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1.1 W = mg = 3(32.2) = 96.6 lb.

1.2 m = W/g = 100/9.81 = 10.19 kg. W = 100(0.2248) = 22.48 lb. m = 10.19(0.06852) =

0.698 slug.

1.3 d = (50 + 5/12)(0.3048) = 15.37 m.

1.4 d = 3(100)(0.3048) = 91.44 m

1.5 d = 100(3.281) = 328.1 ft

1.6 d = 50(3600)/5280 = 34.0909 mph

1.7 v = 100(0.6214) = 62.14 mph

1.8 n = 1/[60(1.341× 10−3)] = 12.43, or approximately 12 bulbs.

1.9 5(70− 32)/9 = 21.1◦ C

1.10 9(30)/5 + 32 = 86◦ F

1.11 ω = 3000(2π)/60 = 314.16 rad/sec. Period P = 2π/ω = 60/3000 = 1/50 sec.

1.12 ω = 5 rad/sec. Period P = 2π/ω = 2π/5 = 1.257 sec. Frequency f = 1/P = 5/2π =

0.796 Hz.

1.13 Speed = 40(5280)/3600 = 58.6667 ft/sec. Frequency = 58.6667/30 = 1.9556 times

per second.

1.14 x = 0.005 sin 6t, ẋ = 0.005(6) cos 6t = 0.03 cos 6t. Velocity amplitude is 0.03 m/s.

ẍ = −6(0.03) sin 6t = −0.18 sin 6t. Acceleration amplitude is 0.18 m/s2. Displacement,
velocity and acceleration all have the same frequency.

1.15 Physical considerations require the model to pass through the origin, so we seek a
model of the form f = kx. A plot of the data shows that a good line drawn by eye is given

by f = 0.2x. So we estimate k to be 0.2 lb/in.
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1.16 The script file is

x = [0:0.01:1];

subplot(2,2,1)

plot(x,sin(x),x,x),xlabel(′x (radians)′),ylabel(′x and sin(x)′),...

gtext(′x′),gtext(′sin(x)′)

subplot(2,2,2)

plot(x,sin(x)-x),xlabel(′x (radians)′),ylabel(′Error: sin(x) - x′)

subplot(2,2,3)

plot(x,100*(sin(x)-x)./sin(x)),xlabel(′x (radians)′),...

ylabel(′Percent Error′),grid

The plots are shown in the figure.
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Figure : for Problem 1.16.

From the third plot we can see that the approximation sin x ≈ x is accurate to within
5% if |x| ≤ 0.5 radians.
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1.17 For θ near π/4,

f(θ) ≈ sin
π
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1.18 For θ near π/3,

f(θ) ≈ cos
π
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For θ near 2π/3,
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1.19 For h near 25,

f(h) ≈
√

25 +
1

2
√

25
(h − 25) = 5 +

1
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(h − 25)

1.20 For r near 5,

f(r) ≈ 52 + 2(5)(r − 5) = 25 + 10(r − 5)

For r near 10,

f(r) ≈ 102 + 2(10)(r − 10) = 100 + 20(r − 10)

1.21 For h near 16,

f(h) ≈
√

16 +
1

2
√

16
(h − 16) = 4 +

1

8
(h − 16)

f(h) ≥ 0 if h > −16.
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1.22 Construct a straight line the passes through the two endpoints at p = 0 and p = 900.
At p = 0, f(0) = 0. At p = 900, f(900) = 0.002

√
900 = 0.06. This straight line is

f(p) =
0.06

900
p =

1

15, 000
p

1.23 (a) The data is described approximately by the linear function y = 54x − 1360. The
precise values given by the least squares method (Appendix C) are y = 53.5x− 1354.5.

(b) Only the loglog plot of the data gives something close to a straight line, so the data is

best described by a power function y = bxm where the approximate values are m = −0.98
and b = 3600. The precise values given by the least squares method (Appendix C) are

y = 3582.1x−0.9764.
(c) Both the loglog and semilog plot (with the y axis logarithmic) give something close

to a straight line, but the semilog plot gives the straightest line, so the data is best described
by a exponential function y = b(10)mx where the approximate values are m = −0.007 and

b = 2.1 × 105. The precise values given by the least squares method (Appendix C) are
y = 2.0622× 105(10)−0.0067x.
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1.24 With this problem, it is best to scale the data by letting x = year − 2005, to avoid
raising large numbers like 2005 to a power. Both the loglog and semilog plot (with the

y axis logarithmic) give something close to a straight line, but the semilog plot gives the
straightest line, so the data is best described by a exponential function y = b(10)mx. The

approximate values are m = 0.035 and b = 9.98.
Set y = 20 to determine how long it will take for the population to increase from 10 to

20 million. This gives 20 = 9.98(10)0.03x. Solve it for x: x = (log(20) − log(9.98))/0.035.
The answer is 8.63 years, which corresponds to 8.63 years after 2005.
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1.25 (a) If C(t)/C(0) = 0.5 when t = 500 years, then 0.5 = e−5500b, which gives b =
− ln(0.5)/5500 = 1.2603× 10−4.

(b) Solve for t to obtain t = − ln[C(t)/C(0)]/b using C(t)/C(0) = 0.9 and b = 1.2603×
10−4. The answer is 836 years. Thus the organism died 836 years ago.

(c) Using b = 1.1(1.2603 × 10−4) in t = − ln(0.9)/b gives 760 years. Using b =
0.9(1.2603× 10−4) in t = − ln(0.9)/b gives 928 years.
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1.26 Only the semilog plot of the data gives something close to a straight line, so the
data is best described by an exponential function y = b(10)mx where y is the temperature

in degrees C and x is the time in seconds. The approximate values are m = −3.67 and
b = 356. The alternate exponential form is y = be(m ln 10)x = 356e−8.451x. The time

constant is 1/8.451 = 0.1183 s.
The precise values given by the least squares method (Appendix C) are y = 356.0199(10)−3.6709x.
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1.27 Only the semilog plot of the data gives something close to a straight line, so the data is
best described by an exponential function y = b(10)mx where y is the bearing life thousands

of hours and x is the temperature in degrees F. The approximate values are m = −0.007
and b = 142. The bearing life at 150 ◦ F is estimated to be y = 142(10)−0.007(150) = 12.66,

or 12,600 hours. The alternate exponential form is y = be(m ln 10)x = 142e−0.0161x. The
time constant is 1/0.0161 = 62.1 or 6.21× 104 hr.

The precise values given by the least squares method (Appendix C) are y = 141.8603(10)−0.0070x.
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1.28 Only the semilog plot of the data gives something close to a straight line, so the
data is best described by an exponential function y = b(10)mx where y is the voltage and

x is the time in seconds. The first data point does not lie close to the straight line on
the semilog plot, but a measurement error of ±1 volt would account for the discrepancy.

The approximate values are m = −0.43 and b = 96. The alternate exponential form is
y = be(m ln 10)x = 96e−0.99x. The time constant is 1/0.99 = 1.01 s.

The precise values given by the least squares method (Appendix C) are y = 95.8063(10)−0.4333x.
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1.29 A semilog plot generated by the following script file shows that the exponential function
T − 70 = bemt fits the data well.

t = [0:300:3000];

temp = [207,182,167,155,143,135,128,123,118,114,109];

DT = temp-70;

semilogy(t,DT,t,DT,’o’)

Fitting a line by eye gives the approximate values m = −4 × 10−4 and b = 125. The
corresponding function is T (t) = 70 + 125e−4×10−4

t.

The precise values given by the least squares method (Appendix C) are m = −4.0317×
10−4 and b = 125.1276.

c©2013 McGraw-Hill. This work is only for non-profit use by instructors in courses for which

the textbook has been adopted. Any other use without publisher’s consent is unlawful.



1.30 Plots of the data on a log-log plot and rectilinear scales both give something close to
a straight line, so we try both functions. (Note that the flow should be 0 when the height

is 0, so we do not consider the exponential function and we must force the linear function
to pass through the origin by setting b = 0.) The three lowest heights give the same time,

so we discard the heights of 1 and 2 cm.
The power function fitted by eye in terms of the height h is approximately f = 4h0.9.

Note that the exponent is not close to 0.5, as it is for orifice flow. This is because the
flow through the outlet is pipe flow. For the linear function f = mh, the best fit by eye is

approximately f = 3.2h.
Using the least squares method (Appendix C) gives more precise results: f = 4.1595h0.8745

and f = 3.2028h.

c©2013 McGraw-Hill. This work is only for non-profit use by instructors in courses for which

the textbook has been adopted. Any other use without publisher’s consent is unlawful.



1.31 Plots of the data on a log-log plot and rectilinear scales both give something close to
a straight line, so we try both functions. (Note that the flow should be 0 when the height

is 0, so we do not consider the exponential function and we must force the linear function
to pass through the origin by setting b = 0.) The variable x is the height and the variable

y is the flow rate. The three lowest heights give the same time, so we discard the heights
of 1 and 2 cm.

The power function fitted by eye in terms of the height h is approximately f = 4h0.9.
Note that the exponent is not close to 0.5, as it is for orifice flow. This is because the

flow through the outlet is pipe flow. For the linear function f = mh, the best fit by eye is
approximately f = 3.7h.

Using the least squares method (Appendix C) gives more precise results: f = 4.1796h0.9381

and f = 3.6735h.
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