
Chapter 1

Systems of Linear Equations

1.1 Practice Problems

1. (a) −2x1 + 8x2 = 5 ⇒ x2 = 5 + 1( ) x1. Substitute into the second equation to obtain 3x18 4

12 5

−
+ 1x1 = 4 = Thus solution exists.4 ⇒ − 15 4. no8 2

(b) x 3
1−2x2 = 3 x 1

2 = x1 . Substitute into the second equation to obtain 3x 1 3
1+6 x1 =2 2 2 2

−9 ⇒ −9 =
⇒

9, which is
−
true for all x . Therefore we may set x as a free

− −
− 1 1 variable, x1 = s1

and then x2 = 1s1 − 3 .2 2

( )

2. (a) The fourth equation, 0 = −2, does not hold true, so no solutions exist.

(b) x2 and x4 are free variables, so let x2 = s1 and x4 = s2. From the third equation, x5 = 4.
Substitute into the second equation to obtain

̸

x3 − 2s2 + 4 = 2

x3 = 2s2 − 2.

Now substitute into the first equation to obtain

x1 − s1 − 2 (2s2 − 2) + s2 − 2 (4) = 1

x1 = 5 + s1 + 3s2.

3. (a) False, by Property (c) of triangular systems.

(b) True. It will have 5 pivot variables, so it must have 3 free variables.

(c) False. For example

x+ y = 1

2x+ 2y = 2

x− y = 1

has exactly one solution.

(d) False. In the system

x1 = 1

x2 = 2

there are no free variables or free parameters.

4. (a) There are 4 leading variables.

(b) There are 5 free variables.
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290 Chapter 1: Systems of Linear Equations

(c) There are 5 free parameters.

(d) There are infinitely many solutions.

5. Let x be the number of floor seats, and y the number of balcony seats. We have x+ y = 280, because
the theater capacity is 280. And we have 22x + 14y = 5320, because the sales total $5320. From the
first equation, y = 280− x. Substitute into the second equation to obtain

22x+ 14 (280− x) = 5320

8x+ 3920 = 5320

8x = 1400

x = 175

So there are 175 floor sears, and y = 280− 175 = 105 balcony seats.

6. Let x be the number of nickels, y the number of dimes, and z the number of quarters. Because the
quarters are worth $2.75, we have 25z = 275, so z = 11. The dimes and quarters are worth $3.65, so
we have

10y + 25z = 365

10y + 275 = 365

10y = 90

y = 9

There are 31 coins, so x+ y + z = 31, and because z = 11 and y = 9, we have x = 11.

1.1 Lines and Linear Equations

1. 2 (1)− 5(−2) = 12 = 9, so (1,−2) does not lie on the line 2x1 5x2 = 9.
2 (−3)− 5(−3) = 9, so (−3,−3) lies on the line 2x

−
1 5x2 = 9.

2 (−2)− 5(−3) = 11 = 9, so (−2, 3) does not lie on
−

− the line 2x1 − 5x2 = 9.

2. (1)− 3(−2) + 4(0) = 7, so (1,−2, 0) lies on the plane x1 3x2 + 4x3 = 7.
(4)− 3(2) + 4(1) = 2 = 7, so (4, 2, 1) does not lie on the

−
plane x1 3x2 + 4x3 = 7.

(2) 3( 5) + 4(1) = 21 = 7, so (2, 5, 1) does not lie on the plane
−
x1 3x2 + 4x3 = 7.− − − −

3. 3(−1) + (2) = −1 and (−5)(−1) + 2(2) = 9 = 20, so (−1, 2) does not lie on both lines 3x1 + x2 =
and

−1
−5x1 + 2x2 = 20.

3(−2) + (5) = −1 and (−5)(−2) + 2(5) = 20 = 20, so (−2, 5) lies on both lines 3x1 + x2 = 1 and
−5x1 + 2x =

−
2 20.

3(1) + ( 5) = 2 = 1 and ( 5)(1) + 2( 5) = 15 = 20, so (1, 5) does not lie on both lines
3x

− −
x
− − − −

1 + x2 = 1 and 5
−

− − 1 + 2x2 = 20.

4. 2(3)−5(1) = 1 and −4(3)+10(1) = −2, so (3, 1) lies on both lines 2x1−5x2 = 1 and −4x1+10x2 = 2.
2(2) − 5( 4) = 24 = 1 and 4(2) + 10( 4) = 48 = 2, so (2, 4) does not lie on both lines

−

2x1 − 5x
−
2 = 1 and −4x1 + 10x

−
2 = −2.

− − − −

2(−4) − 5(5) = −33 = 1 and −4(−4) + 10(5) = 66 = 2, so ( 4, 5) does not lie on both lines
2x1 − 5x2 = 1 and −4x1 + 10x2 = −2.

− −

̸

̸

̸
̸

̸

̸ ̸

̸ ̸

̸ ̸

5. −2(1) + 9(2)− (3) = 13 = −10, so (1, 2, 3) does not satisfy the first equation of the linear system.
−2(1)+9(−1)− (1) = −12 = −10, so (1,−1, 1) does not satisfy the first equation of the linear system.
(−1)− 5(−2) + 2(−6) = −3 = 4 so (−1,−2,−6) does not satisfy the second equation of linear system.

̸
̸
̸

6. 3(1)− (−2) + 2(−1) = 3 = 1, so (1,−2,−1, 3) does not satisfy the first equation of the linear system.
3(−1)− (0) + 2(2) = 1 and 2(−1) + 3(0)− (1) = 3 so ( 1, 0, 2, 1) satisfies the linear system.
3(−2)−(−1)+2(4) = 3 = 1, so (

− −
−2,−1, 4,−3) does not satisfy the first equation of the linear system.

̸

̸

7. (a) Not a solution, since −2(−3 + s1 + s2) + 3(s1) + 2(s2) = s1 + 6 = 6 for every s1.̸
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(b) A solution, since −2(−3 + 3s1 + s2) + 3(2s1) + 2(s2) = 6.

(c) A solution, since −2(3s1 + s2) + 3(2s1 + 2) + 2(s2) = 6.

(d) A solution, since −2(s1) + 3(s2) + 2(3− 3s2/2 + s1) = 6.

8. (a) Not a solution, since 3(5− 2s1) + 8 (7 + 3s1)− 14(s1) = 4s1 + 71 = 6 for every s1.

(b) A solution, since 3(−5−5s1)+8 (s1)−14(−(3+s1)/2) = 6 and (−5−5s1)+3 (s1)−4(−(3+s1)/2) =
1.

(c) A solution, since 3(10+10s1)+8 (−3− 2s1)−14(s1) = 6 and (10+10s1)+3 (−3− 2s1)−4(s1) = 1.

(d) Not a solution, since 3((6− 4s1)/3) + 8 (s1)− 14(−(5− s1)/4) =
1s1 +

47 = 6 for every s1.2 2

̸

̸

9. 3x1 + 5x2 = 4 ⇒ x2 = 4
5 − 3

5x1. Substitute into the second equation to obtain 2x1 − 7
(
4
5 − 3

5x1

)
=

13 ⇒ x1 = 3. Thus x2 = (4− 3(3))/5 = −1.

10. −3x1 + 2x2 = 1 ⇒ x2 = 3
2x1 +

1
2 . Substitute into the second equation to obtain 5x1 +

(
3
2x1 +

1
2

)
=

−4 ⇒ x1 = − 9
13 . Thus x2 = 3

2 − 9
13 + 1

2 = − 7
13 .

( )
11. −10x1+4x2 = 2 ⇒ x2 = 5

2x1+
1
2 .Substitute into the second equation to obtain 15x1−6

(
5
2x1 +

1
2

)
=

−3 ⇒ −3 = −3,which is true for all x1. Hence we may set x1 as a free variable, x1 = s1 and then
x2 = 5

2s1 +
1
2 . ( )

12. −3x1 +4x2 = 0 ⇒ x2 = 3x1. Substitute into the second equation to obtain 9x1 − 12 3x1 = 0 =4 4 −2
. Thus no solution exists.

̸

13. 7x1−3x2 = −1 ⇒ x2 = 7
3x1+

1
3 . Substitute into the second equation to obtain −5x1+8

(
7
3x1 +

1
3

)
=

0 ⇒ x1 = − 8
41 . Thus x2 = 7

3 − 8
41 + 1

3 = − 5
41 .

( )
( )

14. 6x1 − 3x2 = 5 ⇒ x2 = 2x1 − 5 . Substitute into the second equation to obtain =3 −8x1 + 4 2x1 − 5
3

−20 = 1. Thus no solution exists.3 ̸

15. Echelon form. Leading variables: x1 and x2. No free variables.

16. Not in echelon form since x1 is a leading variable in both equations.

17. Echelon form. Leading variables: x1 and x3. Free variable: x2.

18. Not in echelon form, since the leading variable x3 in equation 2 lies to the right of the leading variable
x2 in equation 3.

19. Not in echelon form since x2 is a leading variable in both equations 2 and 3.

20. Echelon form. Leading variables: x1, x2, x3, and x4. No free variables.

21. Echelon form. Leading variables: x1 and x3. Free variables: x2 and x4.

22. Echelon form. Leading variables: x1, x3 and x4. Free variables: x2, x5 and x6.

23. Equation 2 ⇒ x2 = 5. Substitute into equation 1, −5x1 − 3(5) = 4 ⇒ x1 = −19 .5

24. Equation 3 ⇒ x3 = −3. Substitute into equation 2, −x2 + 4(−3) = 1 ⇒ x2 =
equation

−13. Substitute into
1, x1 + 4(−13)− 7(−3) = −3 ⇒ x1 = 28.

25. x2 is a free variable, so let x2 = s1. Substitute, −3x 4
1 + 4s1 = 2 ⇒ x1 = s13 − 2 .3

26. x2 is a free variable, so let x2 = s1. Equation 2 ⇒ x3 = 2. Substitute into equation 1, 3x1−2(s1)+2 =
4 ⇒ x1 = 2s + 2

1 .3 3

27. x3 is a free variable, so let x3 = s1. Equation 3 ⇒ x4 = 5. Substitute into equation 2, −2x2+s1−5 =
−1 ⇒ x 1 1 1

2 = s1 − 2. Substitute into equation 1, x1 + 5
(

s12 2 − 2
)
− 2s1 = 0 ⇒ x1 = 10− s1.2
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28. x2 and x3 are free variables, so let x2 = s1 and x3 = s2. Substitute, 2x1

x
− s1 + 6s2 = −3 ⇒

1 = 1s1 3s 3
2 .2 2− −

29. x2 and x4 are free variables, so let x2 = s1 and x4(= s2. Equation) 2 3x3 + s2 = 4 x3 =
1s2 +

4 . Substitute into equation 1, 2x 2 1
1 + s1 + s2 +

4 = 1 x
⇒ −

1
1 = s 5

1 +
1s +

− ⇒
2 .3 3 3 3 2 3 6− ⇒

30. x2, x5 and x6 are free variables, so let x2 = s1, x5 =( s2, and)x6 = s3. Equation 3 ⇒ 2x4+5s2 = 1
x4 = 1 − 5s2. Substitute into equation 2,( 5

⇒
− x3 − 1 − 5s 17 3 1) 2 +6s2 +3s3 = 0 ⇒ x3 = s2 + s3 − .2 2 2 2 10 5 10

Substitute into equation 1, −7x1+3s 1 5 3 22 13 10
1+8 s2 2s2+13s3 = 6 x1 = s1 s2+ s3+ .2 − 2 − − ⇒ 7 − 7 7 7

31. (a) Interchange equations 1 and 2, to obtain:

3x1 + 2x2 = 1

5x2 = 4−

Equation 2 ⇒ x2 = −4/5, and substituting into equation 1, 3x1 + 2 (−4/5) = 1 ⇒ x1 = 13 .15

(b) Interchange equations 1 and 3 to obtain:

3x1 + 2x2 + 7x3 = 0

−x2 − 4x3 = 13

3x3 = 3− −

Equation 3 x3 = 1. Substitute into equation 2, x2 4(1) = 13 x2 = 17. Substitute
into equation

⇒
1, 3x

− − ⇒ −
1 + 2(−17) + 7(1) = 0 ⇒ x1 = 9.

32. (a) Interchange equations 1 and 2 to obtain:

x1 + 3x2 − 2x3 + 2x4 = −1

2x2 + x3 − 5x4 = 0

x3 and x4 are free variables, so let x3 = s1 and x4 = s2. Substitute( into) equation 2, 2x2+s1 5s2 =
0 ⇒ x = 5s 1

2 2 − s 1
1. Substitute into equation 1, x + 5

1 3 s2 − s1 − 2s1 + 2s 1
−

2 =2 2
7 19

− ⇒ x1 =2 2

s1 s2 1.2 − 2 −
(b) Interchange equations 1 and 2, and also equations 3 and 4, to obtain:

x1 − 5x2 − 6x3 + 3x4 = 3

x2 − 4x3 + 3x4 = 2

5x3 − 4x4 = 10

−3x4 = 15

Equation 3 ⇒ x4 = 5. Substitute into equation 2, 5x3 4 ( 5) = 10 x3 = 2.
Substitute into equation

−
2, x2 − 4( 2)

− − ⇒
− + 3(−5) = 2 ⇒ x2 = 9. Substitute into equation

−
1,

x1 − 5(9)− 6(−2) + 3(−5) = 3 ⇒ x1 = 51.

33. x3 is a free variable, so let x3 = s1. Equation 3 ⇒ x4 = 0. Substitute into equation 2, x2+2s1−2 (0) =
2 ⇒ x2 = 2− 2s1. Substitute into equation 1, x1 + 2 (2− 2s1)− s1 + 0 = 1 ⇒ x1 = 5s1 − 3.

34. Because the third equation, 0 = 1, is not satisfied, there are no solutions.

35. x3 is a free variable, so let x3 = s1. Substitute into equation 2, x2 + s1 = 1 ⇒ x2 = 1
in

− s1. Substitute
to equation 1, x1 + (1− s1)− s1 = 4 ⇒ x1 = 2s1 + 3.

36. Because the third equation, 0 = −5, is not satisfied, there are no solutions.

37. (a) From( the first) equation, 6x(1 − 5x)2 = 4, we obtain x1 = 5x + 2
2 . Substitute into equation 2,6 3

9 5x 2
2 + +kx2 = 16 3

15

⇒ 15 + k x2 = −5. Hence the system is consistent provided 15 +k = 0,2 2

which means k = − .2

̸
̸
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(b) From 4 1( the second) equation, −9x1 + 12x2 = −1, we obtain x1 = x2 + . Substitute into equation3 9

1, 6 4x + 1 − 8x = k ⇒ 2 2
2 2 = k. The system is consistent provided k = .3 9 3 3

38. (a) Subtract the equations to obtain (2− h)x1 = −1− k. If h = 2, the system will be consistent. If
h = 2, then 0 = −1− k, and the system has no solutions if −1− k = 0, i.e. k =
system

−1. Hence, the
has no solutions if and only if h = 2 and k = 1.

Alternatively, there will be no solution if and only if the
−

two lines are parallel and distinct. Thus
we conclude that h = 2 and k = 1.

̸
̸ ̸

̸

̸ −
(b) If h = 2 and k = 5, then we have both 2x1 +5x2 = −1 and 2x1 +5x2 = 3. Because −1 = 3, there

are no solutions.
̸

39. There are 9 variables, as every variable is either a leading variable or free variable.

40. There are 3 free variables. Since there are 5 equations and the system is in echelon form, there are 5
leading variables. The number of free variables plus the number of leading variables must equal the
total number of variables, 8.

41. There are 7 leading variables, since the number of leading variables of a system in echelon form is equal
to the number of equations.

42. There are 5 equations. Since there are 4 free variables, there must be 5 leading variables, as there are
9 variables altogether. Since the number of leading variables of a system in echelon form is equal to
the number of equations, we must have 5 equations.

43. For example,

x1 = 0

x2 = 0

x3 = 0

44. For example,
x1 + x3 = 0

x2 + x3 = 0
x1 − x2 = 0

45. For example,
x1 + x2 = 0
x1 + x2 − x3 = 0

x3 = 0
x1 + x2 + x3 = 0

46. For example
x1 + x2 + x3 + x4 = 1
x1 + x2 = 1

x3 + x4 = 1

47. On Monday, I bought 3 apples and 4 oranges and spent $0.55. On Tuesday I bought 6 oranges and
spent $0.60. How much does each apple and orange cost?
Solution: let x1 be the price of an apple, and x2 the price of an orange, then we have the following
system in echelon form:

3x1 + 4x2 = 0.55

6x2 = 0.60

From equation 2, x2 = 0.10. Substitute into equation 1, 3x1 + 4(0.10) = 0.55, ⇒ x1 = 0.05. Hence
apples cost 5 cents each and oranges cost 10 cents each.
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48. The simplest such example,
x1 = −1

x2 = 3

49. For example,
x1 − x2 = −3
3x1 − x3 = 4

50. For example,
x1 − 2x2 = 0
2x1 − 4x2 = 0

51. (a) False. Example:

x1 = 0
x2 = 0

x1 + x2 = 0

(b) False. Example:

x1 = 0
x2 + x3 + x4 + x5 = 0

x1 + x2 + x3 + x4 + x5 = 1

52. (a) False. Consider the equation x1 + x2 = 1. One can set x1 = s1 and then x2 = 1− s1. Or one can
set x2 = s1 and then x1 = 1− s1.

(b) True. The last equation will uniquely determine the last variable. Substitution into the next to
last equation will determine the next to last variable uniquely. And one can continue to determine
uniquely all variables.

53. (a) True. The leading variable moves one column to the right each time you descend one row.

(b) False. Example:

x1 + x2 + x3 = 0
x3 = 0

54. (a) False. Each equation in an echelon system has a unique leading variable, so back substitution is
always possible. Hence a solution always exists.

(b) False. Each equation in an echelon system must have a unique leading variable, so the number of
equations cannot exceed the number of variables.

55. (a) True. The last equation would be cnxn = bn, so xn = bn is rational. And then using backcn
substitution, each proceeding variable would be rational, as it is determined from a sum of rational
numbers, divided by an integer. In this manner, we see that each variable, xi in the solution is a
rational number.

(b) True. Example:
x1 + x2 = 0

56. (a) True, because the free parameter can be assigned any real value, so there will be correspondingly
infinitely many solutions.

(b) False. Suppose one of the equations is ax+ by = c, with either a = 0 or b = 0. Because (1, 2) is a
solution, a+2b = c. Also, (4, 8) is a solution so 4a+8b = c.We obtain a+2b = 4a+8b = 4 (a+ 2b) ,
so a+2b = 0. Thus a = −2b and c = 0, and the equation becomes 2bx+ by = 0. Because ( 1, 5)
is also a solution, −2b (−1) + b (5) = 0. This implies b = 0, so also

−
a = 0. But this contradicts

−

either a = 0 or b = 0, and we conclude that these three points cannot all be solutions.

̸ ̸

̸ ̸
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57. Let x be the number of adults who attended, and y the number of children who attended. Since the
total number of people who attended is 385, we have x + y = 385. The total revenue from the sale
of tickets will be the revenue due to the adult tickets purchased and the children’s tickets purchased.
We obtain a second equation, 11x+ 8y = 3974. Solving the first equation for x, we have x = 385 y.
Substitute into the second equation, we have 11 (385− y) + 8y = 3974 4235 3y = 3974,

−

y = 87. Solving now for x, we determine x = 385− 87 = 298. So 298 adults
⇒
and 87

−
children attended.

⇒

58. Let x be the number of coach tickets sold, and y the number of business class tickets sold. Because 150
people were sold, we have x+ y = 150. Because the total revenue was $24, 960, we have 160x+220y =
24, 960. We solve the system

x+ y = 150

160x+ 220y = 2, 4960

and obtain x = 134 and y = 16. So 134 coach tickets were sold, and 16 business class tickets sold.

59. Using f(0) = 5, we have 5 = a1e
2(0) + a2e

−3(0) = a1 + a2. Using f ′(0) = −1,we have −1 = 2a1e
2(0) −

3a2e
−3(0) = 2a1 − 3a2. Solving the first equation for a1, we have a1 = 5 a2. Substitute into the

second equation, −1 = 2 (5
−

− a2)− 3a2 ⇒ a2 = 11 . Therefore a1 = 55 − 11 = 14 .5 5

60. From f (0) = 3 we obtain 3 = a1+a2. And from f ′ (0) = 1 we obtain 1 = 5a1+2a2. Solve the first
equation for a1 to get a1 = 3−a2. Substitute into the second

−
equation, and

−
get

−
1 = 5 (3 a2)+2a2 =

7a
− − −

2 − 15. Thus 7a2 = 14, so a2 = 2. Thus a1 = 3− 2 = 1.

61. The total amount of glycol needed is now 0.29(300) = 87.0 liters. Thus the system of equations becomes

x + y = 300
0.18x + 0.50y = 87

Solving the first equation for x, we obtain x = 300 y. Substitute into the second equation to get
0.18(300− y) + 0.50y = 87,

−
⇒ y = 103. 125 liters. Hence x = 300− 103. 125 = 196. 875 liters.

62. The total amount of glycol needed is now 0.46(300) = 138.0 liters. Thus the system of equations
becomes

x + y = 300
0.18x + 0.50y = 138.0

Solving the first equation for x, we obtain x = 300 y. Substitute into the second equation to get
0.18(300− y) + 0.50y = 138.0, y = 262. 5 liters. Hence

−
⇒ x = 300− 262. 5 = 37. 5 liters.

63. Let x be the amount invested in the safe bond, and y the amount invested in the risky bond. Then
x+ y = 100000. The annual return on her investment is 1.03x+1.09y. We desire to have this be a 7%
annual return, so 1.03x + 1.09y = 1.07(100000) = 107000. From our first equation, x = 100000 y.
Substitute into the second equation, 1.03 (100000

−
− y) + 1.09y = 107000, ⇒ y = 66667. Thus,

x = 100000− 66667 = 33333.

64. Let x be the amount invested in the safe bond, and y the amount invested in the risky bond. Then
x+y = 200, 000. The annual return on the investment is 1.04x+1.11y. We desire to have this be a 8%
annual return, so 1.04x+1.11y = 1.08(200, 000) = 216, 000. From our first equation, x = 200, 000 y.
Substitute into the second equation, 1.04 (200, 000

−

x = 200, 000 114, 285.71 = 85, 714. 29.
− y) + 1.11y = 216, 000, ⇒ y = 114, 285.71. Thus,

−

65. Let x be the amount of hot water, and y the amount of cold water to be mixed. Then x+y = 60, since
the 60-gallon bathtub is to be filled. The proportion of the water that is hot is x/60, and the proportion
of water that is cold is y/60, and the final temperature of the water is determined by these proportions
and the temperatures of the hot and cold water. Hence, 100 = (x/60)(125) + (y/60)(60). Solving the
first equation, we have x = 60 − y. Substitute into the second equation, 100 = ((60− y) /60)(125) +
(y/60)(60), ⇒ y = 300 = 23. 077 gallons. Thus x = 6013 − 300 = 480 = 36. 923 gallons.13 13
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66. Let x be the amount of hot water, and y the amount of cold water to be mixed. Then x+y = 50, because
the 50-gallon bathtub is to be filled. The proportion of the water that is hot is x/50, and the proportion
of water that is cold is y/50, and the final temperature of the water is determined by these proportions
and the temperatures of the hot and cold water. Hence, 105 = (x/50)(115) + (y/50)(70). Solving the
first equation, we have x = 50 − y. Substitute into the second equation, 105 = ((50− y) /50)(115) +
(y/50)(70), ⇒ y = 100 = 11.11 gallons. Thus x = 509 − 100 = 350 = 350 = 38. 89 gallons.9 9 9

67. Using the freezing point of water, we have 0 = a(32) + b. From the boiling point of water, 100 =
a(212) + b. From the first equation, b = −(32)a. Substitute into the second equation, 100 = a(212) +
(−32a) = 180a ⇒ a = 5 . Hence b = −32 5 = −160 .9 9 9

68. Let V be the value of the machine (in thousands of dollars), and t be the time in years since purchased.
We are assuming that the relationship is linear, so V = at+ b for some values a and b . We are given
that V = 800 when t = 2, so our first equation is 2a + b = 800. Using V = 440 when t = 5 we have
a second equation 5a + b = 440. Subtracting equations, we get −3a = 360, and so a = 120. Thus
b = 800− 2(−120) = 1040. So a formula for the value of the machine is V =

−
−120t+ 1040.

69. After experimenting a bit, we get that 4 nickels and 8 quarters just about cover the long side. The
short side is covered by either 9 nickels and 1 quarter, or 1 nickel and 8 quarters. Let n be the diameter
of a nickel, and q the diameter of a quarter. The first equation becomes 4n+ 8q = 11, so n = 11 2q.4
With( the choice of 9 nickels and 1 quarter, the second equation is 9n + q = 8.5. Substituting for

−
n,

9 11 − 2q + q = 8.5, and hence q = 0.95588 in. And thus n = 11 2 (0.95588) = 0.83824 in.4 4
Using

−( instead 1 nickel and 8 quarters for the second equation, we have n + 8q = 8.5. Substituting,
11 2

)
− q

)
+ 8q = 8.5, and we get q = 0.95833 in. Thus n = 11 − 2 (0.95833) = 0.83334 in. The4 4

published values from the United States Mint are q = 0.955 in and n = 0.835 in.

70. From Example 5, A(t) = 2a, and since the acceleration is given as 9.8 m/s2, we have 9.8 = 2a
a = −4.9. The velocity is given by V (t) = 2at + b, and using that

−
velocity is 34.4 m/s

−
when t =

⇒
3,

we have −34.4 = 2( 4.9)(3) + b, b = 5.0. The height is H(t) = at2 +
−

− ⇒ − bt + c, and we know
that the height is 25.9 meters when t = 3. Thus, 25.9 = ( 4.9)(32) + ( 5.0)(3) + c, c = 85.0
.Thus H(t) = −4.9t2 − 5.0t+ 85.0. (Note that we didn’t use the

−
initial velo

−
city. Our result

⇒
agrees with

V (0) = −5.0. We could have used the initial velocity instead to determine b = −5.0, and then check
that V (3) = −34.4.)

71. x1 = 12, x2 = 5.

72. x1 = 10
41 , x2 = 6

41 . (Solving numerically, x1 = 0.24390244, x2 = 0.14634146. )

73. x1 = 0.625 + 41.25s1 , x2 = −1.75 + 2.25s1, x3 = s1

74. x1 = 7s1 , x2 = −1
3 , x3 = s1 +

22
21

75. x1 = −8.417− 4.125s1 , x2 = 4.333− 2s1, x3 = 1.5 + 1.75s1, x4 = s1

76. x1 = − 139
6 s1 , x2 = 14s1 +

668
139 , x3 = −1

2s1 +
552
139 , x4 = s1 +

425
139

77. x1 = 2727
88 + 117

8 s; x2 = 173
88 − 17

8 s; x3 = 181
22 − 1

2s; x4 = s; x5 = 2
11

78. x1 = − 2
3s1 −

119
108 ; x2 = −143

36 ; x3 = s1; x4 = 29
9 ; x5 = 4

3 ; x6 = −5
3
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1.2 Practice Problems

1. (a)

[
1 −2 1 2
2 −3 5 5

−1 3 2 −5

]
−2R1+R2→R2∼

[
1 −2 1 2
0 1 3 1

−1 3 2 −5

]

R1+R3→R3∼

[
1 −2 1 2
0 1 3 1
0 1 3 −3

]

−R2+R3→R3∼

[
1 −2 1 2
0 1 3 1
0 0 0 −4

]

(b)

 1 3 −1 1 2 1
2 6 −1 5 3 6

−1 −3 3 6 −4 4
1 3 −2 −1 4 1


−2R1+R2→R2

R1+R3→R3

−R1+R4→R4∼

 1 3 −1 1 2 1
0 0 1 3 −1 4
0 0 2 7 −2 5
0 0 −1 −2 2 0


−2R2+R3→R3

R2+R4→R4∼

 1 3 −1 1 2 1
0 0 1 3 −1 4
0 0 0 1 0 −3
0 0 0 1 1 4


−R3+R4→R4∼

 1 3 −1 1 2 1
0 0 1 3 −1 4
0 0 0 1 0 −3
0 0 0 0 1 7



2. (a)
1 −2 3
2 −3 5

−1 4 −2

−2R1+R2→R2

R1+R3→R3∼
1 −2 3
0 1 −1
0 2 1

−2R2+R3→R3∼

[
1 −2 3
0 1 −1
0 0 3

]
1
3R3→R3∼

[
1 −2 3
0 1 −1
0 0 1

]
R3+R2→R2

−3R3+R1→R1∼

[
1 −2 0
0 1 0
0 0 1

]

2R2+R1→R1∼

[
1 0 0
0 1 0
0 0 1

]

[ ] [ ]

(b)

[
1 4 2 1

−1 −4 −1 0
2 8 6 4

] R1+R2→R2

−2R1+R3→R3∼

[
1 4 2 1
0 0 1 1
0 0 2 2

]

−2R2+R3→R3∼

[
1 4 2 1
0 0 1 1
0 0 0 0

]

−2R2+R1→R1∼

[
1 4 0 −1
0 0 1 1
0 0 0 0

]
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3. (a)

[ −1 2 −3 −1
−1 3 −1 −3
2 −2 10 −2

] −R1+R2→R2

2R1+R3→R3∼

[ −1 2 −3 −1
0 1 2 −2
0 2 4 −4

]

−2R2+R3→R3∼

[ −1 2 −3 −1
0 1 2 −2
0 0 0 0

]
Free variable, x3 = s. Row 2 ⇒ x2 +2s = −2 ⇒ x2 = −2− 2s . Row 1 ⇒ −x1 +2 (−2− 2s)−
3s = −1 ⇒ x1 = −3− 7s.

(b)

[
1 −1 −2 1 −2 0
1 −1 −1 −1 −1 0

−1 1 1 −3 6 0

] −R1+R2→R2

R1+R3→R3∼

[
1 −1 −2 1 −2 0
0 0 1 −2 1 0
0 0 −1 −2 4 0

]

R2+R3→R3∼

[
1 −1 −2 1 −2 0
0 0 1 −2 1 0
0 0 0 −4 5 0

]
Free variables, x5 = s1 and x2 = s2. Row 3 ⇒ −4x4 + 5s1 = 0 ⇒ x4 = 5

4s1 . Row

2 ⇒ x3−2
(
5
4s1
)
+s1 = 0 ⇒ x3 = 3

2s1. Row 1 ⇒ x1−(s2)−2
(
3
2s1
)
+
(
5
4s1
)
−2 (s1) = 0 ⇒ x1 =

15
4 s1 + s2.

4. (a)
1 2 1 4
1 1 2 1

−R1+R2→R2∼ 1 2 1 4
0 −1 1 −3

2R2+R1→R1∼
[

1 0 3 −2
0 −1 1 −3

]
−R2→R2∼

[
1 0 3 −2
0 1 −1 3

]

[ ] [ ]

Free variable x3 = s. Row 2 ⇒ x2 − (s) = 3 ⇒ x2 = 3 + s. Row 1 ⇒ x1 + 3 (s) = −2 x1 =
2 3s.

⇒
− −

(b)

[
1 −1 3 −1
2 −1 4 −1

−1 3 −6 4

] −2R1+R2→R2

R1+R3→R3∼

[
1 −1 3 −1
0 1 −2 1
0 2 −3 3

]

−2R2+R3→R3∼

[
1 −1 3 −1
0 1 −2 1
0 0 1 1

]
2R3+R2→R2

−3R3+R1→R1∼

[
1 −1 0 −4
0 1 0 3
0 0 1 1

]

R2+R1→R1∼

[
1 0 0 −1
0 1 0 3
0 0 1 1

]
From Row 1, x1 = −1, from Row 2, x2 = 3, and from Row 3, x3 = 1.

5. (a) False. Every matrix can be transformed to reduced row echelon form.

(b) True. Suppose the matrix is m
matrix is in echelon form, so the

× n, with m > n. No column can have more than one pivot if the
number of rows with a pivot is, at most, n. Since there are m

rows, and m > n, the matrix must have a zero row.

(c) True. The reverse operation of Ri Rj is Rj Ri. The reverse operation of cRi Ri is
1

↔ ↔ →
Ri → Ri. And the reverse operation of cRi +Rj Rj is cRi +Rj Rj .c → − →

(d) True. If there exists a solution, then there will be infinitely many solutions because any free
variable can take infinitely many values in R.

6. (a) 4

(b) 3
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(c) 6

(d) 4

1.2 Linear Systems and Matrices

1. 4x1 + 2x2 − x3 = 2
−x1 + 5x3 = 7

2. −2x1 + x2 = 0
13x1 − 3x2 = 6
11x1 2+ 7x = 5− −

3. 12x2 − 3x3 − 9x4 = 17
−12x1 + 5x2 − 3x3 + 11x4 = 0

6x1 + 8x2 + 2x3 + 10x4 = −8
17x1 + 13x4 = −1

4. x = 2− 1

5x1 = −7
3x1 = 0

5. Echelon form.

6. Reduced row echelon form.

7. Not echelon form.

8. Echelon form.

9. Echelon form.

10. Reduced row echelon form.

11. −2R1 → R1

12. 3R2 +R1 → R1

13. −2R2 +R3 → R3

14. R1 ↔ R3

1 4
15. R1 ↔ R2,

[ − 3
3 7 −2
5 0 3

]
−

16. 2R1 +R2,

[
−2 −2 1 6
0 −5 2 7

]

17. 2R1 → R1,

[
0 6 −2 4

−1 −9 4 1
5 0 7 2

]

18. −2R1 +R3 ⇒ R3,

[
1 7 2 0
0 4 −8 −3
1 14 4 1

]
.

− −

19.

[
2 1 1

−4 −1 3

]
2R1+R2→R2∼

[
2 1 1
0 1 5

]
Row 2 ⇒ x2 = 5. Row 1 ⇒ 2x1 + (5) = 1 ⇒ x1 = −2.
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20.

[
3 −7 0
1 4 0

]
R1↔R2∼

[
1 4 0
3 −7 0

]
−3R1+R2→R2∼

[
1 4 0
0 −19 0

]
Row 2 ⇒ x2 = 0. Row 1 ⇒ x1 + 4(0) = 0 ⇒ x1 = 0.

21.

[ −2 5 −10 4
1 −2 3 −1
7 −17 34 −16

]
R1↔R2∼

[
1 −2 3 −1

−2 5 −10 4
7 −17 34 −16

]
2R1+R2→R2

−7R1+R3⇒R3∼

[
1 −2 3 −1
0 1 −4 2
0 −3 13 −9

]

3R2+R3→R3∼

[
1 −2 3 −1
0 1 −4 2
0 0 1 −3

]
Row 3 ⇒ x3 = −3. Row 2 ⇒ x2 − 4(−3) = 2 ⇒ x2 = −10 . Row 1 ⇒ x1 − 2(−10) + 3(−3) =
−1 ⇒ x1 = −12 .

22.

[
2 8 −4 −10

−1 −3 5 4

]
R1↔R2∼

[
−1 −3 5 4
2 8 −4 −10

]
2R1+R2→R2∼

[
−1 −3 5 4
0 2 2 −2

]
Free variable, x3 = s1 . Row 2 ⇒ 2x2 + 2s1 = −2 ⇒ x2 = −s1 − 1. Row 1 ⇒ −x1 − 3 (−s1 − 1) +
5 (s1) = 4 ⇒ x1 = 8s1 − 1.

23.

[
2 2 −1 8

−1 −1 0 −3
3 3 1 7

]
R1↔R2∼

[ −1 −1 0 −3
2 2 −1 8
3 3 1 7

]
2R1+R2→R2

3R1+R3⇒R3∼

[ −1 −1 0 −3
0 0 −1 2
0 0 1 −2

]

R2+R3→R3∼

[ −1 −1 0 −3
0 0 −1 2
0 0 0 0

]
Free variable, x2 = s1. Row 2 ⇒ x3 = −2. Row 1 ⇒ −x1 − (s1) = −3 ⇒ x1 = 3− s1.

24.

[ −5 9 13
3 −5 −9
1 −2 −2

]
R1↔R3∼

[
1 −2 −2
3 −5 −9

−5 9 13

]
−3R1+R2→R2

5R1+R3⇒R3∼

[
1 −2 −2
0 1 −3
0 −1 3

]

R2+R3→R3∼

[
1 −2 −2
0 1 −3
0 0 0

]
Row 2 ⇒ x2 = −3. Row 1 ⇒ x1 − 2(−3) = −2 ⇒ x1 = −8.
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25.

[
2 6 −9 −4 0

−3 −11 9 −1 0
1 4 −2 1 0

]
R1↔R3∼

[
1 4 −2 1 0

−3 −11 9 −1 0
2 6 −9 −4 0

]
3R1+R2→R2

−2R1+R3⇒R3∼

[
1 4 −2 1 0
0 1 3 2 0
0 −2 −5 −6 0

]

2R2+R3→R3∼

[
1 4 −2 1 0
0 1 3 2 0
0 0 1 −2 0

]
Free variable, x4 = s1. Row 3 ⇒ x3 − 2s1 = 0 ⇒ x3 = 2s1. Row 2 ⇒ x2 + 3(2s1) + 2s1 = 0
x2 = −8s1. Row 1 ⇒ x1 + 4(−8s1)− 2(2s

⇒
1) + s1 = 0 ⇒ x1 = 35s1.

26.

[
1 −1 −3 −1 −1

−2 2 6 2 −1
−3 −3 10 0 5

] 2R1+R2→R2

3R1+R3→R3∼

[
1 −1 −3 −1 −1
0 0 0 0 −3
0 −6 1 −3 2

]

R2↔R3∼

[
1 −1 −3 −1 −1
0 −6 1 −3 2
0 0 0 0 −3

]
The third row corresponds to the equation 0 = −3, hence the system is inconsistent.

27.

[
−2 −5 0
1 3 1

]
R1↔R2∼

[
1 3 1

−2 −5 0

]
2R1+R2→R2∼

[
1 3 1
0 1 2

]
−3R2+R1→R1∼

[
1 0 −5
0 1 2

]
Thus x1 = −5 and x2 = 2.

28.

[
1 1 1
3 4 6

−1 1 5

] −3R1+R2→R2

R1+R3→R3∼

[
1 1 1
0 1 3
0 2 6

]

−2R2+R3→R3∼

[
1 1 1
0 1 3
0 0 0

]

−R2+R1→R1∼

[
1 0 −2
0 1 3
0 0 0

]
Thus, x1 = −2, and x2 = 3.

29.

[
2 1 0 2

−1 −1 −1 1

]
R1↔R2∼

[
−1 −1 −1 1
2 1 0 2

]
2R1+R2→R2∼

[
−1 −1 −1 1
0 −1 −2 4

]
−R2+R1→R1∼

[
−1 0 1 −3
0 −1 −2 4

]
−R1→R1

−R2→R2∼
[

1 0 −1 3
0 1 2 −4

]
Free variable, x3 = s1. Row 1 ⇒ x1 = 3 + s1. Row 2 ⇒ x2 = −4− 2s1.
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30.

[ −4 2 −2 10
1 0 1 −3
3 −1 1 −8

]
R1↔R2∼

[
1 0 1 −3

−4 2 −2 10
3 −1 1 −8

]
4R1+R2→R2

−3R1+R3⇒R3∼

[
1 0 1 −3
0 2 2 −2
0 −1 −2 1

]

R2↔R3∼

[
1 0 1 −3
0 −1 −2 1
0 2 2 −2

]

2R2+R3→R3∼

[
1 0 1 −3
0 −1 −2 1
0 0 −2 0

]
−R3+R2→R2

(1/2)R3+R1⇒R1∼

[
1 0 0 −3
0 −1 0 1
0 0 −2 0

]
−R2→R2

−(1/2)R3→R3∼

[
1 0 0 −3
0 1 0 −1
0 0 1 0

]
Thus, x1 = −3, x2 = −1, and x3 = 0.

31.

[ −3 2 −1 6 −7
7 −3 2 −11 14
1 0 0 −1 1

]
R1↔R3∼

[
1 0 0 −1 1
7 −3 2 −11 14

−3 2 −1 6 −7

]
−7R1+R2→R2

3R1+R3⇒R3∼

[
1 0 0 −1 1
0 −3 2 −4 7
0 2 −1 3 −4

]
2R2→R2

3R3→R3∼

[
1 0 0 −1 1
0 −6 4 −8 14
0 6 −3 9 −12

]

R1+R3→R3∼

[
1 0 0 −1 1
0 −6 4 −8 14
0 0 1 1 2

]

−4R3+R2→R2∼

[
1 0 0 −1 1
0 −6 0 −12 6
0 0 1 1 2

]
−(1/6)R2→R2∼

[
1 0 0 −1 1
0 1 0 2 −1
0 0 1 1 2

Free variable, x4 = s1. Thus, x1 = 1 + s1, x2 = −1− 2s1, and x3 = 2− s1.

]

32.

[
1 1 1 −2 4 −5

−1 0 −3 4 −5 5
2 4 −2 1 5 −9

] R1+R2→R2

−2R1+R3→R3∼

[
1 1 1 −2 4 −5
0 1 −2 2 −1 0
0 2 −4 5 −3 1

]

−2R2+R3→R3∼

[
1 1 1 −2 4 −5
0 1 −2 2 −1 0
0 0 0 1 −1 1

]
−2R3+R2→R2

2R3+R1→R1∼

[
1 1 1 0 2 −3
0 1 −2 0 1 −2
0 0 0 1 −1 1

]

−R2+R1→R1∼

[
1 0 3 0 1 −1
0 1 −2 0 1 −2
0 0 0 1 −1 1

]
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Free variables, x3 = s1 and x5 = s2. Thus, x1 = −1− 3s1 − s2, x2 = −2+ 2s1 − s2, and x4 = 1+ s2.

33. (a) (1/5)R1 → R1

(b) (−1/2)R3 3

34. (a) R1 ↔ R3

(b) R1 R4↔

→ R

35. (a) 5R2 +R6 → R6

(b) 3R1 +R3 → R3

36. (a) −4R5 +R1 → R1

(b) 4R4 +R2 → R2

37.

[
1 1 1 1 1
0 1 1 1 1
0 0 1 1 1

]

38.


1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 0
0 0 0 0
0 0 0 0

 
 

39.
 1 0 0 4

0 1 0 3
0 0 1 2
0 0 0 1

 
 

40.

[
1 1 1 1 5
0 0 1 1 3
0 0 1 1 4

]

41. x1 = 0
x2 = 0

x3 + x4 = 0

42.

[
2 0
0 2

]
and

[
1 0
0 1

]
43. (a) True, by definition of equivalent matrices.[ ] [ ]

2 4 −(1/2)R∼1+R
True. F

2→R2 2 4
(b) or example, .

1 1 0 1[ ] [ ] [ ]−
2 4 R1↔∼R2 1 1 −2R1+R 1

4
∼ 2→R

And 2 1
.

1 1 2 0 2

44. (a) False, by Theorem 1.6.

(b) False, it could be inconsistent, and therefore have no solutions, as with the system

x1 + x2 + x3 + x4 + x5 + x6 + x7 = 0
x1 + x2 + x3 = 1

x4 + x5 = 1
x6 + x7 = 1

45. (a) False. For example, all seven equations in the system could be x1 + x2 + x3 + x4 = 0, which is
consistent, making the system consistent.



304 Chapter 1: Systems of Linear Equations

(b) False, a system can have free variables but also be inconsistent.

46. (a) True. If it is consistent, there will be at least one free variable, and hence infinitely many solutions.

(b) False. For example, the system
x1 + x2 = 0
x1 + x2 = 1

has no solutions. And the system

x1 + x2 = 1
2x1 + 2x2 = 2

has infinitely many solutions.

47. (a) −R2 → R2, then R3 +R2 → R2

(b) 3R1 → R1, then R4 +R1 → R1

48. (a) 2R4 → R4, then 3R2 +R4 → R4

(b) −R5 → R5, then R4 +R5 → R5

49. (a) −4R6 → R6, then R3 +R6 → R6

(b) Not a combination of elementary row operations. For example, the system

5x1 = 5

x1 = 2

−2x1 = −2

has no solution, but if one applies the row operation[
5 5
1 2

−2 −2

]
2R1+5R3→R2∼

[
5 5
0 0

−2 −2

]

then the system has a solution, x1 = 1, which is a contradiction.

50. (a) Not a combination of elementary row operations. For example, the system

x1 = 1

−5x1 = −5

x1 = 2

has no solution, but if one applies the row operation[
1 1

−5 −5
1 2

]
5R1+R2→R3∼

[
1 1

−5 −5
0 0

]

then the system has a solution, x1 = 1, which is a contradiction.

(b) −R5 → R5, then 2R4 +R5 → R5

51. Exactly one solution. The last row produces a unique value for the last variable, and then back
substitution produces a unique value for each preceding variable.

52. No solutions. The assumption implies that the last row consists of all zeros followed by a non-zero
value. This corresponds to an inconsistent system.
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53. Either the system has free variables or not. If there are no free variables and the system is consistent,
then every variable is a leading variable, and there will be exactly one solution. If there exists a free
variable, then there will be infinitely many solutions. Thus, if there are two distinct solutions then it
follows that there must be infinitely many solutions.

54. Suppose there are no zero rows. The every row has a distinct leading term. Since there are more rows
than columns, we have more leading terms than columns, which is a contradiction. Hence there must
be a least one zero row.

55. Every homogeneous system is consistent. There will be free variables, as the number of leading variables
is no greater than the number of equations, and there are more variables than equations. Since there
are free variables, there must be infinitely many solutions.

56. (a) Clearly the set of solutions is not changed by simply writing the equations in a different order.

(b) Suppose that (s1, . . . , sk) is a solution to the linear equation

aj1x1 + · · ·+ ajkxk = bj

Then aj1s1 + · · ·+ ajksk = bj , and if c = 0, then we also have caj1s1 + · · ·+ cajksk = cbj , so that
(s1, . . . , sk) satisfies

̸

caj1x1 + + cajkxk = cbj· · ·
Similarly, if (t1, . . . , tk) is a solution to caj1x1+ +cajkxk = cbj , then caj1t1+ +cajktk = cbj .
Dividing on both sides by c, we have a t

· ·
j1 1 +

· · · ·

solutions is not changed by multiplying an equation
· · ·+ ajktk = bj . Therefore it follows that the set of

by a nonzero constant.

(c) Suppose that (s1, . . . , sk) is a solution to the linear equations

aj1x1 + · · ·+ ajkxk = bj
ai1x1 + · · ·+ aikxk = bi

Then for c = 0, we have(̸

c aj1s1 + · · ·+ ajksk + ai1s1 + · · ·+ aiksk = cbj + bi
) ( )

so (s1, . . . , sk) is a solution to the new system obtained from adding c times equation j to equation
i.
Now suppose that (t1, . . . , tk) is a solution to the system that results from adding c times equation
j to equation i, so that

c
(
aj1t1 + · · ·+ ajktk

)
+
(
ai1t1 + · · ·+ aiktk

)
= cbj + bi

aj1t1 + · · ·+ ajktk = bj

Multiplying the second equation by −c and adding it to the first yields

ai1t1 + · · ·+ aiktk = bi

so that (t1, . . . , tk) is also a solution to the original system. Hence the two systems have the same
set of solutions, so this equation operation does not change the solution set.

57. Apply f(1) = 4 to obtain a(1)2 + b(1) + c = 4 a + b + c = 4. From f(2) = 7, we have
a(2)2+b(2)+c = 7 ⇒ 4a+2b+c = 7.And f(3) = 14

⇒
⇒ a(3)2+b(3)+c = 14 ⇒ 9a+3b+c = 14.Write

these equations as an augmented matrix and solve.[
1 1 1 4
4 2 1 7
9 3 1 14

] −4R1+R2→R2

−9R1+R3→R3∼

[
1 1 1 4
0 −2 −3 −9
0 −6 −8 −22

]

−3R2+R3→R3∼

[
1 1 1 4
0 −2 −3 −9
0 0 1 5

]
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Row 3 ⇒ c = 5. Row 2 ⇒ −2b − 3(5) = −9 ⇒ b = −3. Row 1 ⇒ a + (−3) + (5) = 4 ⇒ a = 2.
Thus f(x) = 2x2 − 3x+ 5.

58. Evaluate f(1) = 8, f(2) = 3, f(3) = 9, f(5) = 1, and f(7) = 7 to produce the equations

a + b + c + d + e = 8
16a + 8b + 4c + 2d + e = 3
81a + 27b + 9c + 3d + e = 9
625a + 125b + 25c + 5d + e = 1
2401a + 343b + 49c + 7d + e = 7

and solve using the corresponding augmented matrix using a computer algebra system. We obtain
a = 43 , b =80 −1949 , c = 3263 , d =240 80 −18 859 , and e = 427 .240 8

Thus f(x) = 43x4
80 − 1949x3 + 3263x2

240 80 − 18 859x+ 427 .240 8

59. From a plot, the points do not appear linear, so we use a quadratic to model the data. Let E(x) =
ax2 + bx+ c. Then E(20) = 288, E(40) = 364, and E(60) = 360. We obtain the three equations

400a + 20b + c = 288
1600a + 40b + c = 364
3600a + 60b + c = 360

and solve using the corresponding augmented matrix using a computer algebra system. We obtain
a = − 1 , b = 49 , and c = 132. Thus E(x) = − 1 x2 + 49x+ 132.10 5 10 5

60. From a plot, the points do not appear linear, so we use a quadratic to model the data. Let E(x) =
ax2 + bx+ c. Then E(40) = 814, E(80) = 1218, and E(110) = 1311. We obtain the three equations

1600a + 40b + c = 814
6400a + 80b + c = 1218
12100a + 110b + c = 1311

and solve using the corresponding augmented matrix using a computer algebra system. We obtain
a = − 1 , b = 221 , and c = 90. Thus E(x) =10 10 − 1 x2 + 221x+ 90.10 10  

1 0 0 − 157 181 
61. Using a computer algebra system, the row echelon form is  0 1 0 20 . Hence x1 =

0 1 − 58

−157 ,181 181

0[ ]181
1 0 0 0.8674

x 20
2 = , x 58

3 = . ( as a decimal, we obtain
−

− Or, 0 1 0 0.1105 , so x1 = 0.8674, x2 =181 181
0 0 1 −0.3204

−

0.1105, and x3 = −0.3204.)

1
62. Using a computer algebra system, the row echelon form is

[
0 0 0

0 1 0 0 .
0 0 1 0

]
Hence x1 = 0, x2 = 0,

and x3 = 0.  
1 0 0 1 7 9 

63. Using a computer algebra system, the row echelon form is  0 1 0 1 −23 . We have a free9

0 0 1
7 23 22

−1 −22
27

variable, x4 = s1. Thus x1 = − s1, x2 = − − s1, and x3 = − + s1. (Or, as a decimal, we obtain[ ]9 9 27
1 0 0 1 0.77778
0 1 0 1 −2.5556 , so x1 = 0.77778− s1, x2 = −2.5556− s1, and x3 =
0 0 1 1 0.81481

−0.81 81 + s1.)
− −
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64. Using a computer algebra system, the row echelon form is

 1 0 0 − 71
127

116
127

0 1 0 −131
254

141
127

0 0 1 −663
254

606
127

. We have a free

variable, x4 = s1. Thus x1 = 116
127 + 71

127s1, x2 = 141
127 + 131

254s1, and x3 = 606
127 + 663

254s1. (Or, as a decimal,

we obtain

[
1 0 0 −0.5591 0.9134
0 1 0 −0.5157 1.1102
0 0 1 −2.6102 4.7717

]
, so x1 = 0.9134 + 0.5591s1, x2 = 1.1102 + 0.5157s1, and

x3 = 4.7717 + 2.6102s1.)

1

65. Using a computer algebra system, the row echelon form is


0 0 0 0 1 0 0


 . Since the last row

0 0 1 0
0 0 0 1

corresponds to 0 = 1, the linear system is inconsistent, and there are no solutions.

1

66. Using a computer algebra system, the row echelon form is


0 0 0 0 1 0 0


. Since the last row corre-

0 0 1 0
0 0 0 1

sponds to 0 = 1, the linear system is inconsistent, and there are no solutions.

46

67. Using a computer algebra system, the row echelon form is


1 0 0 0 −579 0

0 1 0 0 −745
579 0

0 0 1 0 2264
579 0

0 0 0 1 655
386 0

. We have a free

variable, x5 = s1.

Thus x1 = 46
579s1, x2 = − 745

579s1, x3 = −2264
579 s1, and x4 = −655

386s1.

(Or, as a decimal, we obtain

 1 0 0 0 −0.07947 0
0 1 0 0 −1.2867 0
0 0 1 0 3.9102 0
0 0 0 1 1.6969 0

, so x1 = 0.07947s1, x2 = 1.2867s1,

x3 = −3.9102s1 and x4 = −1.6969s1.)

68. Using a computer algebra system, the row echelon form is


1 0 0 0 − 314

71
1167
142 −349

142

0 1 0 0 841
71 −1522

71
846
71

0 0 1 0 828
71 −1578

71
826
71

0 0 0 1 − 431
71

1579
142 −851

142

.
We have two free variables, x5 = s1 and x6 = s2.

Thus x1 = −349
142 + 314

71 s1 − 1167
142 s2, x2 = 846

71 − 841
71 s1 + 1522

71 s2, x3 = 826
71 − 828

71 s1 + 1578
71 s2, and

x4 = − 851
142 + 431

71 s1 − 1579
142 s2.

(Or, as a decimal, we obtain

 1 0 0 0 −4.4225 8.2183 −2.4577
0 1 0 0 11.845 −21.437 11.915
0 0 1 0 11.662 −22.225 11.634
0 0 0 1 −6.0704 11.120 −5.9930

, so x1 = −2.4577 +

4.4225s1 − 8.2183s2, x2 = 11.915 − 11.845s1 + 21.437s2, x3 = 11.634 − 11.662s1 + 22.225s2, and
x4 = −5.9930 + 6.0704s1 − 11.120s2 .)
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1.3 Practice Problems

1. At equilibrium, we have

x3 =
x1 + x2 + 40

3

x2 =
x1 + x3 + 70

3

x1 =
x2 + x3 + 30

3

Rearranging, we have

x1 + x2 − 3x3 = −40

x1 − 3x2 + x3 = −70

−3x1 + x2 + x3 = −30

Row-reduce the augmented matrix, and obtain[
1 1 −3 −40
1 −3 1 −70

−3 1 1 −30

] −R1+R2→R2

3R1+R3→R3∼

[
1 1 −3 −40
0 −4 4 −30
0 4 −8 −150

]

R2+R3→R3∼

[
1 1 −3 −40
0 −4 4 −30
0 0 4 180

]
− −

So Row 3 ⇒ x3 = −180
−4 = 45. Row 2 ⇒ −4x2 + 4 (45) = −30 ⇒ x2 = 105

2 . Row 1 ⇒ x1 +
105
2 −

3 (45) = 40 x3 = 85
2 .

( )
− ⇒

2. As in Example 3, we determine output to satisfy consumer and between-industry demand, and obtain
the equations

a = 50 + 0.2b

b = 80 + 0.35a

We may substitute the second equation into the first to obtain

a = 50 + 0.2 (80 + 0.35a)

= 0.07a+ 66

0.93a = 66

a ≈ 71. 0

Then substitute into equation 2 to obtain b ≈ 80 + 0.35 (71. 0) = 104. 9.

3. We consider x1CO2 + x2H2O−→ x3C6H12O6+x4O2, which implies

x1 − 6x3 = 0
2x1 + x2 − 6x3 − 2x4 = 0

2x2 − 12x3 = 0

Row-reduce the augmented matrix[
1 0 −6 0 0
2 1 −6 −2 0
0 2 −12 0 0

]
−2R1+R2→R2∼

[
1 0 −6 0 0
0 1 6 −2 0
0 2 −12 0 0

]

−2R2+R3→R3∼

[
1 0 −6 0 0
0 1 6 −2 0
0 0 −24 4 0

]
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We set(x4 )= s1 as a free variable. From row 3, −24x3 + 4s1 = 0 ⇒ x 1( ) 3 = s1. From row 2,6

x 1
2 + 6 s1 − 2 (s1) = 0 ⇒ x2 = s. From row 1, x1 − 6 1s1 = 0 ⇒ x1 = s1. We set s1 = 6 to6 6

obtain x1 = 6, x2 = 6, x3 = 1, and the balanced equation

6CO2 + 6H2O −→ C6H12O6 + 6O2

4. Assuming p = adb, so that ln (p) = ln (a) + b ln (d), and letting a1 = ln (a), we obtain the following
equations using the data for Earth and Neptune

a1 + b ln (149.6) = ln (365.2)

a1 + b ln (4495.1) = ln (59800)

The solution to this system is a1 = −1.6029 and b = 1.4983. Thus, a = ea1 = e−1.6029 = 0.2013.
Therefore, p = (0.2013) d1.4983.

5. Multiply both sides of the equation by (2x+ 1) (x − 1) to obtain (x+ 5) = A(x − 1) + B (2x+ 1) =
(A+ 2B)x+ (−A+B). Equate coefficients of x and the constant terms to obtain

A+ 2B = 1

A+B = 5−

The solution to this system is A = −3 and B = 2.

6. (a) False. See Example 1.

(b) True. Any positive integer multiple of a solution will also balance the equation.

(c) False. For example, no parabola or the form y = ax2 + bx+ c will pass through the three points
(0, 0) , (0, 1) , (0, 2) .

(d) False. For example, f (x) = 5ex and f (x) = 5e−2x are both of the form f (x) = aex + be−2x and
f (0) = 5.

1.3 Applications of Linear Systems

1. The number of cars entering and leaving each intersection must be the same, resulting in the three
equations

A:
B:
C:

x2 = x3 + 20
x3 + 35 + 50 = x1 + 10

x1 + 40 = x2 + 45 + 50

which is equivalent to
x2 − x3 = 20

−x1 + x3 = −75
x1 − x2 = 55

The solution of this system, with x3 = s1 is x1 = 75 + s1 and x2 = 20 + s1. Restricting each xi

Therefore
≥ 0

implies that s1 ≥ 0. the minimum volume of traffic from C to A is x2 = 20+0 = 20 vehicles.

2. We obtain the following system of equations

A:
B:
C:
D:

x2 + 70 = x1 + 40 + 85
x3 + 40 + 20 + 25 = x2 + 30

x1 + 100 = x4 + 70
x4 + 30 = x3 + 60

which is equivalent to
−x1 + x2 = 55

− x2 + x3 = −55
x1 − x4 = −30

− x3 + x4 = 30
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Using a computer algebra system, with free variable x4 = s1, we obtain x1 = 30 + s1, x2 = 25 + s1
and x3 = −30 + s1. The minimum traffic from C to D is determined by the restrictions

−
xi 0, which

implies s1 ≥ 30. Therefore the minimum volume of traffic from C to D is x
≥

4 = s1 = 30 vehicles.

3. We obtain the following system of equations

A:
B:
C:

x4 + 30 + 40 = x1 + 50
x1 + x3 + 25 = x2 + 40 + 55

x2 + 50 = x4 + 25

which is equivalent to
−x1 + x4 = −20
x1 − x2 + x3 = 70

x2 x4 = 25− −
Using a computer algebra system, with free variable x4 = s1, we obtain x1 = 20 + 4s1, x2 = 25 + s1
and x3 = 25. The minimum traffic from C to A is determined by the restrictions x

−
i 0, which implies

s1 ≥ 25. Therefore the minimum volume of traffic from C to A is x
≥

4 = s1 = 25 vehicles.

4. We obtain the following system of equations

A:
B:
C:
D:
E:
F:

x2 + 50 = x1 + 20 + 40
x3 + x4 + 20 = x2 + 45

45 + 60 = x4 + x5 + 35
x1 + 60 = 80

80 = x3 + 70
x5 + 70 = x6

which is equivalent to

−x1 + x2 = 10
− x2 + x3 + x4 = 25

− x4 − x5 = −70
x1 = 20

− x3 = −10
x5 + x6 = −70

Using a computer algebra system, there exists a unique solution, x1 = 20, x2 = 30, x3 = 10, x4 = 45,
x5 = 25, and x6 = −95.

5. We obtain the system of equations

x1 =
x2 + 80

2

x2 =
x1 + 30 + 40

3

which reduces to

2x1 − x2 = 80

−x1 + 3x2 = 70

We solve this system, and obtain x1 = 62, and x2 = 44.

6. We obtain the system of equations

x1 =
x2 + 60 + 90

3

x2 =
x1 + 20 + 40

3
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which reduces to

3x1 − x2 = 150

−x1 + 3x2 = 60

We solve this system, and obtain x1 = 255 , and x2 = 165 .4 4

7. We obtain the system of equations

x1 =
x2 + x3 + 50

3

x2 =
x1 + x3 + 90

3

x3 =
x1 + x2 + 30

3

which reduces to

3x1 − x2 − x3 = 50

−x1 + 3x2 − x3 = 90

−x1 − x2 + 3x3 = 30

We solve this system, and obtain x1 = 55, x2 = 65, and x3 = 50.

8. We obtain the system of equations

x1 =
x2 + x4 + 30

3

x2 =
x1 + x3 + 0

3

x3 =
x2 + x4 + 90

3

x4 =
x1 + x3 + 20

3

which reduces to

3x1 − x2 − x4 = 30

−x1 + 3x2 − x3 = 0

−x2 + 3x3 − x4 = 90

x1 x3 + 3x4 = 20− −

We solve this system, and obtain x1 = 30, x2 = 80 , x3 = 50 and x4 = 100 .3 3

9. Let a and b denote the total output from each of A and B, respectively. We obtain

a = 60 + 0.30b

b = 40 + 0.20a

We solve this system, and obtain a = 72. 34 and b = 61. 70.

10. Let a and b denote the total output from each of A and B, respectively. We obtain

a = 80 + 0.15b

b = 50 + 0.25a

We solve this system, and obtain a = 96. 10 and b = 64. 42.
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11. Let a, b, and c denote the total output from each of A, B, and C, respectively. We obtain

a = 30 + 0.15b+ 0.20c

b = 50 + 0.10a+ 0.10c

c = 60 + 0.15a+ 0.20b

We solve this system, and obtain a = 55. 77, and b = 63. 69, and c = 81. 10.

12. Let a, b, and c denote the total output from each of A, B, and C, respectively. We obtain

a = 40 + 0.25b+ 0.10c

b = 30 + 0.20a+ 0.15c

c = 70 + 0.10a+ 0.10b

We solve this system, and obtain a = 61. 82, and b = 54. 61, and c = 81. 64.

13. We consider x1H2 + x2O2 −→ x3H2O, which implies

2x1 − 2x3 = 0
2x2 − x3 = 0

F[rom the augmented matrix
2 0 −2 0

]
we set x3 = s1 as a free variable, and thus x2 = 1s s

0 2 −1 0 1 and x1 = s1. We set 1 = 2 to2

obtain x1 = 2, x2 = 1, x3 = 2, and the balanced equation

2H2+O2 −→ 2H2O

14. We consider x1H2 + x2N2 −→ x3NH3, which implies

2x1 − 3x3 = 0
2x2 − x3 = 0

F[rom the augmented matrix
2 0 −3 0

]
we set x3 = s1 as a free variable, and thus x = 1

2 s1 and x = 3
1 s1. We set s

0 2 −1 0 1 = 22 2

to obtain x1 = 3, x2 = 1, x3 = 2, and the balanced equation

3H2 +N2 −→ 2NH3

15. We consider x1Fe+x2O2 −→ x3Fe2O3, which implies

x1 − 2x3 = 0
2x2 − 3x3 = 0

F[rom the augmented matrix
1 0 −2 0

]
we set x = s as a free variable, and thus x = 3

3 1 2 s1 and x1 = 2s1. We set s =
0 2 −3 0 1 22

to obtain x1 = 4, x2 = 3, x3 = 2, and the balanced equation

4Fe + 3O2 −→ 2Fe2O3

16. We consider x1Na+x2H2O−→ x3NaOH+x4H2, which implies

x1 − x3 = 0
2x2 − x3 − 2x4 = 0
x2 − x3 = 0
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Row-reduce the augmented matrix[
1 0 −1 0 0
0 2 −1 −2 0
0 1 −1 0 0

]
R2↔R3∼

[
1 0 −1 0 0
0 1 −1 0 0
0 2 −1 −2 0

]

−2R2+R3→R3∼

[
1 0 −1 0 0
0 1 −1 0 0
0 0 1 −2 0

]

We set x4 = s1 as a free variable, and thus x3 = 2s1, x2 = x3 = 2s1, and x1 = x3 = 2s1. We set s1 = 1
to obtain x1 = 2, x2 = 2, x3 = 2, x4 = 1, and the balanced equation

2Na + 2H2O −→ 2NaOH+H2

17. We consider x1C3H8 + x2O2 −→ x3CO2+x4H2O, which implies

3x1 − x3 = 0
8x1 − 2x4 = 0

2x2 − 2x3 − x4 = 0

Row-reduce the augmented matrix[
3 0 −1 0 0
8 0 0 −2 0
0 2 −2 −1 0

]
(−8/3)R1+R2→R2∼

 3 0 −1 0 0

0 0 8
3 −2 0

0 2 −2 −1 0


R2↔R3∼

 3 0 −1 0 0
0 2 −2 −1 0

0 0 8
3 −2 0


We set x4 = s1 as a free variable. From row 3, 8x3−2s1 = 0 ⇒ x3 = 3s1. From row 2, 2x23 4 −2x3−x4 =

0 ⇒ 2x2

We set s
−2 3s 5

1 −s1 = 0 x2 = s1 From row 1, 3x1 x3 = 0 3x 3
1 s1 = 0 x1 = 1s1.4 4 4 4

1 = 4 to obtain x1 =
⇒
1, x

− ⇒ − ⇒
2 = 5, x3 = 3, x4 = 4, and the balanced equation

( ) ( )
C3H8 + 5O2 −→ 3CO2 + 4H2O

18. We consider x1C2H2 + x2O2 −→ x3CO2+x4H2O, which implies

2x1 − x3 = 0
2x1 − 2x4 = 0

2x2 − 2x3 − x4 = 0

Row-reduce the augmented matrix[
2 0 −1 0 0
2 0 0 −2 0
0 2 −2 −1 0

]
−R1+R2→R2∼

[
2 0 −1 0 0
0 0 1 −2 0
0 2 −2 −1 0

]

R2↔R3∼

[
2 0 −1 0 0
0 2 −2 −1 0
0 0 1 −2 0

]

We set x4 = s1 as a free variable. From row 3, x3 2s1 = 0 x3 = 2s1. From row 2, 2x2 2x3 x4 =
0 ⇒ 2x2 − 2 (2s1)− s1 = 0 ⇒ x 5

2 = s rom
−

1. F row 1, 2x
⇒

x
− −

1 3 = 0 2x1 (2s1) = 0 x1 = s1.2
We set s

− ⇒ − ⇒
1 = 2 to obtain x1 = 2, x2 = 5, x3 = 4, x4 = 2, and the balanced equation

2C2H2 + 5O2 −→ 4CO2 + 2H2O
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19. We consider x1KO2 + x2CO2 −→ x3K2CO3+x4O2, which implies

x1 − 2x3 = 0
2x1 + 2x2 − 3x3 − 2x4 = 0

x2 − x3 = 0

Row-reduce the augmented matrix[
1 0 −2 0 0
2 2 −3 −2 0
0 1 −1 0 0

]
−2R1+R2→R2∼

[
1 0 −2 0 0
0 2 1 −2 0
0 1 −1 0 0

]

(−1/2)R2+R3→R3∼


1 0 −2 0 0
0 2 1 −2 0

0 0 −3
2 1 0

 
We set x4 = s1 as a free variable.( )From row 3, − 3x 2

3 + s1 = 0 ⇒ x3 = s1. From row 2,2 3

2x2 + x3 − 2x4 = 0 ⇒ 2x + 2( ) 2 s1 − 2s x 2
1 = 0 ⇒ 2 = s1 . From row 1, x1 − 2x3 = 03 3

4

⇒
x1 − 2 2s1 = 0 ⇒ x1 = s1. We set s1 = 3 to obtain x1 = 4, x2 = 2, x3 = 2, x4 = 3, and the3 3
balanced equation

4KO2 + 2CO2 2K2CO3 + 3O2−→

20. We consider x1MnO2 + x2HCl−→ x3MnCl2+x4H2O+x5Cl2, which implies

x1 − x3 = 0
2x1 − x4 = 0

x2 − 2x4 = 0
x2 2x3 2x5 = 0− −

Row-reduce the augmented matrix 1 0 −1 0 0 0
2 0 0 −1 0 0
0 1 0 −2 0 0
0 1 −2 0 −2 0

 −2R1+R2→R2∼

 1 0 −1 0 0 0
0 0 2 −1 0 0
0 1 0 −2 0 0
0 1 −2 0 −2 0


R2↔R4∼

 1 0 −1 0 0 0
0 1 −2 0 −2 0
0 1 0 −2 0 0
0 0 2 −1 0 0


−R2+R3→R3∼

 1 0 −1 0 0 0
0 1 −2 0 −2 0
0 0 2 −2 2 0
0 0 2 −1 0 0


−R3+R4→R4∼

 1 0 −1 0 0 0
0 1 −2 0 −2 0
0 0 2 −2 2 0
0 0 0 1 −2 0

 
We set x5 = s1 as a free variable. From row 4, x4−2s1 = 0 ⇒ x4 = 2s1. From row 3, 2x3 2x4+2s1 =
0 ⇒ 2x3− 2 (2s1)+2s1 = 0 ⇒ x3 = s1. From row 2, x2− 2x3− 2s =

−
1 0 x2 2 (s1) 2s1 = 0

x2 = 4s1. From row 2, x1 − x3 = 0 ⇒ x1 − (s =
⇒

1) 0
−

obtain
−

⇒ x1 = s1.We set s1 = 1 to x =
⇒

1 1,
x2 = 4, x3 = 1, x4 = 2, x5 = 1, and the balanced equation

MnO2 + 4HCl −→ MnCl2 + 2H2O+Cl2
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21. Assuming p = adb, so that ln (p) = ln (a) + b ln (d), and letting a1 = ln (a), we obtain the following
equations using the data for Earth and Mars

a1 + b ln (149.6) = ln (365.2)

a1 + b ln (227.9) = ln (687)

The solution to this system is a = −1.617 1 and b = 1.5011. Thus a = ea1
1 = e−1. 617 1 = 0.198 47.

Hence p = (0.19847) d1.5011.

22. Assuming p = adb, so that ln (p) = ln (a) + b ln (d), and letting a1 = ln (a), we obtain the following
equations using the data for Mercury and Uranus

a1 + b ln (57.9) = ln (88)

a1 + b ln (2872.5) = ln (30589)

The solution to this system is a1 = −1.60526 and b = 1.49865. Thus a = e−1.60526 = 0.20083. Hence
p = (0.20083) d1.49865.

23. Assuming p = adb, so that ln (p) = ln (a) + b ln (d), and letting a1 = ln (a), we obtain the following
equations using the data for Venus and Neptune

a1 + b ln (108.2) = ln (224.7)

a1 + b ln (4495.1) = ln (59800)

The solution to this system is a1 = −1.6035 and b = 1.49835 . Thus a = e−1.6035 = 0.20120. Hence
p = (0.20120) d1.49835.

24. Assuming p = adb, so that ln (p) = ln (a) + b ln (d), and letting a1 = ln (a), we obtain the following
equations using the data for Jupiter and Saturn

a1 + b ln (778.6) = ln (4331)

a1 + b ln (1433.5) = ln (10747)

The solution to this system is a1 = −1.5392 and b = 1.48896 . Thus a = e−1.5392 = 0.21455. Hence
p = (0.21455) d1.48896.

25. Assuming d = ask, so that ln (d) = ln (a) + k ln (s), and letting a1 = ln (a), we obtain the following
equations using the data for s = 10 and s = 20

a1 + k ln (10) = ln (4.5)

a1 + k ln (20) = ln (18)

The solution to this system is a = −3.1010 and k = 2 . Thus a = e−3.1010
1 = 0.04500. Hence

d = (0.04500) s2. The predicted distance for each speed is as follows:
Speed (MPH) 10 20 30 40
Distance (Feet) 4.50 18.0 40.5 72.0

26. Assuming d = ask, so that ln (d) = ln (a) + k ln (s), and letting a1 = ln (a), we obtain the following
equations using the data for s = 10 and s = 20

a1 + k ln (10) = ln (20)

a1 + k ln (20) = ln (80)

The solution to this system is a = −1.6094 and k = 2 . Thus a = e−1.6094
1 = 0.20000. Hence

d = (0.20000) s2. The predicted distance for each speed is as follows:
Speed (MPH) 10 20 30 40
Distance (Feet) 20.0 80.0 180.0 320.0
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27. Multiply both sides of the equation by x(x+1) to obtain 1 = A(x+1)+Bx = (A+B)x+A. Equate
coefficients of x to obtain the equation 0 = A+B. Equate constant terms to obtain A = 1. Substitute
into 0 = A+B to obtain 0 = 1 +B ⇒ B = −1.

28. Multiply both sides of the equation by (x− 1) (x + 1) to obtain (3x− 1) = A(x + 1) + B (x− 1) =
(A+B)x+ (A−B). Equate coefficients of x and the constant terms to obtain

A+B = 3

A B = 1− −

The solution to this system is A = 1 and B = 2.

29. Multiply both sides of the equation by x2 (x− 1) to obtain 1 = A(x)(x − 1) + B (x− 1) + C(x2) =
(A+ C)x2 + (−A+B)x−B. Equate coefficients of x2, x, and the constant terms to obtain

A+ C = 0

−A+B = 0

−B = 1

The solution to this system is A = −1 , B = −1 , and C = 1.( )
30. Multiply both sides of the equation by x x2 + 1 to obtain 1 = A(x2+1)+(Bx+ C)x = (A+B)x2+

Cx+A. Equate coefficients of x2, x, and the constant terms to obtain

A+B = 0

C = 0

A = 1

The solution to this system is A = 1 , B = −1 , and C = 0.

31. Let the line be given by the equation y = ax + b. Then using the point (1, 3) we have 3 = a(1) + b;
and the point (−2, 6) produces the equation 6 = a(−2) + b. We solve the system

a+ b = 3

−2a+ b = 6

and obtain a = −1 and b = 4. Thus y = −x + 4. The point where this line crosses the x-axis is
determined by setting y = 0 and then solving for x. Hence 0 = −x+ 4 ⇒ x = 4.

32. Let the line be given by the equation y = ax+ b. Then using the point (5,−1) we have −1 = a(5) + b;
and the point (−8, 3) produces the equation 3 = a(−8) + b. We solve the system

5a+ b = −1

−8a+ b = 3

and obtain a = − 4 and b = 7 . Thus y = − 4 x+ 7 . The point where this line crosses the y-axis is13 13 13 13

determined by setting x = 0 and then solving for y. Hence y = 7 .13

33. Let the plane be given by the equation z = ax + by + c. Using the points (2,−1,−2), (1, 3, 12), and
(4, 2, 3), we obtain the system

2a− b+ c = −2

a+ 3b+ c = 12

4a+ 2b+ c = 3

The solution to this system is a = 2 , b = 3, and c = 5. Thus z = 2x + 3y + 5. The point where
this plane crosses the z-axis is determined

−
by setting x = 0 and y = 0

−
, and then solving for z. Hence

z = −2 (0) + 3 (0) + 5 ⇒ z = 5.
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34. Let the plane be given by the equation z = ax + by + c. Using the points (2, 2,−1), (−1,−1, 0), and
(2, 1, 1), we obtain the system

2a+ 2b+ c = −1

−a− b+ c = 0

2a+ b+ c = 1

The solution to this system is a = 5 , b = 2, and c = 1 . Thus z = 5x 2y 1 . The point where3 3 3 3
this plane crosses the z-axis is determined

−
by setting x =

−
0 and y = 0, and

−
then

−
solving for z. Hence

z = 5 (0) 2 (0)− 1 z 1 .3 − =3 ⇒ −3

235. Substituting the points (−1,−2), (1, 4), and (2, 4) into the equation y = ax + bx + c we obtain the
equations

a− b+ c = −2

a+ b+ c = 4

4a+ 2b+ c = 4

The solution to this system is a = −1, b = 3, c = 2. The equation of the parabola passing through all
three points is y = −x2 + 3x+ 2.

36. Using the values f(0) = −3, f(1) = 2, f(3) = 5, and f(4) = 0 in the function f(x) = ax3+ bx2+cx+d
we obtain the equations

d = −3

a+ b+ c+ d = 2

27a+ 9b+ 3c+ d = 5

64a+ 16b+ 4c+ d = 0

Using a computer algebra system we obtain a = − 1 , b = − 1 , c = 65 , and d = 3.4 6 12 − Thus f(x) =

−1x3
4 − 1x2 + 65x6 12 − 3 .

37. Using the values g(−2) = −17, g(−1) = 6, g(0) = 5, g(1) = 4, and g(2) = 3 in the function g(x) =
ax4 + bx3 + cx2 + dx+ e we obtain the equations

16a− 8b+ 4c− 2d+ e = −17

a− b+ c− d+ e = 6

e = 5

a+ b+ c+ d+ e = 4

16a+ 8b+ 4c+ 2d+ e = 3

Using a computer algebra system we obtain a = −1, b = 2, c = 1, d = −3, and e = 5. Thus
g(x) = −x4 + 2x3 + x2 − 3x+ 5 .

38. Using f(0) = 2 in the function f(x) = aex + be2x + ce−3x we obtain 2 = a+ b+ c. Using f ′(0) = 1 in
the derivative f ′(x) = aex + 2be2x − 3ce−3x we obtain 1 = a + 2b 3c. And using f ′′(0) = 19 in the
second derivative f ′′(x) = aex + 4be2x + 9ce−3x we obtain 19 = a+

−
4b+ 9c. Using a computer algebra

system we solve the system of equations

a+ b+ c = 2

a+ 2b− 3c = 1

a+ 4b+ 9c = 19

to get a = −2, b = 3, and c = 1. Thus f(x) = −2ex + 3e2x + e−3x .
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39. Using f(0) = −1 in the function f(x) = ae−2x+ bex+ cxex we obtain −1 = a+ b. Using f ′(0) = −2 in
the derivative f ′(x) = d

(
ae−2x + bex + cxex

)
= −2ae−2x+((b+c)ex+cxex we obtain −2)= −2a+b+c.dx

And using f ′′(0) = 3 in the second derivative f ′′(x) = d −2ae−2x + (b+ c)ex + cxex = 4ae−2x +dx
(b+ 2c) ex + cxex, we obtain 3 = 4a+ b+2c. Using a computer algebra system we solve the system of
equations

a+ b = −1

−2a+ b+ c = −2

4a+ b+ 2c = 3

to get a = 2 , b = −5 , and c = 1. Thus f(x) = 2e3 3 3
−2x − 5ex + xex .3

40. With these new LAI values, we obtain the three equations using the top three schools

1482x1 + 2699x2 + 100x3 = 0.9655

1481x1 + 2776x2 + 89x3 = 0.9652

1408x1 + 2616x2 + 94x3 = 0.9237

Using a computer algebra system we solve this system and obtain x1 = 0.0003230, x2 = 0.0001433,
and x3 = 0.0010009 .Our LAI formula is now

LAI = 0.0003230 (USA) + 0.0001433 (Harris) + 0.0010009 (Computer)

Testing this formula for all schools, we obtain the predicted values,

Team LAI

Oklahoma 0.9655
Florida 0.9652
Texas 0.9237

Alabama 0.8538
Southern Cal 0.8436
Penn State 0.7646

Utah 0.7560
Texas Tech 0.7522

which agrees with the LAI values given.

1.4 Practice Problems

1. (a) Using Gaussian elimination with 3 significant digits of accuracy:[
1 562 52
49 −78 −11

]
−49R1+R2→R2∼

[
1 562 52
0 −27 600 −2560

]
Row 2 ⇒ x2 = −2560

−27 600 = 9. 28× 10−2. Row 1 ⇒ x1 + 562
(
9. 28× 10−2

)
= 52 ⇒ x1 = −0.154.

Using partial pivoting:[
1 562 52
49 −78 −11

]
R1↔R2∼

[
49 −78 −11
1 562 52

]
(−1/49)R1+R2→R2

˜

[
49 −78 −11
0 564 52. 2

]
Row 2 ⇒ x2 = 52. 2

564 = 9. 26 × 10−2. Row 1 ⇒ 49x1 − 78
(
9. 26× 10−2

)
= −11 ⇒ x1 = −7.

71× 10−2.
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(b) Using Gaussian elimination with 3 significant digits of accuracy:

[
2 −8 598 15

−3 7 913 5
67 −39 84 11

] (3/2)R1+R2→R2

(−67/2)R1+R3→R3∼[
2 −8 598 15
0 −5.0 1810.0 27. 5
0 229.0 −19900.0 −492.0

]
(229.0/5)R2+R3→R3∼[

2 −8 598 15
0 −5.0 1810.0 27. 5
0 0.00 63000.0 768. 0

]
( )

Row 3 ⇒ x3 = 768. 0 = 1. 22×10−2. Row( 2 ⇒ −5.0x)2+(1810.0) 1. 22× 10−2 = 27.5 x63000 ⇒ 2 =.0

−1. 08. Row 1 ⇒ 2x1 − 8 (−1. 08) + 598 1. 22× 10−2 = 15 ⇒ x1 = −0.468.
Using partial pivoting.[

2 −8 598 15
−3 7 913 5
67 −39 84 11

]
R1↔R3∼

[
67 −39 84 11
−3 7 913 5
2 −8 598 15

]
(3/67)R1+R2→R2

(−2/67)R1+R3→R3∼

[
67 −39 84 11
0 5. 25 917. 0 5. 49
0 −6. 84 595.0 14. 7

]

R2↔R3∼

[
67 −39 84 11
0 −6. 84 595.0 14. 7
0 5. 25 917. 0 5. 49

]
(5.25/6.84)R2+R3→R3∼

[
67 −39 84 11
0 −6. 84 595.0 14. 7
0 0.00 1370.0 16. 8

]

Row 3 ⇒ x3 = 16.8
1370.0 = 1. 23 × 10−2. Row 2 ⇒ −6. 84x2 + (595.0)

(
1. 23× 10−2

)
= 14.7 ⇒

x2 = −1. 08. Row 1 ⇒ 67x1 − 39 (−1. 08) + 84
(
1. 23× 10−2

)
= 11 ⇒ x1 = −0.480.

2. (a) n x1 x2

0 0 0
1 −2.25 0.385
2 −2.15 0.731
3 2.07 0.716−

n x1 x2 x3

0 0 0 0
1 0.913 −3 1.38
2 0.935 −2.49 2.73
3 0.655 1.89 2.54

(b)

−

Exact solution: x1 = −2.07, x2 = 0.704.

Exact solution: x1 = 0.689, x2 = −2.05, x3 = 2.32.

3. (a) Gauss–Seidel iteration of given linear system: n x1 x2

0 0 0
1 −2.25 0.731
2 −2.07 0.703

−2.07 0.7043
Exact solution: x1 = −2.07, x2 = 0.704.
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(b) Gauss–Seidel iteration of given linear system: n x1 x2 x3

0 0 0 0
1 0.913 −3.10 2.77
2 0.702 −1.85 2.24
3 0.684 2.07 2.32−

Exact solution: x1 = 0.689, x2 = −2.05, x3 = 2.32.

1.4 Numerical Solutions

1.

[
−2 3 4
5 −2 1

]
R1↔R2∼

[
5 −2 1

−2 3 4

]
(2/5)R1+R2→R2∼

[
5 −2 1

0 11
5

22
5

]
Row 2 ⇒ 11

5 x2 = 22
5 ⇒ x2 = 2. Row 1 ⇒ 5x1 − 2(2) = 1 ⇒ x1 = 1.

2.
1 −2 −1

−3 7 5
R1↔R2∼ −3 7 5

1 −2 −1

(1/3)R1+R2→R2∼
[

−3 7 5
0 1

3
2
3

]
Row 2 ⇒ 1

3x2 = 2
3 ⇒ x2 = 2. Row 1 ⇒ −3x1 + 7(2) = 5 ⇒ x1 = 3.

[ ] [ ]

3.

[
1 1 −2 −3
3 −2 2 9
6 −7 −1 4

]
R1↔R3∼

[
6 −7 −1 4
3 −2 2 9
1 1 −2 −3

]
(−1/2)R1+R2→R2

(−1/6)R1+R3→R3∼

 6 −7 −1 4

0 3
2

5
2 7

0 13
6 −11

6 − 11
3


R2↔R3∼

 6 −7 −1 4

0 13
6 −11

6 − 11
3

0 3
2

5
2 7


(−9/13)R2+R3→R3∼

 6 −7 −1 4

0 13
6 −11

6 − 11
3

0 0 49
13

124
13


Row 3 ⇒ 49

13x3 = 124
13 ⇒ x3 = 124

49 . Row 2 ⇒ 13
6 x2 − 11

6

(
124
49

)
= −11

3 ⇒ x2 = 22
49 . Row

1 ⇒ 6x1 − 7 22
49 − 124

49 = 4 ⇒ x1 = 79
49 .

( ) ( )
4.

[
1 −3 2 4

−2 7 −2 −7
4 −13 7 12

]
R1↔R3∼

[
4 −13 7 12

−2 7 −2 −7
1 −3 2 4

]
(1/2)R1+R2→R2

(−1/4)R1+R3→R3∼

 4 −13 7 12

0 1
2

3
2 −1

0 1
4

1
4 1


(−1/2)R2+R3→R3∼

 4 −13 7 12

0 1
2

3
2 −1

0 0 −1
2

3
2


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Row 3 ⇒ − 1
2x3 = 3

2 ⇒ x3 = −3. Row 2 ⇒ 1
2x2 + 3

2 (−3) = −1 ⇒ x2 = 7. Row 1 ⇒
4x1 − 13 (7) + 7 (−3) = 12 ⇒ x1 = 31.

5. Using Gaussian elimination with 3 significant digits of accuracy:[
2 975 41

53 −82 −13

]
(−53/2)R1+R2→R2∼

[
2 975 41
0 −2. 59× 104 −1. 10× 103

]
Row 2 ⇒ x2 = −1. 10×103

−2. 59×104 = 4. 25× 10−2. Row 1 ⇒ 2x1 + 975 4. 25× 10−2 = 41 ⇒ x1 = −0.219.

Using partial pivoting:

( )
[ ] [ ]

2 975 41 R1↔R2 53
53 −82 −13

−82 −13∼
2 975 41[ ]

(−2/53)R1+R2→R2 53
˜

−82 −13
0 9. 78× 102 4. 15× 101

1 ( )
Row 2 ⇒ x2 = 4. 15×10 2

2 = 4. 24× 10− . Row 19. 78 ⇒ 53x1 − 82 4. 24× 1010
−2 = −13 ⇒ x1 = −0.180 .×

6. Using Gaussian elimination with 3 significant digits of accuracy.[
3 −813 32
71 −93 −5

]
(−71/3)R1+R2→R2∼

[
3 −813 32
0 1. 91× 104 −7. 62× 102

]
Row 2 ⇒ x2 = −7. 62×102

1. 91×104 = −3. 99×10−2. Row 1 ⇒ 3x1−813
(
−3. 99× 10−2

)
= 32 ⇒ x1 = −0.146 .

Using partial pivoting:[
3 −813 32
71 −93 −5

]
R1↔R2∼

[
71 −93 −5
3 −813 32

]
(−3/71)R1+R2→R2∼

[
71 −93 −5
0 −8. 09× 102 3. 22× 101

]
Row 2 ⇒ x2 = 3. 22×101

−8. 09×102 = −3. 98 × 10−2. Row 1 ⇒ 71x1 − 93
(
−3. 98× 10−2

)
= −5 ⇒ x1 =

−0.123 ,

7. Using Gaussian elimination with 3 significant digits of accuracy:

[
3 −7 639 12

−2 5 803 7
56 −41 79 10

] (2/3)R1+R2→R2

(−56/3)R1+R3→R3∼ 3 −7 639 12
0 0.333 1. 23× 103 1. 5× 101

0 8. 97× 101 −1. 18× 104 −2. 14× 102

 (−8. 97×101/0.333)R2+R3→R3

∼ 3 −7 639 12
0 0.333 1. 23× 103 1. 5× 101

0 0 −3. 43× 105 −4. 25× 103


3

Row 3 ⇒ x3 = −4. 25×10
−3. 43×105 = 1. 24×10−2. Row 2 ⇒ 0.333x2+1. 23×103

(
1. 24× 10−2

)
= 1. 5×10 ⇒

x2 = −0.757. Row 1 ⇒ 3x1 − 7 (−0.757) + 639
(
1. 24× 10−2

)
= 12 ⇒ x1 = −0.407.
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Using partial pivoting.[
3 −7 639 12

−2 5 803 7
56 −41 79 10

]
R1↔R3∼

[
56 −41 79 10
−2 5 803 7
3 −7 639 12

]
(1/28)R1+R2→R2

(−3/56)R1+R3→R3∼

 56 −41 79 10
0 3. 54 8. 06× 102 7. 36
0 −4. 8 6. 35× 102 1. 15× 101


R2↔R3∼

 56 −41 79 10
0 −4. 8 6. 35× 102 1. 15× 101

0 3. 54 8. 06× 102 7. 36


(3. 54/4. 8)R2+R3→R3∼

 56 −41 79 10
0 −4. 8 6. 35× 102 1. 15× 101

0 0 1. 27× 103 1. 58× 101


1

Row 3 ⇒ x3 = 1. 58×10
1. 27×103 = 1. 24×10−2. Row 2 ⇒ −4. 8x2+6. 35×102 1. 24× 10−2 = 1. 15×101 ⇒

x2 = 0.755. Row 1 56x1 41 ( 0.755) + 79 1. 24 10−2 = 10 x1 = 0.392

( )
− ⇒ − −

(
×

)
⇒ −

8. Using Gaussian elimination with 3 significant digits of accuracy.[
2 −5 802 −1

−1 3 −789 −8
40 34 51 19

] (1/2)R1+R2→R2

(−20)R1+R3→R3∼

 2 −5 802 −1
0 0.5 −3. 88× 102 −8. 5
0 1. 34× 102 −1. 60× 104 3. 9× 101


−1. 34×102

0.5 R2+R3→R3∼

 2 −5 802 −1
0 0.5 −3. 88× 102 −8. 5
0 0 8. 80× 104 2. 32× 103


3

Row 3 ⇒ x = 2. 32×10 = 2. 64× 10−(2. Row 2 ⇒ )0.5x − 3. 88× 102 2. 64× 10−2
3 =8. 80× 2104 −8. 5 ⇒ x2 =

3. 49. Row 1 ⇒ 2x1 − 5 (3. 49) + 802 2. 64× 10−2 = −1 ⇒ x1 = 1. 86.
Using partial pivoting.

−

( )
[

2 −5 802 −1
−1 3 −789 −8
40 34 51 19

]
R1↔R3∼

[
40 34 51 19
−1 3 −789 −8
2 −5 802 −1

]
(1/40)R1+R2→R2

(−2/40)R1+R3→R3∼

 40 34 51 19
0 3. 85 −7. 88× 102 −7. 53
0 −6. 7 7. 99× 102 −1. 95


R2↔R3∼

 40 34 51 19
0 −6. 7 7. 99× 102 −1. 95
0 3. 85 −7. 88× 102 −7. 53


(3. 85/6. 7)R2+R3→R3∼


40 34 51 19
0 −6. 7 7. 99× 102 −1. 95
0 0 −3. 29× 102 −8. 65

 
( )

Row 3 ⇒ x3 = −8. 65
−3. 29×102 = 2. 63× 10−2. Row 2 ⇒ −6. 7x2 +7. 99× 102 2. 63× 10−2 = −1. 95 ⇒

x2 = 3. 43. Row 1 ⇒ 40x1 + 34 (3. 43) + 51 2. 63× 10−2 = 19 ⇒ x1 = −2. 47.
( )

9. n x1 x2

0 0 0
1 −1.2 0.2
2 −1.12 0.56
3 −0.976 0.536

Exact solution: x1 = −1, x2 = 0.5.
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10. n x1 x2

0 0 0
1 −2 2.2
2 −0.9 0.6
3 −1.7 1.48

Exact solution: x1 = −1.5, x2 = 1.0.

11. n x1 x2 x3

0 0 0 0
1 −1.3 2.3 2.6
2 −2.295 3.34 1.42
3 −2.156 3.185 0.805

Exact solution: x1 = −2, x2 = 3, x3 = 1.

12. n x1 x2 x3

0 0 0 0
1 −2.5 1.6 1.6
2 −1.7 1.42 3.06
3 0.97 1.872 2.792−

Exact solution: x1 = −1, x2 = 2, x3 = 3.

13. n x1 x2

0 0 0
1 −1.2 0.56
2 −0.976 0.4928
3 −1.0029 0.5009

Exact solution: x1 = −1, x2 = 0.5.

14. n x1 x2

0 0 0
1 −2 0.6
2 −1.7 0.84
3 −1.58 0.936

Exact solution: x1 = −1.5, x2 = 1.0.

15. n x1 x2 x3

0 0 0 0
1 −1.3 2.56 1.316
2 3.0974 0.9584
3

−2.013
−2.0042 2.9884 1.0038

Exact solution: x1 = −2, x2 = 3, x3 = 1.

16. n x1 x2 x3

0 0 0 0
1 −2.5 1.1 2.76
2 −1.12 1.928 2.98
3 −1.0096 1.9942 2.9985

Exact solution: x1 = −1, x2 = 2, x3 = 3.

17. Not diagonally dominant. Not possible to reorder to obtain diagonal dominance.

18. Diagonally dominant, since |4| > |2|+ | − 1|, |7| > | − 2|+ |2|, and | − 5| > |1|+ |3|.

19. Not diagonally dominant. Not possible to reorder to obtain diagonal dominance, since none of the
coefficients in equation three has absolute value greater than the sum of the absolute values of the
other coefficients.

20. Not diagonally dominant. Interchange rows to obtain diagonal dominance.

5x1 − x2 = −4

−2x1 + 6x2 = 12

Then |5| > | − 1| and |6| > | − 2|.
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21. Jacobi iteration of given linear system: n x1 x2

0 0 0
1 −1 −1
2 −3 −3
3 −7 −7
4 −15 −15

2x1 − x2 = 1
x1 − 2x2 = −1

Diagonally dominant system:

Jacobi iteration of diagonally dominant system: n x1 x2

0 0 0
1 0.5 0.5
2 0.75 0.75
3 0.875 0.875
4 0.9375 0.9375

22. Jacobi iteration of given linear system: n x1 x2

0 0 0
1 −2 −2
2 −8 −8
3 −26 −26
4 80 80− −

3x1 − x2 = 2
x1 3x2 = 2− −Diagonally dominant system:

Jacobi iteration of diagonally dominant system: n x1 x2

0 0 0
1 0.6667 0.6667
2 0.8889 0.8889
3 0.9630 0.9630
4 0.9877 0.9877

23. Jacobi iteration of given linear system: n x1 x2 x3

0 0 0 0
1 −1 8 −0.3333
2 16.67 12.33 27
3 −111.3 −21.33 29.67
4 192 624 2.778−

Diagonally dominant system:
5x1 + x2 − 2x3 = 8
2x1 − 10x2 + 3x3 = −1
x1 2x2 + 5x3 = 1− −

Jacobi iteration of diagonally dominant system: n x1 x2 x3

0 0 0 0

1 1.6 0.1 −0.2
2 1.5 0.36 −0.48
3 1.336 0.256 −0.356
4 1.406 0.2604 −0.3648

24. Jacobi iteration of given linear system: n x1 x2 x3

0 0 0 0
1 −1.5 −7 3
2 27.5 −8.5 −17.25
3 −70.75 58.25 −36.25
4 299.3 255.5 213.1

.

− −
=

Diagonally dominant system:
3x1 − x2 + x3 7
−x1 + 6x2 − 2x3 = −6
2x1 + 4x2 − 10x3 = −3
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Jacobi iteration of diagonally dominant system: n x1 x2 x3

0 0 0 0
1 2.333 −1 0.3
2 1.9 −0.5111 0.3667
3 2.041 −0.5611 0.4756
4 1.988 −0.5014 0.4837

25. Gauss-Seidel iteration of given linear system: n x1 x2

0 0 0
1 −1 −3
2 −7 −15
3 −31 −63
4 −127 −255

.

Diagonally dominant system:
2x1 x2 = 1−
x1 2x2 = 1− −

Gauss-Seidel iteration of diagonally dominant system: n x1 x2

0 0 0
1 0.5 0.75
2 0.875 0.9375
3 0.9688 0.9844
4 0.9922 0.9961

26. Gauss-Seidel iteration of given linear system: n x1 x2

0 0 0
1 −2 −8
2 −26 −80
3 −242 −728
4 2186 6560

.

− −

Diagonally dominant system:
3x1 − x2 = 2
x1 3x2 = 2− −

Gauss-Seidel iteration of diagonally dominant system: n x1 x2

0 0 0
1 0.6667 0.8889
2 0.9630 0.9877
3 0.9959 0.9986
4 0.9995 0.9999

27. Gauss-Seidel iteration of given linear system: n x1 x2 x3

0 0 0 0
1 −1 13 43.67
2 −193.3 1062 3669
3 −1.622× 104 8.844× 104 3.056× 105

4 1.351 106 7.367 106 2.546 107

.

− × × ×

Diagonally dominant system:
5x1 + x2 − 2x3 = 8
2x1 − 10x2 + 3x3 = −1
x1 2x2 + 5x3 = 1− −

Gauss-Seidel iteration of diagonally dominant system: n x1 x2 x3

0 0 0 0
1 1.6 0.42 −0.352
2 1.375 0.2694 −0.3673
3 1.399 0.2697 −0.3720
4 1.397 0.2679 −0.3723
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28. Jacobi iteration of given linear system: n x1 x2 x3

0 0 0 0
1 −1.5 −11.5 −30.75
2 −132.3 −434.5 −1.234× 103

3 −5.304× 103 −1.715× 104 −4.881× 103

4 2.097 105 6.780 105 1.929 106

.

− × − × − ×

Diagonally dominant system:
3x1 − x2 + x3 = 7
−x1 + 6x2 − 2x3 = −6
2x1 + 4x2 − 10x3 = −3

Jacobi iteration of diagonally dominant system: n x1 x2 x3

0 0 0 0
1 2.333 −0.6111 0.5222
2 1.955 −0.5000 0.4911
3 2.003 −0.5025 0.4996
4 1.999 −0.5003 0.4998

29. Let xi(n) be the value of the nth iteration of xi. Then we have x1(n + 1) = b1 − a1x2(n). Applying
this with n = 0 and n = 1, we obtain the 2 equations

1 = b1 − a1(0)

5 = b1 a1( 2)− −
Solve this system for the quantities b1and a1 to obtain b1 = 1 and a1 = 2. Thus x1(n+1) = 1 2x2(n),
and hence x1(3) = 1− 2(2) = −3. Similarly we have x2(n+ 1) = b2 − a x

−
2 1(n), and so with n = 0 and

n = 1, we obtain the 2 equations

−2 = b2 − a2 (0)

2 = b2 a2 (1)−
Solve this system for the quantities b2and a2 to obtain b2 = −2 and a2 = −4. Thus x2(n + 1) =
−2 + 4x1(n), and hence x2(3) = −2 + 4(5) = 18.

30. Let xi(n) be the value of the nth iteration of xi. Then we have x1(n+ 1) = b1 − a11x2(n)− a12x3(n).
Applying this with n = 0, 1, and 2 to obtain the 3 equations

−2 = b1 − a11(0)− a12(0)

−4 = b1 − a11(−1)− a12(1)

11 = b1 a11( 4) a12(5)− − − −
Solve this system for the quantities b1, a11,and a12 to obtain b1 = 2, a11 = 1 and a12 = 1. Thus
x1(n+ 1) = −2 + x2(n)− x3(n), and hence x1(4) = 2 + ( 4) (5)

−
= 11.

−

Similarly we have x2(n+ 1) = b2 − a21x a
−

1(n)− 22x3(n), and
−

so
−
with n

−
= 0, 1, and 2 we obtain the 3

equations

−1 = b2 − a21(0)− a22(0)

−4 = b2 − a21(−2)− a22(1)

4 = b2 a21( 4) a22(5)− − − −
Solve this system for the quantities b2, a21,and a22 to obtain b2 = 1, a21 = 2 and a22 = 1. Thus
x2(n+ 1) = −1 + 2x1(n) + x3(n), , and hence x2(4) = −1 + 2( 11)

−
+ (5) =

−
18.

−

Finally we have x
− −

3(n + 1) = b3 − a31x1(n)
equations

− a32x2(n), and so with n = 1, 2, and 3 we obtain the 3

1 = b3 − a31(0)− a32(0)

5 = b3 − a31(−2)− a32(−1)

5 = b3 − a31(−4)− a32(−4)

Solve this system for the quantities b3, a31,and a32 to obtain b3 = 1, a31 = 3 and a32 = 2. Thus
x3(n+ 1) = 1− 3x1(n) + 2x3(n), and hence x3(4) = 1− 3(−11) + 2(−4) = 26.

−
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31. Let xi(n) be the value of the nth iteration of xi. Then we have x1(n + 1) = b1 − a1x2(n). Applying
this with n = 0 and n = 1, we obtain the 2 equations

3 = b1 − a1(0)

−5 = b1 − a1(4)

Solve this system for the quantities b1and a1 to obtain b1 = 3 and a1 = 2. Thus x1(n+1) = 3 2x2(n),
and hence x1(3) = 3 − 2(−12) = 27. With Gauss-Seidel iteration we have x2(n) = b

−
2 a2x1(n), and

so using n = 1 and n = 2, we obtain the 2 equations
−

4 = b2 − a2 (3)

−12 = b2 − a2 (−5)

Solve this system for the quantities b2and a2 to obtain b2 = −2 and a2 = −2. Thus x2(n) = −2+2x1(n),
and hence x2(3) = −2 + 2(27) = 52.

32. Let xi(n) be the value of the nth iteration of xi. Then we have x1(n+ 1) = b1 − a11x2(n)− a12x3(n).
Applying this with n = 0, 1, and 2 to obtain the 3 equations

3 = b1 − a11(0)− a12(0)

7 = b1 − a11(4)− a12(12)

25 = b1 a11( 24) a12( 76)− − − − −

Solve this system for the quantities b1, a11,and a12 to obtain b1 = 3, a11 = 2 and a12 = 1. Thus
x1(n+ 1) = 3− 2x2(n) + x3(n), and hence x1(4) = 3 2(176) + (556) = 207.

−

With Gauss-Seidel iteration we have x
−

2(n+ 1) = b2 − a21x1(n+ 1)− a22x3(n), and so with n = 0, 1,
and 2 we obtain the 3 equations

4 = b2 − a21(3)− a22(0)

−24 = b2 − a21(7)− a22(12)

176 = b2 − a21(−25)− a22(−76)

Solve this system for the quantities b2, a21,and a22 to obtain b2 = 2, a21 = 2 and a22 = 3. Thus
x2(n+ 1) = −2 + 2x1(n+ 1)− 3x3(n), , and hence x2(4) = −2 + 2(207)

−
3(556)

−
= 1256.

Finally with Gauss-Seidel iteration we have x3(n) = b3 − a31x (
− −

1 n)
and

− a32x2(n), and so with n = 1, 2,
3 we obtain the 3 equations

12 = b3 − a31(4)− a32(3)

−76 = b3 − a31(−24)− a32(7)

556 = b3 a31(176) a32( 25)− − −

Solve this system for the quantities b3, a31,and a32 to obtain b3 = 3, a31 = 3 and a32 = 1. Thus
x3(n) = 3 + 3x1(n)− x3(n), and hence x3(4) = 3 + 3(207)− (−1256) = 1880.

−

Chapter 1 Supplementary Exercises

1. 2x1 − 5x2 = 1 ⇒ x2 = 2
5x1 − 1

5 . Substitute into the second equation to obtain −6x1 + 7
(
2
5x1 − 1

5

)
=

3 ⇒ x1 = −11
8 . Thus, x2 = 2

5 −11
8 − 1

5 = −3
4 .

( )
2. 3x1 − x2 = 2 ⇒ x2 = 3x1 − 2. Substitute into the second equation to obtain −5x1 + 2 (3x1 − 2) =

−1 ⇒ x1 = 3. Thus, x2 = 3 (3)− 2 = 7.

3. x1 − 4x2 = 1 ⇒ x2 = 1
4x1 − 1

4 . Substitute into the second equation to obtain −2x1 + 8
(
1
4x1 − 1

4

)
=

−2 ⇒ 0 = 0. Thus, x1 = s, and x2 = 1
4s−

1
4 .
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4. 4x1 − 2x2 = 6 ⇒ x2 = 2x1 − 3. Substitute into the second equation to obtain 6x1 − 3 (2x1 − 3) =
9 ⇒ 0 = 0. Thus, x1 = s, and x2 = 2s− 3.

5. x1 − 3x2 = 5 ⇒ x2 = 1
3x1 − 5

3 . Substitute into the second equation to obtain 3x1 − 9
(
1
3x1 − 5

3

)
=

7 ⇒ 15 = 7. Thus, the system has no solutions.

6. −6x1 +2x2 = 3 ⇒ x2 = 3x1 +
1
2 . Substitute into the second equation to obtain 15x1 − 5

(
3x1 +

1
2

)
=

4 ⇒ 0 = 13
2 . Thus, the system has no solutions.

7. Equation 3 ⇒ x3 = 3. Substitute into equation 2, −x2 + 3(3) = −2 ⇒ x2 = 11. Substitute into
equation 1, x1 + 2(11)− 4(3) = 0 ⇒ x1 = −10.

8. x3 is a free variable, so let x3 = s. Substitute into equation 2, 2x2−6s = 4 ⇒ x2 = 2+3s. Substitute
into equation 1, x1 − 4 (s) = 3 ⇒ x1 = 3 + 4s.

9. x2 and x3 are free variables, so let x2 = s1 and x3 = s2. Substitute to obtain
x

−x1 − 5s1 + s2 = −2 ⇒
1 = −5s1 + s2 + 2.

10. x2, x3, and x4 are free variables, so let x2 = s1, x3 = s2, and x4 = s3. Substitute to obtain x1 + 2s1 +
4s2 − s3 = −2 ⇒ x1 = −2s1 − 4s2 + s3 − 2.

11. x3 is a free variable, so let x3 = s. Equation 3 ⇒ x4 = −5. Substitute into equation 2, −x2+4 (−5) =
0 ⇒ x2 = 20. Substitute into equation 1, −x1 − 2 (20) + 7 (s)− 3 (−5) = 7 ⇒ x1 = 7s− 32.

12. x2 and x4 are free variables, so let x2 = s1 and x3 = s4. Substitute to obtain
x

−x1 − 5s1 + s2 = −2 ⇒
1 = −5s1 − s2 + 2.

13. x3 is a free variable, so let x3 = s. Equation 4 ⇒ x5 = 4. Substitute into equation 3, −2x4 − (4) =
0 ⇒ x4 = −2. Substitute into equation 2, x2 − 4 (s) + 2 (4) = −3 ⇒ x2 = 4s − 11. Substitute into
equation 1, x1 + (4s− 11) + 3 (s)− (−2) + (4) = 7 ⇒ x1 = −7s+ 12.

14. x3, x4, and x5 are free variables, so let x3 = s1, x4 = s2, and x5 = s3. Substitute into equation 2,
x2−(s1)+(s2) = 2 ⇒ x2 = s1−s2+2. Substitute into equation 1, 2x1+4 (s1)+3 (s3) = −1 ⇒ x1 =
−2s 3

1 − s 1
3 .2 − 2

15. 2x1 − 4x2 + 3x3 = 1
−3x1 + 5x2 + 11x3 = 0

16. 3x1 + 2x2 + 2x3 − 5x4 = 7
3x2 − 2x4 = 6

17. 4x1 + 2x2 + 5x3 = 1
7x1 − 2x2 = 1
3x1 + x2 + 2x3 = −4

18. x1 + 3x2 − 2x3 = 11
2x1 − 5x3 = 0

4x2 + 4x3 = −2
3x1 + 2x2 + 2x3 = 1

19.

[
1 −2 1 3
2 −6 5 5

−1 6 −7 3

] −2R1+R2→R2

R1+R3→R3∼

[
1 −2 1 3
0 −2 3 −1
0 4 −6 6

]

2R2+R3→R3∼

[
1 −2 1 3
0 −2 3 −1
0 0 0 4

]
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20.

[ −1 1 −2 1
2 −5 6 −1

−1 −8 6 6

] 2R1+R2→R2

−R1+R3→R3∼

[ −1 1 −2 1
0 −3 2 1
0 −9 8 5

]

−3R2+R3→R3∼

[ −1 1 −2 1
0 −3 2 1
0 0 2 2

]

21.

[ −3 2 −2 0 2
−9 6 −3 2 5
6 −4 10 6 −7

] −3R1+R2→R2

2R1+R3→R3∼

[ −3 2 −2 0 2
0 0 3 2 −1
0 0 6 6 −3

]

−2R2+R3→R3∼

[ −3 2 −2 0 2
0 0 3 2 −1
0 0 0 2 −1

]

22.

 2 −8 4 2 1
1 −3 0 2 2

−1 2 2 −4 5
−3 11 −4 2 2


− 1

2R1+R2→R2

1
2R1+R3→R3

3
2R1+R4→R4∼


2 −8 4 2 1
0 1 −2 1 3

2

0 −2 4 −3 11
2

0 −1 2 5 7
2


2R2+R3→R3

R2+R4→R4∼


2 −8 4 2 1
0 1 −2 1 3

2

0 0 0 −1 17
2

0 0 0 6 5


6R3+R4→R4∼


2 −8 4 2 1
0 1 −2 1 3

2

0 0 0 −1 17
2

0 0 0 0 56



23.

[
1 −3 4

−2 6 −7
2 −6 6

] 2R1+R2→R2

−2R1+R3→R3∼

[
1 −3 4
0 0 1
0 0 −2

]

2R2+R3→R2∼

[
1 −3 4
0 0 1
0 0 0

]

−4R2+R1→R1∼

[
1 −3 0
0 0 1
0 0 0

]

24.

[
1 2 −3 −1

−2 −3 4 3
−3 −4 5 5

] 2R1+R2→R2

3R1+R3→R3∼

[
1 2 −3 −1
0 1 −2 1
0 2 −4 2

]

−2R2+R3→R2∼

[
1 2 −3 −1
0 1 −2 1
0 0 0 0

]

−2R2+R1→R1∼

[
1 0 1 −3
0 1 −2 1
0 0 0 0

]
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25.

[
1 2 −3 2 12
1 3 −5 1 12
2 2 −2 4 18

] −R1+R2→R2

−2R1+R3→R3∼

[
1 2 −3 2 12
0 1 −2 −1 0
0 −2 4 0 −6

]

2R2+R3→R2∼

[
1 2 −3 2 12
0 1 −2 −1 0
0 0 0 −2 −6

]
− 1

2R3→R3∼

[
1 2 −3 2 12
0 1 −2 −1 0
0 0 0 1 3

]
R3+R2→R2

−2R3+R1→R1∼

[
1 2 −3 0 6
0 1 −2 0 3
0 0 0 1 3

]

−2R2+R1→R1∼

[
1 0 1 0 0
0 1 −2 0 3
0 0 0 1 3

]

26.

 1 −2 7 1 3
3 −5 19 1 2

−2 6 −18 −5 −17
1 0 3 −3 −10


−3R1+R2→R2

2R1+R3→R3

−R1+R4→R4∼

 1 −2 7 1 3
0 1 −2 −2 −7
0 2 −4 −3 −11
0 2 −4 −4 −13


−2R2+R3→R3

−2R2+R4→R4∼

 1 −2 7 1 3
0 1 −2 −2 −7
0 0 0 1 3
0 0 0 0 1


−3R4+R3→R3

7R4+R2→R2

−3R4+R1→R1∼

 1 −2 7 1 0
0 1 −2 −2 0
0 0 0 1 0
0 0 0 0 1


2R3+R2→R2

−R3+R1→R1∼

 1 −2 7 0 0
0 1 −2 0 0
0 0 0 1 0
0 0 0 0 1


2R2+R1→R1∼

 1 0 3 0 0
0 1 −2 0 0
0 0 0 1 0
0 0 0 0 1



27.

[
2 −1 1 −1

−1 3 −1 1

]
1
2R1+R2→R2∼

[
2 −1 1 −1
0 5

2 −1
2

1
2

]
Free variable, x3 = s . Row 2 ⇒ 5

2x2 − 1
2s = 1

2 ⇒ x2 = 1
5s+

1
5 . Row 1 ⇒ 2x1 −

(
1
5s+

1
5

)
+ (s) =

−1 ⇒ x1 = −2
5s−

2
5 .

28.
1 −3 4 1

−2 5 −7 1
1 −5 8 5

2R1+R2→R2

−R1+R3→R3∼
1 −3 4 1
0 −1 1 3
0 −2 4 4

−2R2+R3→R3∼

[
1 −3 4 1
0 −1 1 3
0 0 2 −2

]
[ ] [ ]

Row 3 ⇒ x3 = −1. Row 2 ⇒ −x2 +(−1) = 3 ⇒ x2 = −4 . Row 1 ⇒ x1 − 3(−4)+ 4 (−1) = 1 ⇒
x1 = −7 .
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29.

[
1 −3 1 2 2

−1 4 −4 −1 −4
2 −3 −7 8 −5

] R1+R2→R2

−2R1+R3→R3∼

[
1 −3 1 2 2
0 1 −3 1 −2
0 3 −9 4 −9

]

−3R2+R3→R3∼

[
1 −3 1 2 2
0 1 −3 1 −2
0 0 0 1 3

]
−

Free variable, x3 = s. Row 3 ⇒ x4 = −3. Row 2 ⇒ x2 − 3(s) + (−3) = −2 ⇒ x2 = 3s + 1. Row
1 ⇒ x1 − 3(3s+ 1) + (s) + 2 (−3) = 2 ⇒ x1 = 8s+ 11.

1

30.

[
2 4 9 −5 2 −5
1 2 4 −1 2 −1

−3 −6 −14 9 −3 14

] − 2R1+R2→R2

3
2R1+R3→R3∼  2 4 9 −5 2 −5

0 0 − 1
2

3
2 1 3

2

0 0 − 1
2

3
2 0 13

2


−R2+R3→R3∼

 2 4 9 −5 2 −5
0 0 − 1

2
3
2 1 3

2

0 0 0 0 −1 5



 

Free variables, x2 = s1 and x4 = s2. Row 3 ⇒ x5 = −5. Row 2 ⇒ − 1
2x3 +

3
2 (s2) + 1 (−5) = 3

2 ⇒
x3 = 3s2−13. Row 1 ⇒ 2x1+4 (s1)+9(3s2−13)−5(s2)+2 (−5) = −5 ⇒ x1 = −2s1−11s2+61.

31. We obtain the system of equations

x1 =
x2 + 80 + 120

3

x2 =
x1 + 60 + 30

3

which reduces to

3x1 − x2 = 200

−x1 + 3x2 = 90

We solve this system, and obtain x1 = 345 , and x2 = 235 .4 4

32. We obtain the system of equations

x1 =
x2 + x3 + 80

3

x2 =
x1 + x3 + 130

3

x3 =
x1 + x2 + 50

3

which reduces to

3x1 − x2 − x3 = 80

−x1 + 3x2 − x3 = 130

−x1 − x2 + 3x3 = 50

We solve this system, and obtain x1 = 85, x2 = 195 , and x3 = 155 .2 2

33. Let a and b denote the total output from each of A and B, respectively. We obtain

a = 50 + 0.50b

b = 20 + 0.30a

We solve this system, and obtain a = 70. 59 and b = 41. 18.
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34. Let a, b, and c denote the total output from each of A, B, and C, respectively. We obtain

a = 40 + 0.25b+ 0.10c

b = 70 + 0.20a+ 0.30c

c = 90 + 0.25a+ 0.30b

We solve this system, and obtain a = 88. 55, and b = 133. 35, and c = 152. 14.

35. We consider x1C6H12O6 −→ x2C2H5OH+x3CO2, which implies

6x1 − 2x2 − x3 = 0
12x1 − 6x2 = 0
6x1 x2 2x3 = 0− −

Row-reduce the augmented matrix[
6 −2 −1 0
12 −6 0 0
6 −1 −2 0

] −2R1+R2→R2

−R1+R3→R3∼

[
6 −2 −1 0
0 −2 2 0
0 1 −1 0

]
1
2R2+R3→R3∼

[
6 −2 −1 0
0 −2 2 0
0 0 0 0

]

We set x3 = s as a free variable. From row 2, −2x2+2s = 0 ⇒ x2 = s. From row 1, 6x1−2 (s)−(s) =
0 ⇒ x1 = 1s. We set s = 2 to obtain x1 = 1, x2 = 2, x3 = 2, and the balanced equation2

C6H12O6 −→ 2C2H5OH+ 2CO2

36. We consider x1HC2H3O2 + x2NaHCO3 −→ x3NaC2H3O2+x4H2O+x5CO2, which implies

4x1 + x2 − 3x3 − 2x4 = 0
2x1 + x2 − 2x3 − x5 = 0
2x1 + 3x2 − 2x3 − x4 − 2x5 = 0

x2 − x3 = 0

Row-reduce the augmented matrix 4 1 −3 −2 0 0
2 1 −2 0 −1 0
2 3 −2 −1 −2 0
0 1 −1 0 0 0

 − 1
2R1+R2→R2

− 1
2R1+R3→R3∼


4 1 −3 −2 0 0
0 1

2 −1
2 1 −1 0

0 5
2 −1

2 0 −2 0

0 1 −1 0 0 0


−5R2+R3→R3

−2R2+R4→R4∼


4 1 −3 −2 0 0
0 1

2 −1
2 1 −1 0

0 0 2 −5 3 0
0 0 0 −2 2 0


We set x5 = s as a free variable. From row 4, −2x4 + 2s = 0 ⇒ x4 = s. From row 3, 2x3 −
5 (s) + 3 (s) = 0 ⇒ x3 = s. From row 2, 1

2x2 − 1
2 (s) + (s) − (s) = 0 ⇒ x2 = s. From row 1,

4x1 + (s)− 3 (s)− 2 (s) = 0 ⇒ x1 = s.We set s = 1 to obtain x1 = 1, x2 = 1, x3 = 1, x4 = 1, x5 = 1,
and the balanced equation

HC2H3O2 +NaHCO3 NaC2H3O2 +H2O+CO2−→

37. Using Gaussian elimination with 3 significant digits of accuracy.[
3 819 37
48 −91 −12

]
−16R1+R2→R2∼

[
3 819 37
0 −13, 200 −604

]
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Row 2 ⇒ x2 = −604
−13,200 = 4. 58× 10−2. Row 1 ⇒ 3x1 + 819 4. 58× 10−2 = 37 ⇒ x1 = −0.170 .

Using partial pivoting:

( )
[

3 819 37
48 −91 −12

]
R1↔R2∼

[
48 −91 −12
3 819 37

]
(−1/16)R1+R2→R2∼ 48 −91 −12

0 825 37. 8

[ ]
Row 2 x2 = 37. 8

825 = 4. 58 10−2. Row 1 48x1 91 4. 58 10−2 = 12 x1 = 0.163⇒ × ⇒ −
(

×
)

− ⇒ −

38. Using Gaussian elimination with 3 significant digits of accuracy:[
1 −6 745 17

−3 4 902 8
49 −39 81 10

] 3R1+R2→R2

−49R1+R3→R3∼[
1 −6 745 17
0 −14 3140 59
0 255 −36, 400 −823

]
(255/14)R2+R3→R3∼[

1 −6 745 17
0 −14 3140 59
0 0 20, 800 252

]

Row 3 x3 = 252
20,800 = 1. 21 10−2. Row 2 14x2 + 3140 1. 21 10−2 = 59 x2 = 1.50.⇒ × ⇒ − × ⇒ −

( )( )
Row 1 x1 6 ( 1.50) + 745 1. 21 10−2 = 17 x1 = 1. 01.⇒ − − × ⇒ −
Using partial pivoting.[

1 −6 745 17
−3 4 902 8
49 −39 81 10

]
R1↔R3∼

[
49 −39 81 10
−3 4 902 8
1 −6 745 17

]
(3/49)R1+R2→R2

(−1/49)R1+R3→R3∼

[
49 −39 81 10
0 1. 61 907 8. 61
0 −5. 20 743 16. 8

]

R2↔R3∼

[
49 −39 81 10
0 −5. 20 743 16. 8
0 1. 61 907 8. 61

]
(1. 61/5. 20)R2+R3→R3∼

[
49 −39 81 10
0 −5. 20 743 16. 8
0 0 1140 13. 8

]

Row 3 ⇒ x3 = 13.8
1140 = 1. 21 × 10−2. Row 2 ⇒ −5. 20x2 + 743 1. 21× 10−2 = 16. 8 ⇒ x2 = −1.

50. Row 1 ⇒ 49x1 − 39 (−1. 50) + 81 1. 21× 10−2 = 10 ⇒ x1 = −1. 01

( )( )
39. n x1 x2

0 0 0
1 −0.8 0.6
2 −0.62 0.92
3 −0.524 0.848

Exact solution: x1 = −31/56 ≈ −0.554, x2 = 23/28 ≈ 0.821.

40. n x1 x2 x3

0 0 0 0
1 2.90 −1.05 2.20
2 2.45 −1.85 3.57
3 2.20 −1.55 3.54

529/157 ≈ 3.37.

Exact solution: x1 = 343/157 ≈ 2.18, x2 = −232/157 ≈ −1.48, x3 =
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41. Gauss–Seidel iteration of given linear system: n x1 x2

0 0 0
1 −0.8 0.92
2 −0.524 0.810
3 0.557 0.823−

Exact solution: x1 = −31/56 ≈ −0.554, x2 = 23/28 ≈ 0.821.

42. Gauss–Seidel iteration of given linear system: n x1 x2 x3

0 0 0 0
1 2.9 −2.07 3.77
2 2.18 −1.44 3.36
3 2.18 1.48 3.37−

Exact solution: x1 = 343/157 ≈ 2.18, x2 = −232/157 ≈ −1.48, x3 = 529/157 ≈ 3.37.




