substitute into the second equation, 1.04 (200,000 — y) + 1.11y = 216,000, = y = 114,285.71. Thus,
x = 200,000 — 114,285.71 = 85, 714. 29.

Let x be the amount of hot water, and y the amount of cold water to be mixed. Then x +y = 60, since
the 60-gallon bathtub is to be filled. The proportion of the water that is hot is /60, and the proportion
of water that is cold is y/60, and the final temperature of the water is determined by these proportions
and the temperatures of the hot and cold water. Hence, 100 = (2/60)(125) + (y/60)(60). Solving the
first equation, we have x = 60 — y. Substitute into the second equation, 100 = ((60 — y) /60)(125) +

(y/60)(60), = y= 29 =23.077 gallons. Thus z = 60 — 3% = 480 = 36.923 gallons.
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66

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

7.

78.

. Let z be the amount of hot water, and y the amount of cold water to be mixed. Then xz+y = 50, because
the 50-gallon bathtub is to be filled. The proportion of the water that is hot is 2/50, and the proportion
of water that is cold is y/50, and the final temperature of the water is determined by these proportions
and the temperatures of the hot and cold water. Hence, 105 = (2/50)(115) + (y/50)(70). Solving the
first equation, we have x = 50 — y. Substitute into the second equation, 105 = ((50 — y) /50)(115) +

(y/50)(70), = y = 12 =11.11 gallons. Thus = 50 — 13¢ = 330 — 350 — 38 89 gallons.

Using the freezing point of water, we have 0 = a(32) + b. From the boiling point of water, 100 =
a(212) + b. From the first equation, b = —32a. Substitute into the second equation, 100 = a(212) +

(—32a) = 180a = a = 5. Hence b= —32(3) = — 152,

Let V be the value of the machine (in thousands of dollars), and ¢ be the time in years since purchased.
We are assuming that the relationship is linear, so V' = at + b for some values a and b . We are given
that V' = 800 when ¢ = 2, so our first equation is 2a + b = 800. Using V = 440 when ¢ = 5 we have
a second equation ba + b = 440. Subtracting equations, we get —3a = 360, and so a = —120. Thus
b =800 — 2(—120) = 1040. So a formula for the value of the machine is V' = —120¢ + 1040.

After experimenting a bit, we get that 4 nickels and 8 quarters just about cover the long side. The
short side is covered by either 9 nickels and 1 quarter, or 1 nickel and 8 quarters. Let n be the diameter
of a nickel, and ¢ the diameter of a quarter. The first equation becomes 4n + 8¢ = 11, so n = % — 2q.
With the choice of 9 nickels and 1 quarter, the second equation is 9n + ¢ = 8.5. Substituting for n,
9 (4 —2¢) + ¢ = 8.5, and hence ¢ = 0.95588 in. And thus n = 1l —2(0.95588) = 0.83824 in.

Using instead 1 nickel and 8 quarters for the second equation, we have n + 8¢ = 8.5. Substituting,
(% — 2q) + 8¢ = 8.5, and we get ¢ = 0.95833 in. Thus n = % — 2(0.95833) = 0.83334 in. The
published values from the United States Mint are ¢ = 0.955in and n = 0.8351in.

From Example 5, A(t) = 2a, and since the acceleration is given as —9.8 m/s?, we have —9.8 = 2a =
a = —4.9. The velocity is given by V (t) = 2at + b, and using that velocity is —34.4 m/s when ¢t = 3,
we have —34.4 = 2(—4.9)(3) +b, = b = —5.0. The height is H(t) = at®> + bt + ¢, and we know
that the height is 25.9 meters when ¢ = 3. Thus, 25.9 = (=4.9)(3?) + (=5.0)(3) + ¢, = ¢ = 85.0
Thus H(t) = —4.9t> — 5.0t + 85.0. (Note that we didn’t use the initial velocity. Our result agrees with
V(0) = —5.0. We could have used the initial velocity instead to determine b = —5.0, and then check
that V (3) = —34.4.)

T = 12, Ty = 5.
z1 =12, 2y = 2. (Solving numerically, z; = 0.24390244, x5 = 0.14634146. )

x1 = 0.625 + 41.2581 , xo = —1.75 + 2.2551, x3 = 51

1 22
Ty =17Ts1,%2=—3,T3 =51+ 35

Iy —8.417 — 412581 , Lo = 4.333 — 281, I3 = 1.5+ ]..75817 Ty = S1

T = —%81 , Lo = 1451 +

668 —_1 552 — 425
139 L3 = —381 1+ 135, T4 = S$1+ 159

173 17 . _ 181 1. e _
8] T 85 T3 = 55 T 55 Tg4 =8 T5 =

v

2727 | 7.

l‘lzsg 8 ; L2 =

[

1

_ 2 19. .. _ e — gqe o, — 29. _ 4. —
L1 = =351 = 087 T2 = —363 L3 = 51; T4 = 5 s = 3; L6 = —

wlot
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1.2 Practice Problems

1
1. (a) [ 2

-1

1
2
-1
1

-1

1
2. (a) l 2

-2 1 2 r 1 -
-3 5 5 | “ileok 0
3 2 -5 -1
1 -2
R1+1§3—>R3 0 1
0 1
RotRemRy | L T2
- 2"1‘,\/3_> 3 0 1
0 0
—2R1+R2— R
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~1 2 -3 —17 -—R+Re>Re [ ] 2 -3 —1
3. (a) | -1 3 -1 —3 | >*Mtho 01 2 -2
2 =2 10 -2 0 2 4 —4
-1 2 -3 -1
—2aA s s 01 2 -2
0 0 0 0
Free variable, x3 =s. Row 2 = zo+2s=-2 = 25 =-2—-2s5. Row 1= —x1+2(—2—2s)—

3s=—-1 = 1 =-3—7Ts.

1 -1 -2 1 -2 0 _RR1+RR2—>RR2 1 -1 -2 1 -2 0
(b) 1 -1 -1 -1 -1 0 e g 9 1 2 1 0
-1 1 1 -3 6 0 0 0 -1 -2 0
1 -1 -2 1 -2 0
Ratfig =1 0 0 1 -2 10
0 0 0 —4 5 0
Free variables, x5 = s; and 22 = s5. Row 3 = —4dxy4+5s1 =0 = x4 = gsl . Row
2= 132 (%sl)—i-sl =0 = x3= %sl. Row 1 = 1;1—(52)—2(%Sl)—&—(gsl)—Z(sl) =0 = 2, =
%51 =+ So.
4 () 1 2 1 4] -RitReske [1 2 1 4]
e 11 21 0 -1 1 -3
2R2+£1‘)R1 [ 1 O 3 _2 |
0 -1 1 -3
—R2—>R2 [ 1 0 3 —2 T
~ 01 -1 3
Free variable 3 =s. Row 2= 23— (s) =3 = 22 =3+s. Rowl= 21 +3(s)=—-2 = 21 =
—2 — 3s.
1 -1 3 —17 -2RtRe>Re [ 1 —1 3 -1
(b) 2 -1 4 -1 fatllg=Fs 0 1 -2 1
-1 3 —6 4 L 0 2 -3 3
Rt R R ri1 -1 3 -1
- 2+N3% 3 0 1 _9 1
| 0 0 1 1
2‘R3+R24)R2 ri —1 0 —4
Ao g 1 00 3
L 0 0 1 1
iR R rt o 0 -1
AN ORSE 010 3
L0 0 1 1
From Row 1, 1 = —1, from Row 2, o = 3, and from Row 3, z3 = 1.

5. (a) False. Every matrix can be transformed to reduced row echelon form.

(b) True. Suppose the matrix is m x n, with m > n. No column can have more than one pivot if the
matrix is in echelon form, so the number of rows with a pivot is, at most, n. Since there are m
rows, and m > n, the matrix must have a zero row.

(c) True. The reverse operation of R; <+ R; is R; <+ R;. The reverse operation of cR; — R; is
%Ri — R;. And the reverse operation of cR; + R; — R; is —cR; + R; — R;.

(d) True. If there exists a solution, then there will be infinitely many solutions because any free
variable can take infinitely many values in R.
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1.2 Linear Systems and Matrices

1.

10.
11.
12.
13.
14.

15.
16.

17.

18.

19.

© *® s o

(c) 6
(d) 4

41 4+ 2x9 — gy = 2
—I + bxg = T
72%1 + To = 0
13‘%1 — 31’2 = 6
—111‘1 + 7.’1}2 = -5
1229 — 3z3 — 9y =
—12z7 + Sy — 3xz + llzy =
6x, + 8ty + 2x3 + 10z, =
17331 + 13.134 =
—Ir] = 2
5%‘1 = -7
3561 = 0

Echelon form.

Reduced row echelon form.
Not echelon form.

Echelon form.

Echelon form.

Reduced row echelon form.

—2R1—>R1
3R2+R1—>R1
—2Rs + R3 — R3
Ry < R3
-1 4 3
R & Ry, 3 7 —2‘|
5 0 -3
-2 =2 1 6
2R1+R2’[ 0 —5 2 7}
0 6 —2 4
OR, s Ry | -1 —9 4 11
5 0 7 2
1 7 2 0
—2R1+R3=R3, | O 4 -8 -3 |.
1 —-14 -4 1

2 1 1 2R1+R>—Ro> 2 1 1
-4 -1 3 ~ 015
_|_

Row 2 = 25 =5. Row1 = 2x;

17

-1
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20 3 —7 0 Ri1+>Ro 1 4 O
: 1 4 0 ~ 3 =70
—3R1+Ra—Ry 1 4 0

~ 0 —-19 0

Row2 = 20=0. Row1l = 2;4+4(0)=0 = z; =0.

-2 5 —10 4 R oR r 1 =2 3
21. [ 1 -2 3 1] RV -2 5 —10
7T =17 34 —16 7T =17 34
2R1+R2—Ro 1 _2 3 _1
—7R1+33$R3 O 1 74 2
0 -3 13 -9
pmn [1 -2 3 -1
3 2“!"\.‘3_> 3 O 1 74 2
0 0 1 -3
Row 3 = x3=-3. Row2 = 22 —4(-3) =2 = z2 =—-10
-1 = . =-12.
929 2 8 —4 —-10 R12R2 -1 -3 5 4
) -1 -3 5 4 2 8 —4 —-10
2R1+Ry—Ra -1 -3 5 4
0 2 2 =2

Free variable, x3 = s1 .
5(s1)=4 = x; =8s; — 1.

2 2 -1 r—-1 -1 0

23. [—1 1 0 —3] R R 2 2 -1
3 3 1 7 . 3 3 1
2R;+Rs— R 1 -1 0

3R1+£3$R3 0 0 —1

0 0 1

Ra+R3—R3 -l 0

i3 R 0 0 -1

L0 0 0

Free variable, o = s;. Row 2 = x5

-5 9 13 R OR r 1 -2 =2
24. [ 3 -5 9] 1R 3 -5 9]

1 -2 -2 | -5 9 13
—3R1+Ro—R> ri _2 _2

5R1+£3:>R3 O 1 73 ]
Lo -1 3
ri- -2 -2

Ratfig—Fs 0 1 31
L0 0 o0

Row 2= 2o =-3. Row 1= z; —2(-3)=-2 = z; =

0 ]

.Row 1= —z1 —(s1)

—8.

-1
4
—16

|
|

. Row 1 = z7 —2(—10) +3(-3) =

|

Row 2 = 2x9+42s1=-2 = z9=-51— 1. Rowl= —x; —3(—s1 — 1)+

-3 = 21 =3 —s1.
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2 6 -9 —4 0 i
2. | =3 —11 9 -1 0 Rt R
1 4 -2 10 I
3Ri+R2—R2 [
*2R1+531>R3
2R2+£3%R3

O o

—2 1
9 -1
—9 —4

10
2 0
—6 0
10
2 0
—2 0

Free variable, x4 = s1. Row 3 = 23 —2s1 =0 = 23 =2s51. Row 2 = 22+ 3(2s1) +251 =0 =
29 = —881. Row 1 = x1 +4(—8s1) —2(281) + 51 =0 = x1 = 35s1.

1 -1 -3 -1 -1 ggﬁgz*? 1 -1 -3 -1 -1
26 2 2 6 2 -1 e g 0 0 0 -3
-3 -3 10 0 5 0 -6 1 -3 2
1 -1 -3 -1 -1
2y 0 -6 1 -3 2
0 0 0 0 -3
The third row corresponds to the equation 0 = —3, hence the system is inconsistent.
-2 -5 0 RiR» 1 31
27'{1 31} ~ —2—50}
2R1+ R~ Ra (1 3 1
0 1 2
—3R2tR1—Ra (1 0 -5
0 1 2
Thus 1 = =5 and x5 = 2.
1 11 —S3Ri+R—Ry 1 1 1
28. 3 4 6 it fig =R 01 3
-1 1 5 L0 2 6
r1 1 1
_2R2+,§3_>R3 0 1 3]
L0 0 0
1T 0 -2
—R2+£1—>R1 0 1 3
L0 0 0
Thus, 1 = —2, and x5 = 3.
99 2 1 0 2 RioRs [ -1 -1 -1 1
’ -1 -1 -1 1 I 2 1 0 2
2R +RaR, | —1 —1 —1 1
~ 0 -1 —2 4
~RotRimR; [ -1 0 1 =3
~ 0 -1 -2 4
—R1—>R1 -
—Ra—Ra 1 0 -1 3
~ 01 2 —4

Free variable, x3 = s;. Row 1 = x1 =34 5s1. Row 2 = x9 = —4 — 25;.
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-4 2 -2 10 e on 1 0 1 -3
30. 1 0 1 -3 1252 -4 2 =2 10
3 -1 1 -8 | 3 -1 1 -8
4R1+Rs—Ro 1 0 1 _3 7
uAls=ls g 9 2 9
0 -1 -2 1|
hon 10 1 =37
205 0 -1 -2 1
0 2 2 —2 ]
2Ro+Rs—R [ 1 0 L =37
2+N3% 3 0 —1 -2 1
L0 0 —2 0 |
—R3+R2—R r _2 7
(e [1 00 =3
L0 0 —2 0 |
—R2—Rp 1 0 0 -3
7(1/22{?3*}]{3 O 1 O _1
L0 01 0
Thus, z1 = =3, zo = —1, and 3 = 0.
-3 2 -1 6 —7 - 1 0 0 -1 1
31. 7 -3 2 —11 14 L 7 -3 2 —11 14
1 0 0 -1 1 | -3 2 -1 6 —7
~TRi+Ra—R: 71 (0 0 -1 1
Satlp=fe g 3 2 —4 7
L0 2 -1 3 —4
2R2—R2 ri1 0 0 -1 1
Bl 5 Hs 0 -6 4 -8 14
L0 6 -3 9 —12
rT 0 0 -1 1
Ritlts=Hs 0 -6 4 -8 14
L0 01 1 2
rT 00 -1 1
sl g 6 0 12 6
L0 0 1 1 2
amgen [300 5
L0 01 1 2
Free variable, x4 = s1. Thus, z;1 =1+ s1, 19 = —1 — 251, and 3 = 2 — s7.
11 1 -2 4 -5 FitRaoRs r1 1 1 =2 4 =5
3. | -1 0 -3 4 -5 5| BT 191 2 2 -1 0
2 4 -2 1 5 -9 002 -4 5 =3 1
11 1 -2 4 -5
“HetlaoRs g 1 9 9 1
L0000 0 1 -1 1
—2Rz+R»—R: 1 1 1 0 2 -3
it 01 -2 0 1 -2
00 01 -1 1
10 30 1 -1
~RaA = R 01 -2 0 1 -2
00 01 -1 1
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33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

Free variables, 3 = s; and x5 = s3. Thus, 1 = —1 — 381 — S9, o = —2+ 251 — S9, and x4 = 1 + s9.

a) (1/5)R1 — Rl
b) (—1/2)R3 — R3

a) 5Rs + Rg — Rg
b) 3R; + Rs — R3
a) —4Rs + R1 — Ry
b) 4R, + Ry — R

1
1
1

1
1
1

[ QS
—

[N eNoRoNall ol
oo —=O SO O ==
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SO O

coRr
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w o

z1
Z2
r3 + x4

ERIE R

oo o

(a) True, by definition of equivalent matrices.

(b) True. For example, L

2 4 R1 (—)RQ
And [1 1} ~

(a) False, by Theorem 1.6.

(b) False, it could be inconsistent, and therefore have no solutions, as with the system

Ty + X9
r1 + X2

|

2 4| —-(Q1/2)Ri+R2—Ro 2
1 ~ 0 —
1 1 —2R1+R>—R> 1 1
2 4 ~ 0 2|

+ I3
+ 3

+ T4 + 5

T4 + T3

1]

+ g

L6

+ 27

+ 7

0

1
1
1

(a) False. For example, all seven equations in the system could be x1 + x5 + x3 + x4 = 0, which is
consistent, making the system consistent.
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(b) False, a system can have free variables but also be inconsistent.
46. (a) True. If it is consistent, there will be at least one free variable, and hence infinitely many solutions.
(b) False. For example, the system
Ty + 2 = 0
1T + x = 1
has no solutions. And the system
ry + x2 = 1
201 + 2z, = 2
has infinitely many solutions.
47. (a) 7R2 — R27 then R3 + RQ — RQ
(b) 3Ry — Ry, then Ry + Ry — Ry
48. (a) 2R4 — R4, then 3R2 + R4 — R4
(b) —Rs — Rs, then Ry + Rs — Rs
49. (a) —4Rg — Rg, then R3 + Rg — Rg
(b) Not a combination of elementary row operations. For example, the system
51’1 = 5
X1 = 2
—2.’1?1 = -2
has no solution, but if one applies the row operation
5 D 2R, +5R3—R 5 o
1 2 1+ ofiz— Fo 0 0
-2 =2 -2 =2
then the system has a solution, x1 = 1, which is a contradiction.
50. (a) Not a combination of elementary row operations. For example, the system
r, = 1
*51’1 = -5
X1 = 2
has no solution, but if one applies the row operation
1 1 1 1
-5 -5 | Ml | 5 5
1 2 0 0
then the system has a solution, x; = 1, which is a contradiction.
(b) —Rs — R5, then 2R, + R5 — R5
51. Exactly one solution. The last row produces a unique value for the last variable, and then back
substitution produces a unique value for each preceding variable.
52. No solutions. The assumption implies that the last row consists of all zeros followed by a non-zero

value. This corresponds to an inconsistent system.
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53. Either the system has free variables or not. If there are no free variables and the system is consistent,
then every variable is a leading variable, and there will be exactly one solution. If there exists a free
variable, then there will be infinitely many solutions. Thus, if there are two distinct solutions then it
follows that there must be infinitely many solutions.

54.

55.

56.

Suppose there are no zero rows. The every row has a distinct leading term. Since there are more rows
than columns, we have more leading terms than columns, which is a contradiction. Hence there must
be a least one zero row.

Every homogeneous system is consistent. There will be free variables, as the number of leading variables
is no greater than the number of equations, and there are more variables than equations. Since there
are free variables, there must be infinitely many solutions.

(a)
(b)

Clearly the set of solutions is not changed by simply writing the equations in a different order.
Suppose that (s1,...,sk) is a solution to the linear equation

G171 + -+ QT = bj

Then aji1s1 + -+ ajpsk = bj, and if ¢ # 0, then we also have ca;i151 + - - - + cajis; = cbj, so that
(81,...,5k) satisfies
caj1x + -+ - + cajpxy = cb;

Similarly, if (¢1,...,tx) is a solution to caji121 +- - - +cajpxr = cbj, then cajiti +- - - +cajity = cb;.
Dividing on both sides by ¢, we have a;i1t1 + - - - + a;itr = b;. Therefore it follows that the set of
solutions is not changed by multiplying an equation by a nonzero constant.

Suppose that (sq,...,sk) is a solution to the linear equations

1Ty + - F QT = bj
a1y + -+ T = b

Then for ¢ # 0, we have
C(aj181 + -+ ajksk) + (aﬂsl + -+ aiksk) = ij + b;

o (81,...,8k) is a solution to the new system obtained from adding ¢ times equation j to equation
i.

Now suppose that (¢1,...,%x) is a solution to the system that results from adding ¢ times equation
J to equation i, so that

c(ajltl + -4 ajktk) + (a“tl + -4 aiktk) = ij +b;
ajiti + -+ ajpty = b
Multiplying the second equation by —c and adding it to the first yields
aity 4+ -+ aipte = b;

so that (t1,...,t) is also a solution to the original system. Hence the two systems have the same
set of solutions, so this equation operation does not change the solution set.

57. Apply f(1) = 4 to obtain a(1)2 +b(1) +c =4 = a+b+c =4 From f(2) = 7, we have
a(2)?+b(2)+c =7 = 4a+2b+c=T7.And f(3) =14 = a(3)2+b(3)+c =14 = 9a+3b+c = 14. Write
these equations as an augmented matrix and solve.

1 1 1 47 -4R+R>R: 1 1 1 4
4 2 1 7| Rl g o9 3 9
9 3 1 14 0 —6 -8 —22

e ne 1 1 1 4

THetlsels g 9 3 9

0O 0 1 5
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Row3= ¢=5 Row2= -2b-35)=-9 = b=-3. Rowl= a+(-3)+(5) =4 = a=2.
Thus f(z) = 222 — 3z + 5.

58. Evaluate f(1) =8, f(2) =3, f(3) =9, f(5) =1, and f(7) = 7 to produce the equations
a + b + ¢ + d + e = 8
16a + 8 + 4c 4+ 2d + e = 3
8la 4+ 2 4+ 9¢ + 3d + e = 9
625 + 125b + 25¢ + 5d + e = 1
240la + 343b + 49¢ + T7d 4+ e = 7
and solve using the corresponding augmented matrix using a computer algebra system. We obtain
a=23 p=-1049 3263 g _ 18899 ande =427
80" 240 80 240 g
Thus f(x) = g%x4 — %CES + %xg — 18223990 + %.
59. From a plot, the points do not appear linear, so we use a quadratic to model the data. Let E(x) =
az? + bz + c. Then E(20) = 288, E(40) = 364, and E(60) = 360. We obtain the three equations
400e + 200 + ¢ = 288
1600a + 400 + ¢ = 364
3600a + 60b + ¢ = 360
and solve using the corresponding augmented matrix using a computer algebra system. We obtain
a=—15,b="% and ¢ =132. Thus E(z) = — ;2% + Lz + 132.
60. From a plot, the points do not appear linear, so we use a quadratic to model the data. Let E(x) =
az? + bx + c. Then E(40) = 814, F(80) = 1218, and E(110) = 1311. We obtain the three equations
1600a + 40b + ¢ = 814
6400a + 80b + ¢ = 1218
12100e + 1106 + ¢ = 1311
and solve using the corresponding augmented matrix using a computer algebra system. We obtain
a=—2,b=21 and ¢ =90. Thus E(z) = — 2%+ 22z + 90.
10 0 —4f
61. Using a computer algebra system, the row echelon formis | 0 1 0 % . Hence z; = —%,
00 1 —3%
1 0 0 —0.8674 7
To = %, T3 = —%. (Or, as a decimal, we obtain | 0 1 0 0.1105 |, so x1 = —0.8674, x5 =
0 0 1 -0.3204 |
0.1105, and x3 = —0.3204.)
1 0 0 017
62. Using a computer algebra system, the row echelon formis | 0 1 0 0 |. Hence z; = 0, x5 = 0,
0 01 0]
and z3 = 0.
100 1 z
63. Using a computer algebra system, the row echelon formis | 0 1 0 1 72—93 . We have a free
00 1 —1 -2
variable, x4 = s1. Thus 1 = % — 81, Tg = f% — 81, and x3 = f% + s1. (Or, as a decimal, we obtain

100 1 077778
0 1 0 1 —25556 |,s0a =0.77778 — s1, x5 = —2.5556 — s1, and x5 = —0.8181 + s1.)
0 0 1 —1 —0.81481
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1 0 0 —-L 16
127 127

64. Using a computer algebra system, the row echelon formis | 0 1 0 —% % . We have a free
0 0 1 g3 oo

254 127

71 141 |, 131 606 | 663

variable, x4 = s1. Thus x1 = % + 15551, Ta = 197 + 55451, and x3 = 52 + 52751. (Or, as a decimal,

1 0 0 —0.5591 0.9134

we obtain | 0 1 0 —0.5157 1.1102 |, so x1 = 0.9134 + 0.5591s1, x2 = 1.1102 + 0.5157s1, and

0 0 1 -26102 4.7717
x3 =4.7717 + 2.6102s;.)

0
0
1
0

o oo

10
65. Using a computer algebra system, the row echelon form is 8 (1)
0 0

corresponds to 0 = 1, the linear system is inconsistent, and there are no solutions.

SO~ O
o= OO
o oo

1
66. Using a computer algebra system, the row echelon form is 8
0

o solutions.

=

sponds to 0 = 1, the linear system is inconsistent, and there are

46

Since the last row

. Since the last row corre-

. We have a free

1167 349
142 142
1522 846
71 71
1578 826
71 71
1579 851
142 142
=4
+ 1‘7’1832, and
= —24577 +

100 0 —55 O
0100 -2 0
67. Using a computer algebra system, the row echelon form is 00 1 0 22640
579
655
0 0 01 336 0
variable, x5 = s1.
Thus xr1 = %317 To = —%817 r3 = —%81, and Ty = —%31.
1 0 0 0 —0.07947 0
(Or, as a decimal, we obtain 8 (1) (1) 8 7;3?8; 8 , so x1 = 0.07947s1, xo = 1.2867s1,
0 0 0 1 1.6969 0
x3 = —3.9102s; and x4 = —1.6969s;.)
314
1000 —=
0100 8 -
68. Using a computer algebra system, the row echelon form is 00 1 0 828
71
431
00 0 1 —=¢
We have two free variables, x5 = s1 and zg = ss.

X _ 349 | 314 167 _ 846 _ 841 522 _ 826 _ 828
Thus 1‘é51— _4311E + ?1731 — 11T327 2 T T + 171 SS9, T3 — 1 — 7151
Ty = — 142 —+ ﬁSl — ESQ.

1 0 0 0 —4.4225 8.2183 —2.4577
(0 decimal btai 0 1 0O 11.845 —21.437 11.915
Ty a8 @ decumat, we ovbtam | g 1 0 11.662 —22.225  11.634 |’ %0 1
0 0 01 —6.0704 11.120 —5.9930
11.8

4.4225s1 — 8.2183s2, 2 = 11.915 —
x4 = —5.9930 + 6.0704s; — 11.120s5 .)

1.845s1 + 21.437sg, x3 = 11.634 — 11.662s51 + 22.225s5, and
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1.3 Practice Problems

1. At equilibrium, we have

T + zo + 40

T3 = —
3

T +l’3+70

Ty = —
3

x2+a:3+30

r = —
3

Rearranging, we have

1+ 2o —3x3 = —40

1'1—31'2+1'3 = =70

—3r1+x04+2x3 = —-30

Row-reduce the augmented matrix, and obtain
1 1 -3 —40 —Ri+R— R 1 1 -3 —40
1 -3 1 =70 ] St l 0 —4 4 =30 ]
-3 1 1 =30 0 4 -8 -—-150

0 0 -4 -180
So Row 3 = z3 = =180 =45 Row 2= —4z,+4(45) = -30 = 25 = 13 Row 1 = x; + (1§2) —

3(45) = —40 = x5 = 5.

1 1 -3 —40
Rat+Ry—=Rs lo 4 4 30]

2. As in Example 3, we determine output to satisfy consumer and between-industry demand, and obtain
the equations

= 50+40.2b
b = 80+ 0.35a

We may substitute the second equation into the first to obtain

a = 504 0.2(80+ 0.35a)
= 0.07a + 66
0.93a = 66
a ~ T1.0

Then substitute into equation 2 to obtain b ~ 80 + 0.35 (71.0) = 104. 9.
3. We consider £1COs + 2oH20 — 23C5H1206+2402, which implies

Iy — 6.%3 = 0

2c1 + a9 — 6x3 — 2x4 = 0

2$2 — 12{1}3 = 0

Row-reduce the augmented matrix

1 0 -6 0 0 Rt RS R 1 0 -6 0 0
2 1 —6 —2 0| 7ol 6 —2 0
0 2 -12 0 0 0 2 -12 0 0
1 0 -6 0 0
2ReAlsmRs g 1 6 —2 0
0 0 —24 4 0
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We set ©4 = s1 as a free variable. From row 3, —24x3 +4s1 = 0 = 3 = %31. From row 2,

9@—1—6(%51) —2(s1) =0 = 3 = s. From row 1, 2 —6(%51) =0 = z; =s;. Weset sy =6 to
obtain x1 = 6, 2 = 6, 3 = 1, and the balanced equation

6C02 + GHQO — C6H1206 + 602

4. Assuming p = ad’, so that In(p) = In(a) + bIn (d), and letting a; = In (a), we obtain the following
equations using the data for Earth and Neptune

a1 + b1n (149.6) = In (365.2)
ar + b1n (4495.1) = In (59800)

The solution to this system is a; = —1.6029 and b = 1.4983. Thus, a = e® = ¢ 16029 = (.2013.
Therefore, p = (0.2013) d'-4983.

5. Multiply both sides of the equation by (22 4+ 1) (x — 1) to obtain (z+5) = A(x — 1)+ B2z + 1) =
(A+2B)x + (—A + B). Equate coefficients of x and the constant terms to obtain
A+2B=1
~A+B=5

The solution to this system is A = —3 and B = 2.

6. (a) False. See Example 1.
(b) True. Any positive integer multiple of a solution will also balance the equation.
(c) False. For example, no parabola or the form y = az? + bx + ¢ will pass through the three points
(0,0), (0,1), (0,2).
(d) False. For example, f (z) = 5¢* and f (z) = 5e~2* are both of the form f (z) = ae® + be~2% and
f(0)=5.

1.3 Applications of Linear Systems

1. The number of cars entering and leaving each intersection must be the same, resulting in the three

equations
AZ T2 = T3 + 20
B: r3+35+50 = x;+10
C: r1+40 = xo+45+50
which is equivalent to
o — T3 = 20
—T1 + T3 = —75
T — X2 = 55

The solution of this system, with x3 = s is 1 = 75 + s1 and x5 = 20 + s1. Restricting each z; > 0
implies that s; > 0. Therefore the minimum volume of traffic from C to A is x5 = 2040 = 20 vehicles.

2. We obtain the following system of equations

A: ro+70 = x1+40+85
B: x3+40+20+25 = 29430
C: x1+100 = x4+70
D: z44+30 = z3+60
which is equivalent to
—xr1 + X2 = 55
— T2 + x3 = =55
I — T4 = —-30
— x3 4+ x4 = 30
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Using a computer algebra system, with free variable x4 = s1, we obtain z1 = —30 + s1, 2 = 25+ 51
and x3 = —30 4+ s1. The minimum traffic from C to D is determined by the restrictions x; > 0, which
implies s1 > 30. Therefore the minimum volume of traffic from C to D is x4 = 51 = 30 vehicles.

3. We obtain the following system of equations
A: z4+30+40 = xz1+50
B: 1 +x3+25 = x94+404+55
C: To+50 = x4+25
which is equivalent to
—x1 + x4y = 20
I — T2 + I3 = 70
To — x4 = =25
Using a computer algebra system, with free variable x4 = s1, we obtain x7; = 20 + 4s1, xo = —25 + s
and xg = 25. The minimum traffic from C to A is determined by the restrictions x; > 0, which implies
s1 > 25. Therefore the minimum volume of traffic from C to A is x4 = s7 = 25 vehicles.
4. We obtain the following system of equations
A: zo+50 = xz1+20+40
B: T3+ x4 +20 = x9-+45
C: 45+60 = x4+ x5+ 35
D: r1+60 = 80
E: 80 = x3+70
F: 5 +70 = x6
which is equivalent to
—Tr1 + X9 = 10
— X9 + x3 + x4 = 25
— T4 — XI5 = —70
X1 = 20
— 3 = -10
rs + Xg = —70
Using a computer algebra system, there exists a unique solution, x; = 20, z2 = 30, z3 = 10, x4 = 45,
x5 = 25, and xg = —95.
5. We obtain the system of equations

2 + 80
€T =
! 2
T+ 30 + 40
Lo = —
3
which reduces to
2.’E1 — Ty = 80
-1 + 31’2 = 70

We solve this system, and obtain x; = 62, and xo = 44.

6. We obtain the system of equations

xo + 60 + 90

r = ——
3

x1 + 20 + 40

Ty = —

3
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10.

which reduces to

which reduces to

3T1 — T2 — T3 =
—x1+ 310 —x3 =
—x1 — X2 +3x3 =

We solve this system, and obtain x1 = 55, 2 = 65, and x3 = 50.

We obtain the system of equations

31’1 — Xy = 150
—x1+3x2 = 60
We solve this system, and obtain x; = %, and zo = %.
. We obtain the system of equations

xo + x3 + 50
r = —

3
x1 + 23+ 90
Ty = —

3
x1 + 29 + 30
BT Ty

a0
90
30

xo + x4 + 30

X = B —
3

Y = 1 +x3+0
> 3

To + x4 + 90

r3 = —
3

r1 +x3 + 20

Tg4 = 73

which reduces to

3x1 — X9 — x4

-1 + 31’2 — I3

—To + 3x3 — T4
—r1 — X3 + 314

80

We solve this system, and obtain z1 = 30, z2 = 5,

Let a and b denote the total output from each of A and B, respectively. We obtain

a 60 + 0.30b
b = 404 0.20a

We solve this system, and obtain a = 72.34 and b = 61. 70.

Let a and b denote the total output from each of A and B, respectively. We obtain

= 80+0.15b
b = 504 0.25a

We solve this system, and obtain a = 96. 10 and b = 64. 42.

30
0

90
20

r3 =50 and 4 = 5
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11. Let a, b, and ¢ denote the total output from each of A, B, and C, respectively. We obtain

a = 30+ 0.15b+ 0.20c
b = 50+0.10a + 0.10c
c 60 + 0.15a + 0.20b

We solve this system, and obtain a = 55.77, and b = 63. 69, and ¢ = 81. 10.
12. Let a, b, and ¢ denote the total output from each of A, B, and C, respectively. We obtain

a = 404 0.250+ 0.10c
b = 304 0.20a + 0.15¢
c 70 4+ 0.10a + 0.10b

We solve this system, and obtain ¢ = 61.82, and b = 54.61, and ¢ = 81.64.
13. We consider z1Hy + 2505 — x3H50, which implies

23’]1 — 2%3
21’2 — xIs

o O

From the augmented matrix

2 0 -2 0
[ 0 2 -1 0
obtain x1 = 2, 2 = 1, z3 = 2, and the balanced equation

] we set x3 = s as a free variable, and thus x5 = %sl and 1 = s1. We set s1 = 2 to

2H2+02 — 2H20

14. We consider z1Hg + 25Ny —> 23NHg3, which implies

21‘1 — 3333
2%2 — T3

(I
oo

From the augmented matrix
[ 2 0 -3 0 ]
0 2 -1 0
to obtain x1 = 3, x5 = 1, 3 = 2, and the balanced equation

we set £3 = s1 as a free variable, and thus zo = %81 and x; = %sl. We set s =2

3Hs + Ny — 2NH;3

15. We consider z1Fe+1505 — x3FesO3, which implies

T — 2:123
21‘2 - 31‘3

From the augmented matrix

1 0 -2 0
[ 0 2 -3 0
to obtain x1 = 4, z9 = 3, x3 = 2, and the balanced equation

] we set x3 = s1 as a free variable, and thus x5 = %sl and 1 = 2s7. We set s1 = 2

4Fe + 309 — 2Fes 03

16. We consider z1Na+xoHoO — x3NaOH+x4Ho, which implies

T - I3
2.’1?2 — T3 — 21‘4
T2 — T3

1
coco
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17.

18.

Row-reduce the augmented matrix

10 -1 00 o
0 2 -1 -2 0 22
0 0

1
lo
0

01 -1

—2Ro+R3—R3
~

1
0
0

O, O N~ O

0
0
2

oo O
S

0
0
2

oo O
I

We set x4 = s1 as a free variable, and thus x3 = 2s1, 2 = x3 = 251, and 1 = 3 = 2s7. We set s;1 =1
to obtain x1 = 2, x5 = 2, x3 = 2, 4 = 1, and the balanced equation

We consider x1C3Hg + 2205 — £3CO5+424H50, which implies

31‘1
81‘1

Row-reduce the augmented matrix

3 0 —1 0
8 0 0 -2
0 2 -2 -1

— T3

21‘2 — 2I3 -

(78/3)R1+R2*>R2

o OO

RQ <—>R3
~

2]}4
T4

O oW o o w

2Na + 2H,O — 2NaOH + H,

O OO

O NO N O O

0 017
-2 0
-1 0 ]

0 07
-1 0
-2 0

We set x4 = s1 as a free variable. From row 3, §x3—251 =0 = z3= %51. From row 2, 209 —2x3—x4 =
0 = 2x5-2 (281) —51=0 = 23 = %sl Fromrow 1,3z —23 =0 = 3:51—(%31) =0 = 2, = %51,
We set s;1 =4 to obtain x1 = 1, x2 = 5, z3 = 3, x4 = 4, and the balanced equation

We consider x1CoHy + 29092 — £3C0Os+24H>0, which implies

21‘1
2171

Row-reduce the augmented matrix

2 0 -1
2 0 0 -2
0 2 -2 -1

— T3

21’2 — 2.’E3 —

0
—R1+Ro—R>

R2 (—)R3

2:174
Tyq

l2
i

SO N

CsHg + 505 — 3CO5 + 4H0

(e el an)

OO NOO

-1
1
-2
-1
-2
1

We set x4 = s1 as a free variable. From row 3, x3—2s1 = 0 = x3 = 25s1.
0 = 219—2(251)—51 =0 = 23 =2s,. Fromrow 1, 211 —23 =0 =

2

0
-2
-1

0
-1
-2

|
|

From row 2, 209 —2x3— x4 =
2x1 — (281) =0 = z1 =s51.

OO OO O

We set s1 = 2 to obtain x1 = 2, z5 = 5, x3 = 4, 4 = 2, and the balanced equation

2C3H5 + 505 — 4CO4 + 2H50



314 CHAPTER 1: SYSTEMS OF LINEAR EQUATIONS

19. We consider £1KOs + 22COs — 23K5CO3+1x405, which implies

I - 2.’[3 = 0
201 + 229 — 3x3 — 224 = O
T2 — X3 = 0

Row-reduce the augmented matrix

1 0 -2 0 0 Rt R R 1 0 -2 0 0

2 2 -3 -2 0 —Hutfao R 02 1 -2 0

01 -1 0 0 01 -1 0 0

1 0 -2 0 0

(=1/2)R2+R3—Rs 0 2 1 -2 0

00 -3 10
We set x4 = s; as a free variable. From row 3, —%1:3 +s =0 = x3 = %31. From row 2,
200 + 13 — 224 = 0 = 21’2+(381)7281 =0 = zo = %51 . From row 1, ;1 — 223 = 0 =

] — 2 (%sl) =0 = x; = %51. We set s1 = 3 to obtain 1 = 4, z9 = 2, x3 = 2, x4 = 3, and the
balanced equation
4KO5 4+ 2C05 — 2KoCO3 + 30,

20. We consider £1MnOs + £oHCl — 23MnCly+24HsO+25Cls, which implies

I — I3 = 0

2371 — Ty = 0

Xro — 2334 =0

xro 2:173 — QI5 = 0

Row-reduce the augmented matrix

1 0 -1 0 0 0 1 0 -1 0 0 01
2 0 0 -1 0 0 —2R1+R2— Ry 0 0 2 -1 0 0
0 1 0 -2 0 0 0 1 0 -2 0 0
0 1 -2 0 -2 0 L0 1 -2 0 -2 0 |
1 0 -1 0 0 07
0 1 0 -2 0 0
10 0 2 -1 0 0 |
1 0 -1 0 0 07
—R2+R3—)R3 0 1 _2 O _2 0
~ 00 2 -2 20
L0 0 2 -1 0 0 |
1 0 -1 0 0 01
—R3+Rys—Ry 0 1 -2 0 -2 0
~ 00 2 -2 20
L0 0 0 1 -2 0 ]

We set x5 = s1 as a free variable. From row 4, z4—2s1 =0 = x4 = 2s1. From row 3, 2z3—2x4+2s1 =
0 = 2x3—2(2s1)+281 =0 = x3 =s51. Fromrow 2, 20 —223—251 =0 = 29—2(s1)—251 =0 =
x9 = 4s1. Fromrow 2, 21 —253 =0 = z1 —(s1) =0 = z1 = s7.We set s; = 1 to obtain x; = 1,
ro =4, x3 =1, x4 =2, x5 = 1, and the balanced equation

MnO; + 4HCl — MnCl, + 2H50 + Cl,
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21

22.

23.

24.

25.

26.

. Assuming p = ad®, so that In(p) = In(a) + bIn (d), and letting a; = In (a), we obtain the following
equations using the data for Earth and Mars

a1 + b1n (149.6) = In (365.2)
a1 + b1In (227.9) = In (687)

The solution to this system is a; = —1.6171 and b = 1.5011. Thus a = e® = e 16171 = (.19847.
Hence p = (0.19847) d*-°011,

Assuming p = ad®, so that In(p) = In(a) + bln (d), and letting a; = In (a), we obtain the following
equations using the data for Mercury and Uranus

a1+ bIn (57.9) = In (88)
a1 + b1n (2872.5) = In (30589)

The solution to this system is a; = —1.60526 and b = 1.49865. Thus a = e~ 159526 = (.20083. Hence
p = (0.20083) d*-49865,

Assuming p = ad®, so that In(p) = In(a) + bln(d), and letting a; = In (a), we obtain the following
equations using the data for Venus and Neptune

a1 + bln (108.2) = In (224.7)
a1 + bln (4495.1) = In (59800)

The solution to this system is a; = —1.6035 and b = 1.49835 . Thus a = e~ 1935 = (.20120. Hence
p = (0.20120) d*-49835,

Assuming p = ad®, so that In(p) = In(a) + bln(d), and letting a; = In(a), we obtain the following
equations using the data for Jupiter and Saturn

a1 + b1n (778.6) = In (4331)
a1 + b1n (1433.5) = In (10747)

The solution to this system is a; = —1.5392 and b = 1.48896 . Thus a = e~ 15392 = (.21455. Hence
p = (0.21455) d*-48896,

Assuming d = as®, so that In(d) = In(a) + kIn(s), and letting a; = In (a), we obtain the following
equations using the data for s = 10 and s = 20

a1 + kln (10) = In (4.5)
a1 + k1n (20) =1n (18)

The solution to this system is a; = —3.1010 and k = 2 . Thus a = e~31910 = (.04500. Hence
d = (0.04500) s2. The predicted distance for each speed is as follows:

Speed (MPH) | 10 | 20 | 30 | 40 |

Distance (Feet) | 4.50 | 18.0 | 40.5 | 72.0 |

Assuming d = as®, so that In(d) = In(a) + kIn(s), and letting a; = In (a), we obtain the following
equations using the data for s = 10 and s = 20

a1 + k1n (10) = 1n (20)
aj; + k1n (20) = 1In (80)

The solution to this system is a; = —1.6094 and k = 2 . Thus a = e %69 = (0.20000. Hence
d = (0.20000) s2. The predicted distance for each speed is as follows:

Speed (MPH) | 10 | 20 | 30 | 40 |

Distance (Feet) [ 20.0 | 80.0 | 180.0 | 320.0 |
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27

28.

29.

30.

31.

32.

33.

. Multiply both sides of the equation by z:(x + 1) to obtain 1 = A(z + 1) + Bx = (A+ B)xz + A. Equate
coefficients of x to obtain the equation 0 = A + B. Equate constant terms to obtain A = 1. Substitute
into0=A+Btoobtain0=1+B = B=-1.

Multiply both sides of the equation by (z — 1) (x 4+ 1) to obtain 3z —1) = A(z +1)+ B(z—1) =
(A4 B)x + (A — B). Equate coefficients of « and the constant terms to obtain

A+B=3
A-B=-1

The solution to this system is A =1 and B = 2.

Multiply both sides of the equation by x? (z — 1) to obtain 1 = A(z)(x — 1) + B(x — 1) + C(2?) =
(A+C) 2%+ (—=A+ B)z — B. Equate coefficients of 22, x, and the constant terms to obtain
A+C=0
-A+B=0
B=1

The solution to this systemis A=—-1, B=—-1,and C = 1.

Multiply both sides of the equation by z (22 + 1) to obtain 1 = A(2?+1)+ (Bz + C)z = (A+ B) 2% +
Cz + A. Equate coefficients of 22, =, and the constant terms to obtain

A+B=0
C=0
A=1

The solution to this systemis A=1, B= -1, and C = 0.

Let the line be given by the equation y = az + b. Then using the point (1,3) we have 3 = a(1) + b;
and the point (—2,6) produces the equation 6 = a(—2) + b. We solve the system
a+b=3
—2a+b=6
and obtain @ = —1 and b = 4. Thus y = —x + 4. The point where this line crosses the z-axis is

determined by setting y = 0 and then solving for . Hence 0 = -z +4 = z =4.

Let the line be given by the equation y = ax + b. Then using the point (5, —1) we have —1 = a(5) + b;
and the point (—8,3) produces the equation 3 = a(—8) + b. We solve the system
5a +b= -1
—8a+b=3
and obtain a = f% and b = 1—73 Thus y = f%x + 1—73 The point where this line crosses the y-axis is

determined by setting z = 0 and then solving for y. Hence y = %

Let the plane be given by the equation z = ax + by + ¢. Using the points (2, —1,—-2), (1, 3,12), and
(4,2, 3), we obtain the system
20 —b+c=-2
a+3b+c=12
4da+2b+c=3
The solution to this system is a = —2 , b = 3, and ¢ = 5. Thus z = —2x + 3y + 5. The point where

this plane crosses the z-axis is determined by setting = 0 and y = 0, and then solving for z. Hence
z2=-2(0)+3(0)+5 = z=5.
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34.

35.

36.

37.

38.

Let the plane be given by the equation z = az + by + ¢. Using the points (2,2, —1), (-1, —1,0), and
(2,1,1), we obtain the system

2a +2b+c=—1

—a—b+c=0
2a+b+c=1
The solution to this system is a = % ,b=—2 and c = —%. Thus z = %x — 2y — % The point where

this plane crosses the z-axis is determined by setting = 0 and y = 0, and then solving for z. Hence
z=2(0)-2(0)— 1= z=-1
3 3 3"

Substituting the points (—1,—2), (1,4), and (2,4) into the equation y = ax? + bx + ¢ we obtain the
equations

a—b+c=-2
at+b+c=4
4a+2b+c=4

The solution to this system is a = —1,b = 3, ¢ = 2. The equation of the parabola passing through all
three points is y = —2% + 3z + 2.

Using the values f(0) = =3, f(1) =2, f(3) =5, and f(4) = 0 in the function f(z) = az®+bz?+cz+d
we obtain the equations

d=-3
at+b+c+d=2

27a +9b+3c+d=25
64a + 16b+4c+d =0

Using a computer algebra system we obtain a = —i, b= —%, c = %7 and d = —3. Thus f(z) =
—imS—%x2+%x—3.

Using the values g(—2) = —17, g(—1) = 6, g(0) = 5, ¢g(1) = 4, and ¢(2) = 3 in the function g(z) =
ax* 4+ bx3 + cx? + dx + e we obtain the equations

16a — 86+ 4c —2d +e = —17
a—b+c—d+e=6
e=5
a+b+ct+d+e=4
16a +8b+4c+2d+e=3

Using a computer algebra system we obtain a = —1, b = 2, ¢ = 1, d = =3, and e = 5. Thus
g(r) = —a* +223 + 22 - 32 +5.

Using f(0) = 2 in the function f(z) = ae® + be?® + ce~3* we obtain 2 = a + b+ ¢. Using f/(0) = 1 in
the derivative f’(z) = ae® + 2be** — 3ce™3% we obtain 1 = a + 2b — 3c. And using f”(0) = 19 in the
second derivative f”(x) = ae® + 4be?® + 9ce3* we obtain 19 = a + 4b + 9c. Using a computer algebra
system we solve the system of equations

a+b+c=2
a+2b—3c=1
a+4b+9c =19

to get a = —2,b=3, and c = 1. Thus f(z) = —2€% + 3e*® + 737 .
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39.

40.

Using £(0) = —1 in the function f(z) = ae™2® + be® + cxe® we obtain —1 = a+b. Using f/(0) = —2 in
the derivative f/(z) = & (ae™2" + be” + cze™) = —2ae™ 2+ (b+c)e” +cxe® we obtain —2 = —2a+b-+c.
And using f”(0) = 3 in the second derivative f”(z) = £ (—2ae~2* + (b+ c)e® + cze®) = dae™ > +
(b+ 2¢) €® + cxe®, we obtain 3 = 4a + b+ 2¢. Using a computer algebra system we solve the system of
equations

a+b=-1
—2a+b+c=-2
4da+b+2c=3
to get a = %, b= —%, and ¢ = 1. Thus f(z) = %e*%— %eI—l—we"”.

With these new LAT values, we obtain the three equations using the top three schools

1482z1 + 2699z2 + 1003 = 0.9655
1481y + 27762 + 89x3 = 0.9652
1408z + 26162 + 9423 = 0.9237

Using a computer algebra system we solve this system and obtain z; = 0.0003230, x5 = 0.0001433,
and x3 = 0.0010009 .Our LAI formula is now

LAI = 0.0003230 (USA) + 0.0001433 (Harris) + 0.0010009 (Computer)

Testing this formula for all schools, we obtain the predicted values,

Team LAI

Oklahoma 0.9655
Florida 0.9652
Texas 0.9237
Alabama 0.8538
Southern Cal 0.8436
Penn State 0.7646
Utah 0.7560
Texas Tech 0.7522

which agrees with the LAI values given.

1.4 Practice Problems

1.

(a) Using Gaussian elimination with 3 significant digits of accuracy:

1 562 52 —49Ry+Ro— R 1 562 52
49 —78 —11 ~ 0 —27600 —2560

Row 2 = x5 = =200 =9.28 x 1072, Row 1 = 1 +562(9.28 x 107%) =52 = 21 = —0.154.

Using partial pivoting:

1 562 52 Ri<R2 49 —78 —11
49 —-78 —11 ~ 1 562 52
(—1/49)R1+R2—>R2 49 —-78 —11

0 564 52.2

Row 2 = a5 = 22 =9.26 x 1072, Row 1 = 4921 — 78(9.26 x 107%) = —11 = zy = —7.
71 x 1072
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(b) Using Gaussian elimination with 3 significant digits of accuracy:

_3 7 913 5 (767/2)R,&J+R3*>R3
67 -39 84 11 |
[ 2 -8 998 15 7

[ 9 _8 598 157  (/2Rit+R2—Re

0 —5.0 1810.0 27.5 (229-0/5)%+R3~>R3

0 229.0 —-19900.0 —492.0 |
[ 2 -8 998 15 7

0 -5.0 18100 27.5
0 0.00 63000.0 768.0 |

Row 3 = 23 = 55000 = 1.22x1072. Row 2 = —5.022+(1810.0) (1.22 x 1072) =275 = x5 =

—1.08. Row 1 = 2z7 —8(—1.08) + 598 (1.22 x 1072) =15 = x; = —0.468.
Using partial pivoting.

2 -8 598 15 oo T 67 —39 84 11
-3 7 913 5 BV -3 7 913 5
67 —39 84 11 | 2 -8 598 15
(3/67)R1+Ra—R» - .
(72/6D R Ry = R 68 532 917?3 5.41151)]
| 0 —6.84 595.0 14.7
hon T 67  —39 84 11
22 0 —6.84 595.0 14.7
| 0 5.25 917.0 5.49
(5.25/6.84) Rat-Rs— R —68 6. gi 595881 141%1
| 0 000 1370.0 16.8

Row 3 = 23 = 308, =1.23 x 1072, Row 2 = —6.84x, + (595.0) (1.23 x 1072%) = 14.7 =
23 = —1.08. Row 1 = 67z —39(—1.08) +84(1.23 x 1072) =11 = z; = —0.480.

1 T2
0 0
—2.25 0.385
—-2.15 0.731
—-2.07 0.716
Exact solution: z; = —2.07, zo = 0.704.

2. (a)

wN o3

(b) X1 i) T3
0 0 0
0913 -3 1.38
0.935 —2.49 2.73
0.655 —1.89 2.54

Exact solution: ;1 = 0.689, zo = —2.05, x3 = 2.32.

W~ o3

3. (a) Gauss—Seidel iteration of given linear system: | = To

-2.07 0.703

n
0
1| -225 0.731
2
3| —2.07 0.704

Exact solution: z; = —2.07, zo = 0.704.
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(b) Gauss—Seidel iteration of given linear system: n | Lo T3
0 0 0 0
110913 -3.10 2.77
2 10702 -1.85 2.24
3
3

0.684 —2.07 2.32

Exact solution: z; = 0.689, zo = —2.05, z3 = 2.32.

1.4 Numerical Solutions

' 5 -2 1 ~ -2 3 4
(2/5)R1+R2*>R2 [ 5 _2 1 ‘|
~ 0o u 22
5 5
Row 2= Hzy=2 = 2,=2 Rowl= 521 —-2(2)=1 = 2, =1.
’ -3 7 5 1
(1/3)R1+Ra—R> { -3 7 5 }
~ l 2
Row 2= fzo=2 = z3=2. Row1l= -3z, +7(2) =5 = z; =3.
1 1 -2 -3 RGR 6 —7 -1 4
3. |3 =2 2 9 RV 3 -2 2 9
6 -7 -1 4 1 1 -2 -3
(-1/2)Ri+R2—R, | 6 =7 -1 47
(=1/6)R1+R3—R3 0 3 5 7
~ 2 2
13 11 11
10 % % —3 |
re -7 -1 47
Ra<+R3 0 13 _ 11 _ 11
~ 6 6 3
3 5
- 0 5 5 7 -
re -7 -1 47
(—9/13)R2+R3—R3 o0 B _1 _1
~ 6 6 3
49 124
I 0 0 3 13 |
Row 3 = %323 = %4 = x3 = %.7 Row 2 = %xg—%(%) = —% = Ty = %. Row
1= 62, -7(5) - () =4 = =7
1 -3 2 4 RGR 4 —-13 7 12
4 —2 7T -2 =7 RV —2 7T -2 -7
4 —13 7 12 | 1 -3 2 4
(1/2)R1+Ro—Ra (4 —-13 7 12
(—1/4)R1+R3—>R3 0 1 3 _1
~ 2 2
101
I 0 I 1 1
(4 —13 7 12
—~1/2)R2+R3—R 1 3
(=1/2)R2+R3—Rs 0 1 ER |
1 3
00 -5 3
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= 23=-3 Row2= iz2+3(-3)=-1 = 2,=7 Rowl=
12 = 2, =31.

Row 3 = —%.Tg =
dxy —13(7) +7(-3)

Il wolce

5. Using Gaussian elimination with 3 significant digits of accuracy:

2 975 41 (—53/2)Ri+R2—R> 2 975 41
53 —-82 -—13 0 —2.59%x10* —1.10x 10°

Row 2 = & = —1-10X100 — 4 95 1072, Row 1 = 2a; + 975 (4.25 x 1072) =41 = 2, = —0.219.

Using partial pivoting:

2 975 41 Ri1<R2 53 —82 —13
53 —82 —13 ~ 2 975 41
(Z2/59)Ritla=Rz [ 53 —82 —13
[ 0 9.78 x 102 4.15><101]

Row 2 = & = 213X100 — 4 24 % 1072, Row 1 = 531 — 82 (4.24 x 1072) = —13 = a1 = —0.180.

6. Using Gaussian elimination with 3 significant digits of accuracy.

3 =813 32 (=71/3)Ri+R2—R» 3 —813 32
1 =93 -5 0 1.91x10* —7.62 x 102

Row 2 = x5 = SLO2X10° — _3 991072, Row 1 = 321813 (—3.99 x 1072) =32 = 2; = —0.146.

Using partial pivoting:

3 —813 32 Ryt R 71 -93 -5
71 -93 -5 3 813 32
(=3/T1)R1+Ro— Ro 71 —-93 -5
0 —8.09x10% 3.22x 10!
Row 2 = @ = 52210 — 398 x 1072 Row 1 = 7lz; —93(-3.98x1072) = -5 = a1 =

~0.123,

7. Using Gaussian elimination with 3 significant digits of accuracy:

_ B (2/3)R1+R2—>R2
IR R V)
56 —41 79 10 |
g 0. 3_3§ 1.23 x ?gg 1.5 x 1%)? (=8 97107/0.358) Rt o= s
0 8.97x10' —1.18x10* —2.14 x 102
3 -7 639 12
0 0. 333 1.23 x 103 1.5 x 10t
0 —3.43 x 105 —4.25 x 10?

Row 3 = z3 = —225X100 — 1 941072 Row 2= 0.33325+1.23x 10° (1.24 x 1072) = 1.5x 10 =

@y = —0.757. Row 1 = 31 — 7(—0.757) + 639 (1.24 x 1072) = 12 = 2, = —0.407.
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Using partial pivoting.
3 =7 639 12 [ 56 —41 79 10

) 5 803 7 Ry Bs ) 5 803 7
56 —41 79 10 | 3 -7 639 12
(/28 RatRamRa [5G g 79 10 |
(=3/56)Ri+Ra—Ra 0 3.54 8.06x 102 7.36
| 0 —4.8 6.35x10> 1.15x 10" |
[ 56 —41 79 10 |
Rats R 0 —4.8 6.35x102 1.15x 10
| 0 3.54 8.06x 102 7.36 |
[ 56 —41 79 10 T
B84/ 8t = Rs | 48 6.35x 102 1.15 x 10!
0 0 1.27 x 103 1.58 x 10!

Row 3 = x3 = £38X100 — 1 9451072, Row 2 = —4.825+6.35x10? (1.24 x 1072) = 1.15x 10" =
xy = —0.755. Row 1 = 56x1 — 41 (—0.755) + 79 (1.24 x 107%) =10 = x1 = —0.392

8. Using Gaussian elimination with 3 significant digits of accuracy.

2 -5 802 -1 (1/2)Ri+ R~ Ry 2 -5 802 1
-1 3 —789 -8 (F20) Ry Ra— Rs 0 05 —3.88 x 102 ~8.5
40 34 51 19 0 1.34x10> —1.60 x 10* 3.9 x 10*

—1.34x102 ) [2 -5 802 -1
o5 [pHfemls g 05 388 x 102 ~8.5
0 0 880x10° 2.32x 103

Row 3 = x5 = 232X100 — 9 64 % 1072, Row 2 = 0.5x5 —3.88 x 10% (2.64 x 1072) = —8.5 = a5 =

3.49. Row 1= 221 —5(3.49) + 802 (2.64 x 1072) = -1 = z; = —1.86.
Using partial pivoting.

2 -5 802 -1 o T 40 34 51 19

-1 3 —789 -8 BV -1 3 —789 -8

40 34 51 19 | 2 -5 802 -1
(A0 R+ Ra=Re [y 34 51 19

(=2/40) Ry +R5—Rs 0 3.85 —7.88x10% —7.53

0 —6.7 7.99x10>2 —-1.95

40 34 51 19 ]

Ragy R 0 —6.7 7.99%x102 —1.95
| 0 3.85 —7.88x10° —7.53 |
[ 40 34 51 19 ]

(3.85/6.7) Ra+ Ry~ Rg 0 —6.7 7.99x10> —1.95

0 0 —3.29x 10> —8.65

Row 3 = 3= —5%5-=263x10"2. Row 2 = —6.7z2+7.99x 10? (2.63 x 107%) = —1.95 =
zy =3.43. Row 1 = 4021 +34(3.43) + 51 (2.63 x 107%) =19 = x; = —2.47.

9. n| zo  Exact solution: z1 = —1, 29 = 0.5.
0 0 0
1 —1.2 0.2
2| —1.12 0.56
3| —0.976 0.536
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10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.

n T ro  Exact solution: z1 = —1.5, zo = 1.0.

0 0 0

1 -2 2.2

2| -09 0.6

3| —1.7 148

n T To rs  Exact solution: x1 = =2, x5 = 3, x3 = 1.
0 0 0 0

1 —-1.3 2.3 2.6

2 | —2.295 3.34 1.42

3 | —2.156 3.185 0.805

n T To r3  Exact solution: z1 = —1, 2o = 2, x3 = 3.
0 0 0 0

1] =25 1.6 1.6

2| —1.7 1.42 3.06

3| =097 1872 2.792

n T To Exact solution: 1 = —1, 25 = 0.5.

0 0 0

1 —1.2 0.56

2 | —0.976 0.4928

3 | —1.0029 0.5009

n T To Exact solution: x; = —1.5, x5 = 1.0.

0 0 0

1 -2 0.6

2| —1.7 0.84

3| —1.58 0.936

n T To T3 Exact solution: 1 = =2, 2o =3, 3 = 1.
0 0 0 0

1 -1.3 2.56 1.316

2 | —2.013 3.0974 0.9584

3 | —2.0042 2.9884 1.0038

n T To T3 Exact solution: x; = —1, x5 = 2, x3 = 3.
0 0 0 0

1 —-2.5 1.1 2.76

2 —-1.12 1.928 2.98

3 | —1.0096 1.9942 2.9985

Not diagonally dominant. Not possible to reorder to obtain diagonal dominance.

Diagonally dominant, since |4| > 2| + | — 1, |7] > | — 2| + 2|, and | — 5| > [1]| + |3|.

Not diagonally dominant. Not possible to reorder to obtain diagonal dominance, since none of the
coeflicients in equation three has absolute value greater than the sum of the absolute values of the
other coefficients.

Not diagonally dominant. Interchange rows to obtain diagonal dominance.

51‘1 — X9 = —4
72301 + 6932 =12

Then |5 > | — 1| and [6] > | — 2|.
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21. Jacobi iteration of given linear system: n | ZTo
0 0 0
1] -1 -1
2| -3 =3
3| -7 =7
4| —-15 -—15
Diagonally dominant system: 2E _ 22 ; _i
Jacobi iteration of diagonally dominant system: n | To
0 0 0
1 0.5 0.5
2 0.75 0.75
3| 0.875 0.875
4 109375 0.9375
22. Jacobi iteration of given linear system: n | 3 To
0 0 0
1] -2 =2
2| -8 -8
3| —-26 —26
41 -80 —80
. . . 31’1 - To = 2
Diagonally dominant system: — 3m, = -2
Jacobi iteration of diagonally dominant system: n | To
0 0 0
1 | 0.6667 0.6667
2 | 0.8889 0.8889
3 | 0.9630 0.9630
4 109877 0.9877
23. Jacobi iteration of given linear system: n \ T To T3
0 0 0 0
1 -1 8 —0.3333
2 | 16.67 12.33 27
3| —111.3 —-21.33 29.67
4| —192 624 2.778
51’1 + Tro — 2%3 = 8
Diagonally dominant system: 2x; — 10z + 3z3 = -1
T — 2¢0 + bSr3 = -1
Jacobi iteration of diagonally dominant system: n | a3 Zo T3
0] 0 0 0
1 1.6 0.1 -0.2
2 1.5 0.36 —0.48
311336 0256 —0.356
4 11406 0.2604 —0.3648
24. Jacobi iteration of given linear system: n \ T To T3
0 0 0 0
1 —1.5 -7 3
2 27.5 -85 —17.25
3| —70.75 58.25 —36.25
41 —-299.3 —-255.5 213.1
3(E1 — r9 + rs = 7
Diagonally dominant system: —x; + 6x2 — 2x3 = —6
201 + 4x5 — 10x3 = -3
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Jacobi iteration of diagonally dominant system:

25.

26.

27.

Gauss-Seidel iteration of given linear system:

2I1
I —

T2

Diagonally dominant system: 22y

Gauss-Seidel iteration of diagonally dominant system:

Gauss-Seidel iteration of given linear system:

31‘1
I —

€2

Diagonally dominant system: 32,

Gauss-Seidel iteration of diagonally dominant system:

Gauss-Seidel iteration of given linear system:

5r1 + T2
Diagonally dominant system: 2z; — 10z2
r1 — 2T

Gauss-Seidel iteration of diagonally dominant system:

n| x T T3
0 0 0 0
1] 2.333 -1 0.3
2 1.9 —0.5111 0.3667
3 ] 2.041 —-0.5611 0.4756
4 | 1.988 —0.5014 0.4837
n| Z9
0 0 0
1 -1 -3
2 -7 —15
3 —31 —63
4 | —127 —255
= 1
= -1
n| x To
0 0 0
1 0.5 0.75
2 | 0.875 0.9375
3 | 0.9688 0.9844
4 1 0.9922 0.9961
n| x Ty
0 0 0
1 -2 -8
2 —26 —80
3 —242 —728
4 | —2186 —6560
= 2
= -2
n| x )
0 0 0
1| 0.6667 0.8889
2 1 0.9630 0.9877
3 | 0.9959 0.9986
4 1 0.9995 0.9999
n | 1 T T3
0 0 0 0
1 -1 13 43.67
2 —193.3 1062 3669
3| —1.622 x 10* 8.844 x 10* 3.056 x 10°
4 | —1.351 x 108 7.367 x 10 2.546 x 107
— 2$3 = 8
+ 3r3 = -1
+ 5333 = -1
n| x o T3
0 0 0 0
1 1.6 0.42 —0.352
2| 1.375 0.2694 —0.3673
31 1.399 0.2697 —0.3720
4 | 1.397 0.2679 —0.3723
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28.

29.

30.

Jacobi iteration of given linear system: n \ T To T3
0 0 0 0
1 —-1.5 —11.5 —30.75
2 —132.3 —434.5 —1.234 x 103
3 | —5.304 x 10> —1.715 x 10* —4.881 x 10°
4| —2.097 x 10° —6.780 x 10> —1.929 x 109
3131 - To + r3 = 7
Diagonally dominant system: —x; + 6xz2 — 23 = —6
221 + 4x9 — 10x3 = -3

Jacobi iteration of diagonally dominant system: | a1 ZTo T3
0 0 0

n
0
1] 2333 —-0.6111 0.5222
2
3

1.955 —0.5000 0.4911
2.003 —0.5025 0.4996
41999 —0.5003 0.4998

Let z;(n) be the value of the n'! iteration of z;. Then we have x1(n + 1) = b; — ayz2(n). Applying
this with n = 0 and n = 1, we obtain the 2 equations

1="b; —a1(0)

5=0b; —ai(-2)
Solve this system for the quantities byand a1 to obtain by = 1 and a; = 2. Thus z1(n+1) = 1 —2x2(n),

and hence x1(3) =1 — 2(2) = —3. Similarly we have zo(n + 1) = bs — asx1(n), and so with n = 0 and
n = 1, we obtain the 2 equations

—2= b2 — a9 (0)
2= b2 — a2 (1)
Solve this system for the quantities byand as to obtain by = —2 and ay = —4. Thus z3(n + 1) =

—2 +4x1(n), and hence z2(3) = —2 + 4(5) = 18.

Let z;(n) be the value of the n'" iteration of z;. Then we have x(n + 1) = by — a1172(n) — aj2w3(n).
Applying this with n = 0, 1, and 2 to obtain the 3 equations
—2 =01 —a11(0) — a12(0)
—4=0by —an(—1) —ai(l)
—11 = b1 — a11(—4) — a12(5)
Solve this system for the quantities by, a11,and ai2 to obtain by = —2, a1; = —1 and ay2 = 1. Thus
x1(n+1) = =24 25(n) — z3(n), and hence z1(4) = -2+ (—4) — (5) = —11.
Similarly we have zo(n + 1) = ba — ag121(n) — assxz(n), and so with n =0, 1, and 2 we obtain the 3
equations
—1 = by — a21(0) — a22(0)
—4 = bg — a21(—2) — agg(l)
—4 = bg — 0,21(74) — 1122(5)
Solve this system for the quantities by, ag1,and ags to obtain by = —1, ag; = —2 and ase = —1. Thus
x2(n+1) = =14 2z1(n) + z3(n), , and hence z5(4) = =1+ 2(—11) + (5) = —18.
Finally we have z3(n + 1) = bs — ag121(n) — asexa2(n), and so with n = 1, 2, and 3 we obtain the 3
equations
(0) — a32(0)
5=b3 —az1(—2) —az(-1)
5= b3 — a31( 4) — agg( 4)

Solve this system for the quantities b3, asi,and ags to obtain b3 = 1, azg; = 3 and azs = —2. Thus
xz3(n+1) =1 —3z1(n) + 2z5(n), and hence z5(4) =1 — 3(—11) + 2(—4) = 26.

1="b3—az
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31.

32.

Let z;(n) be the value of the n'" iteration of z;. Then we have x1(n + 1) = by — ayz2(n). Applying
this with n = 0 and n = 1, we obtain the 2 equations

3 = bl - 0,1(0)
-5 = bl — 0,1(4)

Solve this system for the quantities bjand a1 to obtain by = 3 and a; = 2. Thus z1(n+1) = 3—2x2(n),
and hence z1(3) = 3 — 2(—12) = 27. With Gauss-Seidel iteration we have z2(n) = by — azz1(n), and
so using n = 1 and n = 2, we obtain the 2 equations

4 = bg — a9 (3)
—12 = b2 — ag (—5)

Solve this system for the quantities byand as to obtain by = —2 and as = —2. Thus z3(n) = —2+2x1(n),
and hence z2(3) = —2 + 2(27) = 52.

Let z;(n) be the value of the n*® iteration of ;. Then we have x1(n + 1) = by — aj1z2(n) — ajazz(n).
Applying this with n = 0, 1, and 2 to obtain the 3 equations

3 = b1 — all(O) — 012(0)
7 = bl — a11(4) — a12(12)
—25 = bl — au(—24) — a12(—76)

Solve this system for the quantities by, ai1,and a12 to obtain by = 3, a;1 = 2 and a;2 = —1. Thus
z1(n+ 1) = 3 — 2z5(n) + x3(n), and hence z1(4) = 3 — 2(176) + (556) = 207.

With Gauss-Seidel iteration we have zo(n + 1) = ba — as1z1(n + 1) — agexs(n), and so with n =0, 1,
and 2 we obtain the 3 equations

4= b2 — a21(3) - GQQ(O)
—24 = b2 — a21(7) — a22(12)
176 = b2 — a21(*25) — 022(*76)

Solve this system for the quantities by, as1,and ase to obtain by = —2, ag; = —2 and age = 3. Thus
x2(n+1) = =24 2z1(n+ 1) — 3z3(n), , and hence z2(4) = —2 + 2(207) — 3(556) = —1256.

Finally with Gauss-Seidel iteration we have x3(n) = b3 — az1z1(n) — azaxa(n), and so with n = 1, 2,
and 3 we obtain the 3 equations

12 = b5 — a31(4) — a32(3)
*76 = bg — a31(724) — a32(7)
556 = b3 — a31(176) — a32(—25)

Solve this system for the quantities b3, asi,and ass to obtain by = 3, ag; = —3 and azs = 1. Thus
x3(n) = 3+ 3z1(n) — z3(n), and hence z3(4) = 3 + 3(207) — (—1256) = 1880.

Chapter 1 Supplementary Exercises

1.

201 —bro =1 = w9 = %xl — é Substitute into the second equation to obtain —6x; + 7 (%ml — é) =

3=z =—-Y Thus,zp=2(-4)-1=-3

. 31y —x2 =2 = x9 = 3x; — 2. Substitute into the second equation to obtain —bxq + 2 (321 — 2) =

—1 = 23 =3. Thus, 2, =3(3)—2=T.

T — 4o =1 = a9 = %xl — %. Substitute into the second equation to obtain —2x; + 8 (ixl - f) =

-2 = 0=0. Thus,zl:s,andxgzis—%.
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4. 4y —2x9 = 6 = x5 = 221 — 3. Substitute into the second equation to obtain 6x; — 3 (221 —3) =
9 = 0=0. Thus, z1 = s, and x5 = 25 — 3.

5. 21— 32 =5 = X9 = %xl — g Substitute into the second equation to obtain 3xz; — 9 (éxl — %) =
7 = 15 =7. Thus, the system has no solutions.

6. —6x1 4222 =3 = x5 =321+ % Substitute into the second equation to obtain 15x; — 5 (3:101 + %) =
4 = 0= 1—23 Thus, the system has no solutions.

7. Equation 3 = x3 = 3. Substitute into equation 2, —zs + 3(3) = —2 = x5 = 11. Substitute into
equation 1, z1 +2(11) —4(3) =0 = z; = —10.

8. x3 is a free variable, so let x3 = s. Substitute into equation 2, 2z —6s =4 = x5 = 2+ 3s. Substitute
into equation 1, 1 —4(s) =3 = z1 = 3+ 4s.

9. x5 and w3 are free variables, so let x5 = s1 and 3 = so. Substitute to obtain —x1 — 551 + 59 = —2 =
T, = —5s1 + So + 2.

10. x9, x3, and x4 are free variables, so let x5 = s1, 3 = s3, and x4 = s3. Substitute to obtain x1 + 251 +
482—83:—2 = x1 = —281 — 4S9 + s3 — 2.

11. x5 is a free variable, so let 3 = s. Equation 3 = x4 = —5. Substitute into equation 2, —x5+4 (—5) =
0 = x2 = 20. Substitute into equation 1, —x; —2(20) +7(s) =3(=5) =7 = 1 = Ts — 32.

12. x5 and x4 are free variables, so let o9 = s1 and x3 = s4. Substitute to obtain —z; —5s1 + 52 = -2 =
T = —5s; — S9 + 2.

13. x3 is a free variable, so let 3 = s. Equation 4 = x5 = 4. Substitute into equation 3, —2z4 — (4) =
0 = x4 = —2. Substitute into equation 2, zo —4(s) +2(4) = =3 = x5 = 4s — 11. Substitute into
equation 1, z1 + (4s —11) +3(s) = (=2)+ (4) =7 = =z = —Ts+ 12,

14. x3, x4, and x5 are free variables, so let x3 = s1, 4 = S, and x5 = s3. Substitute into equation 2,
xo—(81)+(s2) =2 = x9 = 51— s2+2. Substitute into equation 1, 2z +4 (s1)+3(s3) = -1 = x1 =
—281 — %Sg — %

15. 2I1 - 4:62 + 3I3 =1

731’1 —+ 5%2 —+ ].]..Tg = 0
16. 3x1 + 229 + 223 — bxy = T
31‘2 — 232‘4 = 6
17. 4x1 + 229 + bz = 1
7.’1’51 — 2.%‘2 = 1
3r1 + ®x + 213 = —4
18, x1 + 3z — 2z3 = 11
221 — bSx3 = 0
4y + 4dx3 = =2
3r1 + 2x9 + 223 = 1
1 -2 1 3 —2R1+R>— R 1 -2 1 3
19. 2 -6 5 5 RatBs—=Rs 0 -2 3 -1
-1 6 -7 3 0 4 —6 6
2R2+Rs—R =213
2l 0 -2 3 -1
0 0 0 4
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1 2 -3 2 12 *2%+%%% M1 2 -3 2 12
25. |1 3 —5 1 12| s g 1 9 1 0
2 2 -2 4 18 L0 -2 4 0 -6
Rt Bes R r1T 2 -3 2 12
2l 01 -2 -1 0
L0 0 0 -2 -6
e L2320
L0 0 0 1 3
Rst+RowRe 1 2 -3 0 6
HeAlhem g 1 2 0 3
L0 0 01 3
SRt R s R 1 0O 1 0 0
“HRAhem g 1 2 0 3
L0 0 01 3
1 -2 7 1 37 R o-2 07 1003
26 3 -5 19 1 2 —Ri1+Rs— R4 0 1 -2 -2 —7
' -2 6 —-18 -5 —17 ~ 0 2 —4 -3 -11
1 0 3 -3 -10 | O 2 —4 —4 -13
—2Rs+R3—R3 [ 1 -2 7 1 3
72R2+54*>R4 O 1 —2 —2 —7
0 0 0 1 3
| 0 0 0 0 1
SRGRSR 1y 71 g
—3RatRi— R 0 1 -2 =2 0
0 0 0 1 0
| 0 0 0 0 1
2R3+ R2— Ro —1 -2 7 0 O
7R3+£1%R1 0 1 -2 O 0
0 0 01 0
| 0 0 0 0 1
1 0 3 00
2Ry +R1—FRa 01 -2 0 0
0 0 01 0
00 0 0 1
2 -1 1 -1 LR1+R2—Rs 2 -1 1 -1
27. ~ 5 1 1
{—1 3 -1 1} [0 2 T2 3
Free variable, z3 = s . Row 2 = gxg—%S:% = xzzés—i—%. Row 1 = 2.%1—(%84—%)4-(8):
-1 = mlz—%s—%.
1 -3 4 1 2R1+Ro— R 1 -3 4 1
2. | -2 5 -7 1| HBfl7E 1o 1 1 3
1 -5 8 5 0 -2 4 4
2Ry +Rs—R L =34 1
— 2+N3—> 3 0 -1 1 3
0 0 2 -2
Row3 = z3=-1. Row2 = —25+(-1)=3 = zo=—-4.Rowl = 71 -3(-4)+4(-1) =1 =

I1:—7.
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1 -3 1 2 2 Ri+Ra2— Rz 1 -3 12 2
29. [—1 4 —4 -1 —4] 2Rt RaRa [o 1 -3 1 —21
2 -3 -7 8 -5 0 3 -9 4 -9
—3Ry+Rs—Rs [1 -3 1 2 21
L 0 1 -3 1 -2
0 0 0 1 -3

Free variable, 3 = s. Row 3 = 24 = —3. Row 2 = 23 —3(s) +(-3) = -2 = x2 =3s+ 1. Row
1= 21 -33s+1)+(s)+2(-3)=2 = z; =8s+ 1L

—3Ri+R:=R: [ 2 4 9 -5 2 -5
30 [ T2 13 :?1 e N
-3 -6 -14 9 -3 14 0 0 7% % 0 173
(2 4 9 -5 2 =5
—R2+/I\%}3—>R3 0 0 7% % 1 %
1 0 0 0 0 -1 5
Free variables, x5 = s; and z4 = s3. Row 3 = x5 = —5.

ROW2:>**I3+ (2)+1(—5):%:}
23 =382—13. Row 1 = 2x1+4(s1)+9(3s2 —13) —5(s2)+2(—5) = =5 = =z = —2s; — 1159+ 61

31. We obtain the system of equations

zo + 80 + 120
rH = —
3
x1 4+ 60 + 30
Ty = —
3
which reduces to
31’1 — Xy = 200
—x1+3x2 = 90
We solve this system, and obtain x; = %, and zo = %.
32. We obtain the system of equations
To + x3 + 80
r = —
3
1 + 23+ 130
Ty = ————
3
1+ x2 + 50
r3 = ——————
3
which reduces to
3(E1 — X9 — X3 = 80
-1 + 3£L'2 — T3 = 130
—x1—x2+3x3 = 50
We solve this system, and obtain 1 = 85, x5 = 125 and x3 = %

33. Let a and b denote the total output from each of A and B, respectively. We obtain

= 504 0.50b
b = 204 0.30a

We solve this system, and obtain a = 70.59 and b = 41. 18.
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34. Let a, b, and ¢ denote the total output from each of A, B, and C, respectively. We obtain

a
b
c

40 4 0.25b + 0.10c
70 4+ 0.20a + 0.30c
90 + 0.25a + 0.30b

We solve this system, and obtain a = 88.55, and b = 133. 35, and ¢ = 152. 14.

35.
6:01
12%1
6.’E1
Row-reduce the augmented matrix

6 -2 -1

12 -6 0

6 —1 -2

We set z3 = s as a free variable. From row 2, —2z53+2s =0 = x5 = s. From row 1, 621 —2(s) —(s)
%s. We set s = 2 to obtain x1 = 1, 2 = 2, z3 = 2, and the balanced equation

0 = x1=

0
0

We consider £1CgH120 —> 25CoH5OH+23C0O,, which implies

21‘2 - r3 = 0

6(E2 = 0

T2 — 2.%'3 = 0

—2R1+Ro—R> 6 _2 _1 0

Al g 2 2 9
0 1 -1 0

omn [§ 2710
0 0 0 0

CgH1205 — 2CoH50OH + 2CO,

36.

4.’E1
2.’L'1
2.%‘1

+
+
+

T2
T2
31‘2
€2

Row-reduce the augmented matrix

-3 -2 0
-2 0
-2 -1
-1 0 0

O DN DN
— 00 =
|
—_
SO OoOO

We set x5 = s as a free variable.

5(s)+3(s) =0 = =3 =s. From row 2, S5 — 1 (s) + (s) — (
dz1 + (s) —3(s) —2(s) =0 = z1 = s.We set s =1 to obtain z; = 1, 2

and the balanced equation

We consider £1HC3H3045 + 2oNaHCO3 — 23NaCoH305+24HoO+25C0O2, which implies

3r3 — 214 = 0
21‘3 — Irs = 0
2$3 — Ty — 2$5 = 0
T3 =0
— 1Ry +Rs—Ro M4 11 —Zli -2 0 07
*%R1+RS*>R3 0 5 —3 1 —1 0
~ 5 1
0 3 —3 0 -2 0
L0 1 -1 0 0 0]
(4 1 -3 -2 0 0]
—5Ry+Rs—R
—2R§+323RZ 0§ —3 1 -10
0 0 2 -5 3 0
10 0 0 -2 2 0 |
From row 4, —2x4 +25s =0 = x4 = s. From row 3, 2x3 —
s) =0 = x9 =s. From row 1,

:1,1}3:1,1‘4:1,.1'5:1,

HC5H305 + NaHCO3 — NaCoH305 + HoO + CO4

37. Using Gaussian elimination with 3 significant digits of accuracy.

3 819
48 -91

37
—12

—16R1+R2—Ro 3

819
0 —13,200

37
—604
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Row 2 = x5 = —79%05 = 4.58 x 1072, Row 1 = 3z1 4819 (4.58 x 107?) =37 = z; = —0.170.
Using partial pivoting:

3 819 37 Ry Ro 48 —91 —12
48 —91 —12 ~ 3 819 37
(=1/16)R1+Ra—R> 48 —-91 -—12

~ 0 825 37.8

Row 2 = 5 =358 =4.58 x 1072, Row 1 = 48z1 — 91 (4.58 x 1072) = —12 = x; = —0.163

38. Using Gaussian elimination with 3 significant digits of accuracy:

1 —6 745 17 7] BRitReoRs
[—3 4 902 8 | THmEBoMls

49 -39 81 10 |

1 -6 745 17 7
l 0 —14 3140 59 (255/14) R+ Rs — Rs

0 255 —36,400 —823 |

1 -6 745 17 T
0 —14 3140 59
0 0 20,800 252 |

Row 3 = 3 = 5552. = 1.21 x 1072, Row 2 = —1425 + 3140 (1.21 x 1072) =59 = x5 = —1.50.

Row 1= 21 — 6(—1.50) + 745 (1.21 x 107%) =17 = z; = —1.01.
Using partial pivoting.

1 —6 745 17 o on [ 49 =39 8110
3 4 002 8 12 Rs -3 4 902 8
49 -39 81 10 L 1 —6 745 17
(3/49)R1+R2—R2 r —
(~1/49)R1+Rs— Rs 43 1 221) 93% 8 (13(1)
L 0 —5.20 743 16.8
. T49 -39 81 10
25> Rs 0 —5.20 743 16.8
| 0 1.61 907 8.61
[ 49 -39 81 10
(1.61/5.20) Ra+ R3—Rs 0 —5.20 743 16.8
0 0 1140 13.8

Row 3 = 3 =123 =1.21 x 1072 Row 2 = —5.20z3 + 743 (1.21 x 1072?) = 16.8 = x5 = —1.
50. Row 1 = 49z — 39 (—1.50) + 81 (1.21 x 1072) =10 = z; = —1.01

39. n 1 x2  Exact solution: x; = —31/56 ~ —0.554, xo = 23/28 ~ 0.821.
0 0 0
1 —-0.8 0.6
2 —0.62 0.92
3 | —0.524 0.848
40. T To x3  Exact solution: z; = 343/157 =~ 2.18, zo = —232/157 ~ —1.48, x3 =

n

0] 0 0 0
129 —1.05 220
2 | 245 —1.85 3.57
30220 —1.55 3.54
529/157 ~ 3.37.
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41. Gauss—Seidel iteration of given linear system: n 1 To
0 0 0
1 -0.8 0.92
2 | —0.524 0.810
3| —0.557 0.823

Exact solution: 1 = —31/56 ~ —0.554, x5 = 23/28 ~ 0.821.

42. Gauss—Seidel iteration of given linear system: n | To T3
0 0 0 0
1 29 =2.07 3.77
2| 218 —1.44 3.36

3218 —-1.48 3.37
Exact solution: 1 = 343/157 ~ 2.18, xo = —232/157 ~ —1.48, x5 = 529/157 ~ 3.37.





