SOLUTIONS MANUAL

OPERATING SYSTEMS
NiNnTH EDITION
GLoBaL EpiTioN

CHAPTERS 1-9

WILLIAM STALLINGS
Balltpust o Ve

Copyright 2018: William Stallings

NOTICE

This manual contains solutions to the review
questions and homework problems in Operating
Systems, Ninth Edition, Global Edition. If you
spot an error in a solution or in the wording of a
problem, I would greatly appreciate it if you
would forward the information via email to
wlimst@me.net. An errata sheet for this manual,
if needed, is available at

http://www.box.net/shared/fa8a0oyxxl . File
name is S-0S9e-mmyy.

W.S.

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8
Chapter 9

TABLE OF CONTENTS

Computer System OVerVieWviiiiiiieiiiiiii e ciianeens 5
Operating System OVerViEWoovviiiiiiiiiiiiieesrnnnnnness 11
Process Description and Control...........coovviiiiiiiinn . 15
B I 1] =T= Lo [P 22
Mutual Exclusion and Synchronizationocoi 29
Deadlock and Starvation.........ccovvviiiiiiiii i 49
Memory Management. 65
Virtual MemMOKY e s e 71
Uniprocessor Scheduling......ccoviiiiiiiiiiiiiiie i i 82

CHAPTER 1 COMPUTER SYSTEM OVERVIEW

ANSWERS TO QUESTIONS

1.1 A processor, which controls the operation of the computer and performs

1.2

its data processing functions ; a main memory, which stores both data
and instructions; I/0 modules, which move data between the
computer and its external environment; and the system bus, which
provides for communication among processors, main memory, and I/O
modules.

User-visible registers: Enable the machine- or assembly-language
programmer to minimize main memory references by optimizing register
use. For high-level languages, an optimizing compiler will attempt to
make intelligent choices of which variables to assign to registers and
which to main memory locations. Some high-level languages, such as C,
allow the programmer to suggest to the compiler which variables should
be held in registers. Control and status registers: Used by the
processor to control the operation of the processor and by privileged,
operating system routines to control the execution of programs.

1.3 These actions fall into four categories: Processor-memory: Data may

1.4

1.5

be transferred from processor to memory or from memory to processor.
Processor-I/0: Data may be transferred to or from a peripheral device
by transferring between the processor and an I/O module. Data
processing: The processor may perform some arithmetic or logic
operation on data. Control: An instruction may specify that the
sequence of execution be altered.

An interrupt is a mechanism by which other modules (I/0, memory)
may interrupt the normal sequencing of the processor.

Multiple interrupts may be serviced by assigning different priorities to
interrupts arising from different sources. This enables a higher-priority
interrupt to be serviced first when multiple requests arrive
simultaneously; it also allows a higher-priority interrupt to preempt a
lower-priority interrupt. For example, suppose a system has assigned a
higher priority to a communication line and a lower priority to a
magnetic disk. When two simultaneous requests arrive, the computer
services the communication line. Similarly, if some disk operations are

-5-

ongoing when a request for the communication line arrives, the state of
the disk is put in a stack and the communication line operations are
catered to.

1.6 The characteristics observed while going up the memory hierarchy are
a. increasing cost per bit, b. decreasing capacity, ¢. decreasing access
time, and d. increasing frequency of access to the memory by the
processor.

1.7 The main trade-offs for determining the cache size are the speed and
the cost of the cache.

1.8 A multicore computer is a special case of a multiprocessor, in which all
of the processors are on a single chip.

1.9 Spatial locality refers to the tendency of execution to involve a
number of memory locations that are clustered. Temporal locality
refers to the tendency for a processor to access memory locations that
have been used recently.

1.10 Spatial locality is generally exploited by using larger cache blocks
and by incorporating prefetching mechanisms (fetching items of
anticipated use) into the cache control logic. Temporal locality is
exploited by keeping recently used instruction and data values in cache
memory and by exploiting a cache hierarchy.

ANSWERS TO PROBLEMS

1.1 Memory (contents in hex) : 300: 3007; 301: 4880; 302: 2881;
Step 1: 3007 > IR Step 2: 6 > AC
Step 3: 4880 - IR Step 4: 6 SUB 5 (0110 — 0101 = 0001) =1 > AC
Step 5: 2881 - IR Step 6: AC - Memory Location 881

1.2 1. a. The PC contains 300, the address of the first instruction. This
value is loaded in to the MAR.
b. The value in location 300 (which is the instruction with the value
1940 in hexadecimal) is loaded into the MBR, and the PC is
incremented. These two steps can be done in parallel.
The value in the MBR is loaded into the IR.
The address portion of the IR (940) is loaded into the MAR.
The value in location 940 is loaded into the MBR.
The value in the MBR is loaded into the AC.
The value in the PC (301) is loaded in to the MAR.
. The value in location 301 (which is the instruction with the value
5941) is loaded into the MBR, and the PC is incremented.
. The value in the MBR is loaded into the IR.
6

ceoTyo

0

1.3 a.

1.4

. a@. The address portion of the IR (941) is loaded into the MAR.

b. The value in location 941 is loaded into the MBR.

c. The old value of the AC and the value of location MBR are added
and the result is stored in the AC.

a. The value in the PC (302) is loaded in to the MAR.

. The value in location 302 (which is the instruction with the value

2941) is loaded into the MBR, and the PC is incremented.

The value in the MBR is loaded into the IR.

. The address portion of the IR (941) is loaded into the MAR.

. The value in the AC is loaded into the MBR.

The value in the MBR is stored in location 941.

o

oToo

Number of bits for memory address is 64 — 4x8 = 32. Hence, the
maximum addressable memory capacity is 232 = 4 GBytes.

. The address buses must be ideally 64 bits so that the whole address
can be transferred at once and decoded in the memory without
requiring any additional memory control logic.

In case of 64-bit data buses, the whole instruction or operand can be
transferred in one cycle. 32-bit data buses will require 2 fetch cycles
and 16-bit data buses will require 4 fetch cycles. Hence, system
speed will be reduced for lesser capacity buses.

. If the IR is to contain only the opcode, it should contain 32 bits.

However, if it contains the whole instruction, it should contain 64
bits.

In cases (a) and (b), the microprocessor will be able to access 216 =
64K bytes; the only difference is that with an 8-bit memory each
access will transfer a byte, while with a 16-bit memory an access may
transfer a byte or a 16-byte word. For case (c), separate input and
output instructions are needed, whose execution will generate
separate "I/O signals" (different from the "memory signals" generated
with the execution of memory-type instructions); at a minimum, one
additional output pin will be required to carry this new signal. For case
(d), it can support 28 = 256 input and 28 = 256 output byte ports and
the same number of input and output 16-bit ports; in either case, the
distinction between an input and an output port is defined by the
different signal that the executed input or output instruction
generated.

1.5

1.6

1.7

1.8

Clock cycle = 1/16 MHz = 62500 ps = 62.5 ns
Bus cycle = 4 x 62.5 ns = 250 ns
4 bytes transferred every 250 ns; thus transfer rate = 16 MBytes/sec.

Doubling the frequency may mean adopting a new chip manufacturing
technology (assuming each instructions will have the same number of
clock cycles); doubling the external data bus means wider (maybe
newer) on-chip data bus drivers/latches and modifications to the bus
control logic. In the first case, the speed of the memory chips will also
need to double (roughly) not to slow down the microprocessor; in the
second case, the “word length” of the memory will have to double to be
able to send/receive 64-bit quantities.

a. Input from the Teletype is stored in INPR. The INPR will only accept
data from the Teletype when FGI=0. When data arrives, it is stored
in INPR, and FGI is set to 1. The CPU periodically checks FGI. If FGI
=1, the CPU transfers the contents of INPR to the AC and sets FGI to
0.

When the CPU has data to send to the Teletype, it checks FGO. If
FGO = 0, the CPU must wait. If FGO = 1, the CPU transfers the
contents of the AC to OUTR and sets FGO to 0. The Teletype sets FGI
to 1 after the word is printed.

b. The process described in (@) is very wasteful. The CPU, which is
much faster than the Teletype, must repeatedly check FGI and FGO.
If interrupts are used, the Teletype can issue an interrupt to the CPU
whenever it is ready to accept or send data. The IEN register can be
set by the CPU (under programmer control)

If a processor is held up in attempting to read or write memory, usually
no damage occurs except a slight loss of time. However, a DMA transfer
may be to or from a device that is receiving or sending data in a stream
(e.g., disk or tape), and cannot be stopped. Thus, if the DMA module is
held up (denied continuing access to main memory), data will be lost.

Let us ignore data read/write operations and assume the processor only
fetches instructions. Then the processor needs access to main memory
once every microsecond. The DMA module is transferring characters at a
rate of 1350 characters per second, or one every 740 us. The DMA
therefore “steals” every 740th cycle. This slows down the processor

approximately %xloo% =0.14%.

1.9 a. The processor can only devote 5% of its time to I/O. Thus the
maximum I/O instruction execution rate is 10® x 0.05 = 50,000
instructions per second. The I/O transfer rate is therefore 25,000
words/second.

b. The number of machine cycles available for DMA control is

106(0.05 x 5 + 0.95 x 2) = 2.15 x 106

If we assume that the DMA module can use all of these cycles, and
ignore any setup or status-checking time, then this value is the
maximum I/O transfer rate.

1.10 a. A reference to the first instruction is immediately followed by a
reference to the second.
b. The ten accesses to a[i] within the inner for loop which occur
within a short interval of time.

1.11 Let the three memory hierarchies be M1, M2, and M3.
Let us define the following parameters:
Ts = average system access time
Ti, T2, and T3z = access time of M1, M2, and M3 respectively.
h1l, h2 = hit ratios of memories M1 and M2.
Cs = average cost per bit of combined memory.
Ci1, C2, and C3 = cost per bit of M1, M2, and M3 respectively.

Extension of Equation (1.1) to 3-level memory hierarchy:

We can say that a word is found in M1 with a probability h1l.

So the word is not found in M1 with a probability (1 - hl).

Or in other words, memory M2 is accessed with a probability (1 - hl).
As the hit ratio of M2 is h2, the word is found in M2 with a probability
(1 - hl)h2.

So, memory M3 is accessed with a probability (1 — hl) (1 - h2).

If we multiply the probabilities of access with the access times and
sum up, we will get the average system access time.

Hence, Ts = hl .T1 + (1 -hl1)h2.T2 + (1 -hl) (1 - h2).T3

Extension of Equation (1.2) to 3-level memory hierarchy:
Average cost = Total cost/Total size of memory
_CS,+C,S, +C,S,
S,+S,+S,

1.12 a. Cost of 1 GByte of main memory = C_, x 8 x 10° = $64,000
b. Cost of 1 MByte of cache memory = C_ x 8 x 10° ¢ = $400
c. From Equation 1.1:
2xT, =T, + (1 -H)T,
2x120 = (1 - H) x1500
H =1260/1500 = 0.84

1.13 There are three cases to consider:

Location of the
preferred word

Probability

Total time for
access in ns

In cache

0.85

25

Not in cache, but in main
memory

(1 -0.85) x0.8=0.12

25 + 100 = 125

Neither in cache nor in
main memory

(1 -0.85)x(1-0.8) =
0.03

10 ms + 100 + 25 =
1,000,125

Average Access Time

21.25 + 15 + 30003.75
30040 ns

0.85 x 25 + 0.12 x 125 + 0.03 x 1000125

1.14 Yes, if the stack is only used to hold the return address. If the stack is
also used to pass parameters, then the scheme will work only if it is
the control unit that removes parameters, rather than machine
instructions. In the latter case, the processor would need both a
parameter and the PC on top of the stack at the same time.

-10-

CHAPTER 2 OPERATING SYSTEM
OVERVIEW

2.1

2.2

2.3

2.4

2.5

2.6

ANSWERS TO QUESTIONS

Convenience: An operating system makes a computer more convenient
to use. Efficiency: An operating system allows the computer system
resources to be used in an efficient manner. Ability to evolve: An
operating system should be constructed in such a way as to permit the
effective development, testing, and introduction of new system
functions without interfering with service.

The kernel is a portion of the operating system that includes the most
heavily used portions of software. Generally, the kernel is maintained
permanently in main memory. The kernel runs in a privileged mode and
responds to calls from processes and interrupts from devices.

Multiprogramming is a mode of operation that provides for the
interleaved execution of two or more computer programs by a single
processor.

A process is a program in execution. A process is controlled and
scheduled by the operating system.

The execution context, or process state, is the internal data by
which the operating system is able to supervise and control the process.
This internal information is separated from the process, because the
operating system has information not permitted to the process. The
context includes all of the information that the operating system needs
to manage the process and that the processor needs to execute the
process properly. The context includes the contents of the various
processor registers, such as the program counter and data registers. It
also includes information of use to the operating system, such as the
priority of the process and whether the process is waiting for the
completion of a particular I/O event.

Process isolation: The operating system must prevent independent
processes from interfering with each other's memory, both data and
instructions. Automatic allocation and management: Programs

-11-

2.7

2.8

2.9

should be dynamically allocated across the memory hierarchy as
required. Allocation should be transparent to the programmer. Thus, the
programmer is relieved of concerns relating to memory limitations, and
the operating system can achieve efficiency by assigning memory to
jobs only as needed. Support of modular programming:
Programmers should be able to define program modules, and to create,
destroy, and alter the size of modules dynamically. Protection and
access control: Sharing of memory, at any level of the memory
hierarchy, creates the potential for one program to address the memory
space of another. This is desirable when sharing is needed by particular
applications. At other times, it threatens the integrity of programs and
even of the operating system itself. The operating system must allow
portions of memory to be accessible in various ways by various users.
Long-term storage: Many application programs require means for
storing information for extended periods of time, after the computer has
been powered down.

Time slicing is a technique adopted in time-sharing systems to distribute
CPU time to multiple users. In this technique, a system clock generates
interrupts at a particular rate. At each clock interrupt, the OS regains
control and can assign the processor to another user. Thus, at regular
time intervals, the current user is preempted and another user is loaded
in. To preserve the old user program status for later resumption, the old
user programs and data are written out to disk before the new user
programs and data are read in. Subsequently, the old user program
code and data are restored in main memory when that program is given
a turn in a subsequent time-slice.

Round robin is a scheduling algorithm in which processes are activated
in a fixed cyclic order; that is, all processes are in a circular queue. A
process that cannot proceed because it is waiting for some event (e.g.
termination of a child process or an input/output operation) returns
control to the scheduler.

A monolithic kernel is a large kernel containing virtually the complete
operating system, including scheduling, file system, device drivers, and
memory management. All the functional components of the kernel have
access to all of its internal data structures and routines. Typically, a
monolithic kernel is implemented as a single process, with all elements
sharing the same address space. A microkernel is a small privileged
operating system core that provides process scheduling, memory
management, and communication services and relies on other processes
to perform some of the functions traditionally associated with the
operating system kernel.

2.10 Multithreading is a technique in which a process, executing an

application, is divided into threads that can run concurrently.
12

2.11 A distributed operating system is a model where distributed
applications are run on multiple computers linked by communications.
It essentially comprises a set of software that operate over a collection
of independent, networked, communicating, and physically separate
computational nodes. Each individual node holds a specific software
subset of the global aggregate operating system. It provides the
illusion of a single main memory space and a single secondary memory
space, plus other unified access facilities, such as a distributed file

system.

ANSWERS TO PROBLEMS

2.1 a. In uniprogramming system, the jobs JOB1, JOB2, JOB3 and JOB4
executes in a sequential manner. JOB1 completes in 8 + 8 = 16s,
then JOB2 completes in 4 + 14 = 18s, then JOB3 completes in 6s
and then JOB4 completes in 4 + 16 = 20s; i.e. in total of 60s.

b. The multiprogramming system with RR scheduling with 2s CPU time
for each process can be illustrated as follows:

JOB1 | JOB2 [JOB3 [JOB4 [JOB1 | JOB2 | JOB3 | JOB4 | JOB1 | JOB3 [JOB1
2 4 6 8 10 12 14 16 18 20 22| 24]26]28]30]
-------------------------------------- time ---------=- s

The quantities for both (a) and (b) are as tabulated below:

Elapsed Processsor
Computer System Time Throughput Utilization
Uni-programming 60s 4 jobs/min 22/60 = 36.67%
Multi- 22s 10.9 ~ 10 100%
programming jobs/min
2.2 Time break up for the three jobs JOB1, JOB2 and JOB3 is:
JOB1 : 9ms I/O, 3ms CPU, 9ms I/O
JOB2 : 12ms I/O, 5ms CPU, 12ms I/0O
JOB3 : 5ms I/0, 4ms CPU, 5ms I/O
Illustration of execution in uni-programming system:
JOB1 JOB2 JOB 3
I I I Y e s I s O O O O
1T 1T T 17 1T 17T 1T T 1T 10 T T 1T T 1T 1T 1T T T 1T "1T"1T"1 1T 1T 1T 11 |
0 21 50 64
Titein ms
JCE1 JOR2

-13-

Hence, the total time required for completion of the jobs = 21 + 29 +
14 = 64ms

Total execution timeinCPU =3 +5+4 =12 ms

CPU utilization = 12 /64 = 0.1875 = 18.75%

Illustration of execution in multiprogramming environment:

JOB3(JOB1|JOB2

2.3

2.4

2.5

2.6

Lt rr v v rr e rerr et rr
T T 1 T 1 Y D R " L I B
14 21 29 Time in ms

COBJCOR3 1OB1 TOR2

From the above diagram, it is evident that, total time = 29 ms
Total execution time in CPU = 12 ms
CPU utilization = 12 /29 = 0.4138 = 41.38%

With time sharing, the concern is turnaround time. Time-slicing is
preferred because it gives all processes access to the processor over a
short period of time. In a batch system, the concern is with throughput,
and the less context switching, the more processing time is available for
the processes. Therefore, policies that minimize context switching are
favored.

The two modes of operation in an operating system are the user mode
and the kernel mode. At system boot time, the hardware starts in kernel
mode and loads the operating system. The user application then starts
in user mode. When the interrupt occurs, the operating system switches
to kernel mode to service the interrupt.

The system operator can review this quantity to determine the degree of
"stress" on the system. By reducing the number of active jobs allowed
on the system, this average can be kept high. A typical guideline is that
this average should be kept above 2 minutes. This may seem like a lot,
but it isn't.

a. If a conservative policy is used, at most 24/6 = 4 processes can be
active simultaneously. Because two of the drives allocated to each
process can be idle most of the time, at most 4 x 2 = 8 drives will be
idle at a time. In the best case, none of the drives will be idle.

b. To improve drive utilization, each process can be initially allocated
with four tape drives. The remaining jwo drives will be allocated on
demand. In this policy, at most [24/4 = 6 processes can be active
simultaneously. The minimum number of idle drives is 0 and the
maximum number is also 0.

-14-

CHAPTER 3 PROCESS DESCRIPTION AND

CONTROL

3.1

3.2

3.3

3.4

3.5

ANSWERS TO QUESTIONS

An instruction trace for a program is the sequence of instructions that
execute for that process.

A process is an instance of a program being executed. A program is
essentially a set of instructions written in any high-level language; it is
generally in the form of an executable file and is stored in a secondary
storage device. When this executable file is loaded on to the main
memory in order that the instructions can actually be executed, it
becomes a process. Apart from the program code, a process includes
the current activity (represented by a value in program counter),
registers, and process stacks. A program is a passive entity whereas a
process is an active entity.

Running: The process that is currently being executed. Ready: A
process that is prepared to execute when given the opportunity.
Blocked: A process that cannot execute until some event occurs, such
as the completion of an I/O operation. New: A process that has just
been created but has not yet been admitted to the pool of executable
processes by the operating system. Exit: A process that has been
released from the pool of executable processes by the operating system,
either because it halted or because it aborted for some reason.

Process preemption occurs when an executing process is interrupted by
the processor so that another process can be executed.

When an OS creates a process at the explicit request of another
process, this action is called process spawning. When one process
spawns another, the former is called the parent process and the one
spawned is called the child. Typically, these processes need to
communicate and cooperate with each other.

3.6 There are two independent concepts: whether a process is waiting on an

event (blocked or not), and whether a process has been swapped out of

-15-

3.7

main memory (suspended or not). To accommodate this 2 x 2
combination, we need two Ready states and two Blocked states.

1. The process is not immediately available for execution. 2. The
process may or may not be waiting on an event. If it is, this blocked
condition is independent of the suspend condition, and occurrence of the
blocking event does not enable the process to be executed. 3. The
process was placed in a suspended state by an agent; either itself, a
parent process, or the operating system, for the purpose of preventing
its execution. 4. The process may not be removed from this state until
the agent explicitly orders the removal.

3.8 The OS maintains tables for entities related to memory, I/0, files, and

processes. See Table 3.10 for details.

3.9 The elements of a process image are: User Data: This is the modifiable

part of the user space. It generally includes a user stack area, program
data, and programs that can be modified. User Program: This
comprises the program to be executed. Stack: They are used to store
parameters and calling addresses for procedure and system calls. Each
process has a LIFO stack associated with it. Process Control Block: It
contains many pieces of information associated with a specific process,
like the process identifier, process state information, and process control
information.

3.10 The user mode has restrictions on the instructions that can be

executed and the memory areas that can be accessed. This is to
protect the operating system from damage or alteration. In kernel
mode, the operating system does not have these restrictions, so that it
can perform its tasks.

3.11 1. Assign a unique process identifier to the new process. 2. Allocate

space for the process. 3. Initialize the process control block. 4. Set the
appropriate linkages. 5. Create or expand other data structures.

3.12 An interrupt is due to some sort of event that is external to and

independent of the currently running process, such as the completion
of an I/O operation. A trap relates to an error or exception condition
generated within the currently running process, such as an illegal file
access attempt.

3.13 Clock interrupt, I/0O interrupt, memory fault.

3.14 A mode switch may occur without changing the state of the process

that is currently in the Running state. A process switch involves taking
the currently executing process out of the Running state in favor of

-16-

another process. The process switch involves saving more state
information.

ANSWERS TO PROBLEMS

3.1 Timing diagram for the scenario:

Process P, |1 2 3 4 | 5 6

Process P; | B [4 |

Process Ps | 2 3 4 5 6 |

Process Py | 2 3 4 5 E 8 |

Dispatcher]] T []
Y

The numbers denote the priorities of the processes at the time instance.

I:IRunning I:IReady I:lBlocked / Completed

Turnaround time for P1 = 27.5 ms

Turnaround time for P, = (15 - 5) = 10 ms
Turnaround time for P3 = (35 — 10) = 25 ms
Turnaround time for P4 = (47.5 — 15) = 32.5 ms

3.2 Let the starting address of the dispatcher be 200. Traces of the
interleaved processes will be as follows:

1. 4050 18. 203 35. 4059 42. 200
2. 4051 19. 5000 ---Time Slice 43. 201
Expires
3. 4052 20. 5001 36. 200 44, 202
4, 4053 21. 5002 37. 201 45. 203
5. 4054 22. 5003 38. 202 46. 4060
---Time Slice 23. 5004 39. 203 ---P1 Exits
Expires
6. 200 ---Time Slice 40. 3025 47. 200
Expires
7. 201 24. 200 41. 3026 48. 201
8. 202 25. 201 --- I/O Request 49. 202
9. 203 26. 202 42. 200 50. 203
10. 3200 27. 203 43. 201 51. 5010
11. 3201 28. 6700 44. 202 ---P3 Exits

-17-

12. 3202 29. 6701 45. 203

13. 3203 30. 6702 46. 5005
14. 3204 --- I/O Request 47. 5006
---Time Slice 31. 4055 48. 5007

Expires
15. 200 32. 4056 49. 5008
16. 201 33. 4057 50. 5009
17. 202 34. 4058 ---Time Slice
Expires

3.3 a. New - Ready or Ready/Suspend: covered in text

Ready —» Running or Ready/Suspend: covered in text
Ready/Suspend — Ready: covered in text
Blocked —» Ready or Blocked/Suspend: covered in text
Blocked/Suspend —» Ready /Suspend or Blocked: covered in
text
Running —» Ready, Ready/Suspend, or Blocked: covered in text
Any State — Exit: covered in text

b. New — Blocked, Blocked/Suspend, or Running: A newly created
process remains in the new state until the processor is ready to take
on an additional process, at which time it goes to one of the Ready
states.
Ready — Blocked or Blocked/Suspend: Typically, a process that
is ready cannot subsequently be blocked until it has run. Some
systems may allow the OS to block a process that is currently ready,
perhaps to free up resources committed to the ready process.
Ready/Suspend — Blocked or Blocked/Suspend: Same
reasoning as preceding entry.
Ready/Suspend — Running: The OS first brings the process into
memory, which puts it into the Ready state.
Blocked —» Ready /Suspend: this transition would be done in 2
stages. A blocked process cannot at the same time be made ready
and suspended, because these transitions are triggered by two
different causes.
Blocked —» Running: When a process is unblocked, it is put into the
Ready state. The dispatcher will only choose a process from the
Ready state to run
Blocked/Suspend — Ready: same reasoning as Blocked — Ready
/Suspend
Blocked/Suspend — Running: same reasoning as Blocked —
Running
Running — Blocked/Suspend: this transition would be done in 2
stages
Exit - Any State: Can't turn back the clock

-18-

3.4 Figure 9.3 in Chapter 9 shows the result for a single blocked queue. The
figure readily generalizes to multiple blocked queues.

3.5 Penalize the Ready, suspend processes by some fixed amount, such as
one or two priority levels, so that a Ready, suspend process is chosen
next only if it has a higher priority than the highest-priority Ready
process by several levels of priority.

3.6 a. A separate queue is associated with each wait state. The
differentiation of waiting processes into queues reduces the work
needed to locate a waiting process when an event occurs that affects
it. For example, when a page fault completes, the scheduler know
that the waiting process can be found on the Page Fault Wait queue.

b. In each case, it would be less efficient to allow the process to be
swapped out while in this state. For example, on a page fault wait, it
makes no sense to swap out a process when we are waiting to bring
in another page so that it can execute.

c. The state transition diagram can be derived from the following state
transition table:

Next State
Variety of Variety of
Currently Computable Computable . .
Current State . . wait states wait states
Executing (resident) (outswapped) (resident) (outswapped)
I(E:urren_tly Rescheduled Wait
xecuting
Computable
(resident) Scheduled Outswap
Computable
(outswapped) U]
Variety of wait
states Event satisfied Outswap
(resident)
Variety of wait
states Event satisfied
(outswapped)

3.7 a. The advantage of four modes is that there is more flexibility to
control access to memory, allowing finer tuning of memory
protection. The disadvantage is complexity and processing overhead.
For example, procedures running at each of the access modes require
separate stacks with appropriate accessibility.

b. In principle, the more modes, the more flexibility, but it seems
difficult to justify going beyond four.

3.8 With j < i, a process running in D, is prevented from accessing objects in
Dj. Thus, if Dj contains information that is more privileged or is to be

-19-

kept more secure than information in D,, this restriction is appropriate.

However, this security policy can be circumvented in the following way.
A process running in Dj could read data in Dj and then copy that data

into D,. Subsequently, a process running in D, could access the
information.

3.9 a. An application may be processing data received from another process
and storing the results on disk. If there is data waiting to be taken
from the other process, the application may proceed to get that data
and process it. If a previous disk write has completed and there is
processed data to write out, the application may proceed to write to
disk. There may be a point where the process is waiting both for
additional data from the input process and for disk availability.

b. There are several ways that could be handled. A special type of
either/or queue could be used. Or the process could be put in two
separate queues. In either case, the operating system would have to
handle the details of alerting the process to the occurrence of both
events, one after the other.

3.10 The purpose of system call fork() is to create processes. It takes no
arguments and returns a process ID. The new process becomes
the child process of the caller. After a new child process is
created, both processes will execute the next instruction following
the fork()system call.

The following C routine creates a child process in UNIX:

#include
#include
#include
#include
#include

<stdio.h>

<sys/types.h> /* pid_t */
<unistd.h> /* _exit, fork */
<stdlib.h> /* exit */
<errno.h> /* errno */

int main(void)

int pid_t,pid;

/* Output from both the child and the parent process will be

written to the standard output, as they both run at the

same time. */
pid = fork(Q);
if (pid == -1)

/* Error: When fork() returns -1, an error happened */
fprintf(stderr, "Can"t fork, error %d\n", errno);
exit(EXIT_FAILURE);

}

if (pid == 0)
{

-20-

/* Child process: When fork() returns 0, we are in the
child process. */
printf('child process™);
_exit(0);

else

{

/* When fork() returns a positive number, we are iIn the
parent process (the fork return value is the PID of the newly
created child process) */

printf("'Parent Process');
printf(""Child Process id = %d", pid);
exit(0);

return O;

}

3.11 Process 0 is the first process that is created when the system boots. It
is automatically created from a predefined data structure that is loaded
at boot time. Process 1 is spawned by Process 0. It is referred as the
init process. This init process spawns other processes that may in turn
spawn child processes in a recursive manner. All processes in the
system have init as an ancestor. Process 1 is also responsible for
creating a user process for any new user who logs in to the system.

The ps command is used to get a list of the active processes in the
system. To get information about the running processes, ps —el or ps
—ef are used.

3.12 0
<child pids>
or
<child pids>
0

-21-

CHAPTER 4 THREADS

ANSWERS TO QUESTIONS

4.1 This will differ from system to system, but in general, resources are
owned by the process and each thread has its own execution state. A
few general comments about each category in Table 3.5:
Identification: the process must be identified but each thread within
the process must have its own ID. Processor State Information:
these are generally process-related. Process control information:
scheduling and state information would mostly be at the thread level;
data structuring could appear at both levels; interprocess
communication and interthread communication may both be supported;
privileges may be at both levels; memory management would generally
be at the process level; and resource info would generally be at the
process level.

4.2 Less state information is involved.
4.3 Resource ownership and scheduling/execution.

4.4 Foreground/background work; asynchronous processing; speedup of
execution by parallel processing of data; modular program structure.

4.5 The notable differences between a process and a thread can be
tabulated as follows:

-22-

Process Thread

1. | Generally, more than one Threads of the same process
process cannot share the same | can share the same memory
memory. Sharing memory unless they are specially
among processes requires allotted separate memory
additional memory- locations.
management schemes.

2. | Process creation, process Thread creation, thread
execution, and process switch execution, and thread switch
are time consuming. are much faster in

comparison.

3. | Processes are generally loosely | As the threads of a process
coupled and so a lesser amount | are tightly coupled; a greater
of resource sharing is possible. | amount of resource sharing is

possible.
4. | Communication between Communication between
processes is difficult and threads is much easier and
requires system calls. more efficient.

4.6 Multi-threading refers to an application with multiple threads running
within a process, while multi-processing refers to an application
organized across multiple OS-level processes. The advantages of
multi-threading over multi-processing are:

a. As multi-threading is a more light-weight form of concurrency than
multi-processing, the costs associated with context switching,
communication, data sharing, and synchronization are lower.

b. On single-processor machines, multithreading is particularly
advantageous when the jobs are varied in terms of time and
resource requirements and when some jobs require concurrent
processing.

c. On multiprocessor systems, multithreading takes advantage of the
additional hardware, thus resulting in better overall performance.

4.7 Advantages: 1. Since the operating system has knowledge of all the
threads in the system, if a thread of a process gets blocked, the OS may
choose to run the next one either from the same process or from a
different one. 2. The kernel can simultaneously schedule multiple
threads from the same process on multiple processors. 3. Kernel
routines can themselves be multithreaded. Disadvantages: 1. The
transfer of control from one thread to another within the same process
requires a mode switch to the kernel and so is time consuming. 2.
Creation and destruction of threads in the kernel is costlier.

-23-

4.8

4.1

4.2

The Clouds operating system is an operating system that is designed to
support a variety of distributed-object programming models. It is based
on an object-thread paradigm. Cloud objects are abstractions of
protected, passive storage and threads are the activity abstractions that
exist independent of objects. Upon creation, a thread starts executing in
a process by invoking an entry point to a procedure in that process.
Threads may move from one address space to another address space,
an activity that is called “thread migration.” During movement, a thread
carries certain information like the controlling terminal, global
parameters, and scheduling guidance.

ANSWERS TO PROBLEMS

Some examples of programs where performance is not improved by
multithreading are:
a. Sequential programs where no two portions can be executed in

parallel.
b. A shell script of UNIX that has to monitor its own working space
(such as files, environment variables, and current working directory).
c. Any computation-centric system that has a single data stream and
possible multiple instruction streams where the output of one
instruction may be required as the input or control variable of a
subsequent instruction.

Some examples of programs in which multi-threaded solutions provide
improved performances (when compared to single-threaded solutions)
are:

a. A parallelized application, like matrix multiplication or vector

processing, where the different parts (of the matrix or vector) can be
worked on in parallel on separate threads.

b. A Web server that spawns a separate thread for each request and
services each thread individually.

c. An interactive GUI program where separate threads may be created
for separate activities (like the user input, the program execution in
the processor, the output, and the performance analysis).

d. All systems that have a single instruction stream and multiple data
streams.

The implementation without using threads: The main program and
the two sub-routines can be considered as three different processes and
can be executed simultaneously. However, this incurs the overhead of
creating as well as executing different processes.

-24-

The implementation using threads: Two threads can be created for
this purpose. The main program and one of the sub-routines can be
considered as a single activity and, hence, can be implemented as a
thread. The other sub-routine can be executed as another thread. Both
threads may use the same address space.

4.3 a. The use of sessions is well suited to the needs of an interactive
graphics interface for personal computer and workstation use. It
provides a uniform mechanism for keeping track of where graphics
output and keyboard/mouse input should be directed, easing the task
of the operating system.

b. The split would be the same as any other process/thread scheme,
with address space and files assigned at the process level.

4.4 The issue here is that a machine spends a considerable amount of its
waking hours waiting for I/O to complete. In a multithreaded program,
one KLT can make the blocking system call, while the other KLTs can
continue to run. On uniprocessors, a process that would otherwise have
to block for all these calls can continue to run its other threads.

4.5 Portion of code that is inherently serial = 20% = 0.2

Portion that is parallelizable = 1- 0.2 = 0.8

Number of processors, N = 4

According to Amdahl’s law,

1
(I=f)+y
_ 1
C(1-0.8)+%8

Speedup =

4.6 As much information as possible about an address space can be
swapped out with the address space, thus conserving main memory.

-25-

4.7 The two possible outputs are:

Run 1: Run 2:

Thread X : x = 10 Thread X : x = 10
Thread X : x = 11 Thread Y : y = 100
Thread Y : y = 100 Thread ¥ : y = 99
Main Thread Exiting..... Thread X - x = 11
Thread Y - y = 99 Thread ¥ - y = 98
Thread ¥ : y = 98 Thread X : x = 12
Thread X : x = 12 Thread ¥ : y = 97
Thread ¥ : y = 97 Thread ¥ - y = 96
Thread ¥ - y = 96 Thread ¥ - y = 95
Thread X : x = 13 Main Thread Exiting.....
Thread X : x = 14 Thread ¥ - y = 94
Thread ¥ : y = 95 Thread ¥ : y = 93
Thread ¥ -y = 94 Thread X : x = 13
Thread ¥ : y = 93 Thread X : x = 14
Thread ¥ : y = 92 Thread ¥ : y = 92
Thread ¥ : y = 91 Thread ¥ - y = 93

4.8 This transformation is clearly consistent with the C language
specification, which addresses only single-threaded execution. In a
single-threaded environment, it is indistinguishable from the original.
The pthread specification also contains no clear prohibition against this
kind of transformation. And since it is a library and not a language
specification, it is not clear that it could. However, in a multithreaded
environment, the transformed version is quite different, in that it
assigns to global positives, even if the list contains only negative
elements. The original program is now broken, because the update of
global positives by thread B may be lost, as a result of thread A
writing back an earlier value of global positives. By pthread rules, a
thread-unaware compiler has turned a perfectly legitimate program into
one with undefined semantics. Source: Boehn, H. et al. "Multithreading
in C and C++." ;login, February 2007.

4.9 a. This program creates a new thread. Both the main thread and the

new thread then increment the global variable myglobal 20 times.
b. Quite unexpected! Because myglobal starts at zero, and both the

main thread and the new thread each increment it by 20, we should
see myglobal equaling 40 at the end of the program. But myglobal
equals 21, so we know that something fishy is going on here. In
thread_function(), notice that we copy myglobal into a local variable
called j. The program increments j, then sleeps for one second, and
only then copies the new j value into myglobal. That's the key.
Imagine what happens if our main thread increments myglobal just
after our new thread copies the value of myglobal into j. When
thread function () writes the value of j back to myglobal, it will
overwrite the modification that the main thread made. Source:
Robbins, D. "POSIX Threads Explained." IBM Developer Works, July
2000. www.ibm.com/developerworks/library/l-posix1.html

-26-

4.10 Let the two threads be th1 and th2. The thread th2 is assigned the
maximum priority whereas th1 is assigned a normal priority. So, even
if thread thi is set to start earlier, th2 preempts th1 and runs to
completion. It is only after th2 has completed its execution that th1i
resumes its activity.

The following Java program implements the scenario:

class X extends Thread {
public void run() {
for(int 1=0;1i<10;i++)
System.out.printIn('"\nThread X - i =" + i);
System.out._printIn(C'\nExiting Thread X");

}
}

class Y extends Thread {
public void run() {
for(int jJ=100;j<110;j++)
System.out.printIn('"\nThread Y : j

j ="+ s
System.out._printIn(C"\nExiting Thread Y');

}
}

class Runthreads {
public static void main(String args[]) {
X thl = new X();
Y th2 = new Y();
th2_setPriority(Thread .MAX_PRIORITY);
thl_start();
th2.start();

}
}

4.11 a. Some programs have logical parallelism that can be exploited to
simplify and structure the code but do not need hardware
parallelism. For example, an application that employs multiple
windows, only one of which is active at a time, could with
advantage be implemented as a set of ULTs on a single LWP. The
advantage of restricting such applications to ULTs is efficiency. ULTs
may be created, destroyed, blocked, activated, and so on. without
involving the kernel. If each ULT were known to the kernel, the
kernel would have to allocate kernel data structures for each one
and perform thread switching. Kernel-level thread switching is
more expensive than user-level thread switching.

b. The execution of user-level threads is managed by the threads
library whereas the LWP is managed by the kernel.

c. An unbound thread can be in one of four states: runnable, active,
sleeping, or stopped. These states are managed by the threads
library. A ULT in the active state is currently assigned to a LWP and
executes while the underlying kernel thread executes. We can view
the LWP state diagram as a detailed description of the ULT active
state, because an thread only has an LWP assigned to it when it is

-27-

in the Active state. The LWP state diagram is reasonably self-
explanatory. An active thread is only executing when its LWP is in
the Running state. When an active thread executes a blocking
system call, the LWP enters the Blocked state. However, the ULT
remains bound to that LWP and, as far as the threads library is
concerned, that ULT remains active.

4.12 As the text describes, the Uninterruptible state is another blocked
state. The difference between this and the Interruptible state is that in
an uninterruptible state, a process is waiting directly on hardware
conditions and therefore will hot handle any signals. This is used in
situations where the process must wait without interruption or when
the event is expected to occur quite quickly. For example, this state
may be used when a process opens a device file and the corresponding
device driver starts probing for a corresponding hardware device. The
device driver must not be interrupted until the probing is complete, or
the hardware device could be left in an unpredictable state.

-28-

CHAPTER 5 MUTUAL EXCLUSION AND
SYNCHRONIZATION

ANSWERS TO QUESTIONS

5.1 Communication among processes, sharing of and competing for
resources, synchronization of the activities of multiple processes, and
allocation of processor time to processes.

5.2 Multiple applications, structured applications, operating-system
structure.

5.3 A race condition occurs when multiple processes or threads read and
write data items so that the final outcome depends on the order of
execution of instructions in the multiple processes. For example,
suppose there are n number of processes that share a global variable c
that has an initial value ¢ = 1. At some point in the execution, a
process, say Pi, updates ¢ = 2; at some other point in the execution,
another process Pj increments c; and at some other point, another
process Py updates ¢ = 5. The final value of ¢ will depend on the order in
which these processes execute their tasks. If the order is < P;, Pj, Pk >
then the value of c will be 5 and the updates by P; and P; will be lost. On
the other hand, if the order is < Py, Pi, P; >, then the value of c will be
3, and the update by P will be lost. In the latter case, the update by P
depends on the previous update by Pi.

5.4 Processes unaware of each other: These are independent processes
that are not intended to work together. Processes indirectly aware of
each other: These are processes that are not necessarily aware of each
other by their respective process IDs, but that share access to some
object, such as an I/O buffer. Processes directly aware of each
other: These are processes that are able to communicate with each
other by process ID and which are designed to work jointly on some
activity.

5.5 Competing processes need access to the same resource at the same

time, such as a disk, file, or printer. Cooperating processes either
share access to a common object, such as a memory buffer or are able

-29-

5.6

5.7

5.8

5.9

to communicate with each other, and cooperate in the performance of
some application or activity.

Mutual exclusion: competing processes can only access a resource
that both wish to access one at a time; mutual exclusion mechanisms
must enforce this one-at-a-time policy. Deadlock: if competing
processes need exclusive access to more than one resource then
deadlock can occur if each processes gained control of one resource and
is waiting for the other resource. Starvation: one of a set of competing
processes may be indefinitely denied access to a needed resource
because other members of the set are monopolizing that resource.

Starvation refers to a situation where a runnable process is infinitely
overlooked by the scheduler for performance of a certain activity. In the
context of concurrency control using mutual exclusion, this situation
occurs when many processes are contending to enter in the critical
section and a process is indefinitely denied access. Although this process
is ready to execute in its critical section, it is never chosen and as an
outcome never runs into completion.

1. A semaphore may be initialized to a nonnegative value. 2. The wait
operation decrements the semaphore value. If the value becomes
negative, then the process executing the wait is blocked. 3. The signal
operation increments the semaphore value. If the value is not positive,
then a process blocked by a wait operation is unblocked.

A binary semaphore may only take on the values 0 and 1. A general
semaphore may take on any integer value.

5.10 A mutex is a mutual exclusion object that is created so that multiple

processes can take turns in accessing a shared variable or resource. A
binary semaphore is a synchronization variable used for signalling
among processes; it can take on only two values: 0 and 1. The mutex
and the binary semaphore are used for similar purposes.

The key difference between the two is that the process that locks a
mutex must be the one to unlock it; in a semaphore implementation,
however, if the operation wait(s) is executed by one process, the
operation signal (s) can be executed by either that process or by any
another process

-30-

5.11 A monitor is a collection of procedures, variables, and data structures
which are grouped together in a module. The characteristics that mark
it as a high-level synchronization tool and give it an edge over
primitive tools are:

a. As the variables and procedures are encapsulated, local data
variables are accessible only by the monitor’s procedures and not
by any external procedure, thus eliminating the erroneous updating
of variables.

b. A process enters the monitor by invoking one of its procedures.
Therefore, not all processes can use the monitor, and those that
can must do so only in the manner defined in its construct.

c. Only one process may execute in the monitor at a time; all other
processes that invoke the monitor are blocked, and wait for the
monitor to become available.

d. Monitors can control the time of accessing a variable by inserting
appropriate functions.

5.12 In direct addressing, each communicating process has to name the
recipient or the sender of the message explicitly. In this scheme
send() and receive() primitives are defined such that the identities
of the communicating processes are included in it as:

e send(x, msg) -sends message to process x

e receive(y, msg)- receives message from processy

Thus, a link is automatically established between exactly one pair of
communicating processes, x and y in this case. Here, each process
knows the ID of the other and each pair of processes can have only a
single link. The receiving process may or may not designate the
sending process.

On the other hand, in indirect addressing, messages are sent and
received from ports or mailboxes (which are shared data-structures
consisting of queues that can temporarily hold messages). In this
scheme send() and receive()primitives are defined as follows:

e send(M, msg)- sends message to mailbox M

e receive(M, msg)- receives message from mailbox M

Thus, a link can be established between more than one processes if
they have a shared mailbox. Between each pair of communicating
processes, more than one link may exist, where each link corresponds
to one mailbox.

5.13 1. Any number of readers may simultaneously read the file. 2. Only
one writer at a time may write to the file. 3. If a writer is writing to the
file, no reader may read it.

-31-

5.1 a.

ANSWERS TO PROBLEMS

Process P1 will only enter its critical section if flag[0] = false. Only P1
may modify flag[1], and P1 tests flag[0] only when flag[1] = true. It
follows that when P1 enters its critical section we have:

(flag[1] and (not flag[0])) = true

Similarly, we can show that when PO enters its critical section:

(flag[1] and (not flag[0])) = true

. Case 1: A single process P(i) is attempting to enter its critical

section. It will find flag[1-i] set to false, and enters the section

without difficulty.

Case 2: Both process are attempting to enter their critical section,

and turn = 0 (a similar reasoning applies to the case of turn = 1).

Note that once both processes enter the while loop, the value of turn

is modified only after one process has exited its critical section.
Subcase 2a: flag[0] = false. P1 finds flag[0] = 0, and can enter
its critical section immediately.
Subcase 2b: flag[0] = true. Since turn = 0, PO will wait in its
external loop for flag[1] to be set to false (without modifying the
value of flag[0]. Meanwhile, P1 sets flag[1] to false (and will wait
in its internal loop because turn = 0). At that point, PO will enter
the critical section.

Thus, if both processes are attempting to enter their critical section,

there is no deadlock.

5.2 It doesn't work. There is no deadlock; mutual exclusion is enforced; but
starvation is possible if turn is set to a non-contending process.

5.3 a.

5.4 a.

There is no variable that is both read and written by more than one
process (like the variable turn in Dekker's algorithm). Therefore, the
bakery algorithm does not require atomic load and store to the same
global variable.

. Because of the use of flag to control the reading of turn, we again

do not require atomic load and store to the same global variable.

The requirements that should be met in order to provide support for
mutual exclusion are: 1. Only one process should be executing in its
critical section at a time among many contending processes, i.e.,
mutual exclusion is enforced. 2. A process executing in its non-
critical section should not interfere with any other process. 3. No
deadlocks or livelocks should exist. 4. A process should be allowed to
enter its critical section within a finite amount of time (or, in other

-32-

5.5 b.

5.6 a.

words, it should satisfy the bounded-waiting condition). 5. A process
cannot execute in its critical section for an indefinite amount of time.
6. When no process is in its critical section, any process that wishes

to enter the critical section should be allowed to do so immediately.

7. No assumptions should be made about the relative speeds or the

number of processors.

When interrupt disabling is used, mutual exclusion is guaranteed
since a critical section cannot be interrupted. Also, the question of
deadlocks does not arise. However, the condition of bounded-waiting
is not met and so starvation may occur. Further, the time that a
process stays in the critical section cannot be made finite.

. Two major problems are associated with the interrupt-disabling

mechanism: 1. Since all interrupts are disabled before entry into the
critical section, the ability of the processor to interleave processes is
greatly restricted. 2. This fails to work in a multiprocessor
environment since the scope of an interrupt capability is within one
processor only. Thus, mutual exclusion cannot be guaranteed.

The read coroutine reads the cards and passes characters through a
one-character buffer, rs, to the squash coroutine. The read
coroutine also passes the extra blank at the end of every card image.
The squash coroutine need known nothing about the 80-character
structure of the input; it simply looks for double asterisks and passes
a stream of modified characters to the print coroutine via a one-
character buffer, sp. Finally, print simply accepts an incoming
stream of characters and prints it as a sequence of 125-character
lines.

. This can be accomplished using three concurrent processes. One of

these, Input, reads the cards and simply passes the characters (with
the additional trailing space) through a finite buffer, say InBuffer, to
a process Squash which simply looks for double asterisks and passes
a stream of modified characters through a second finite buffer, say
OutBuffer, to a process Output, which extracts the characters from
the second buffer and prints them in 15 column lines. A
producer/consumer semaphore approach can be used.

The initial values of x and y are 2 and 3 respectively.

After executingP1, x =6,y =4

After executing P2 after P1, x =7,y = 28

Hence, at the end of a serial schedule, the values of x and y are 7
and 28 respectively.

-33-

b. An interleaved schedule that gives same output as the serial

schedule:
Contents of
Process Statement Registers VaIL)u(e of | Value of

R1 | R2 | R3 | R4 14
P1 LOAD R1, X 2 Z _ - 5 3
P1 LOAD R2, Y > 3 - - > 3
P1 MUL R1,R2 z 3 - - 5 3
P1 STORE X, R1 6 3 - - 6 3
P2 LOAD R3, X 6 3 6 - 5 3
P2 INC R3 6 3 7 - B 3
P1 INC R2 6 2 = — 5 3
P1 STORE Y, R2 6 4 7 - =)
P2 LOAD R4, Y 6) 7 Z 5 i
P2 MUL R4, R3 6 4 7 | 28 5 7
P2 STORE X, R3 6 4 7 | 28 7 4
P2 STORE Y, R4 6 4 7 | 28 7 28

After execution of the above schedule, the values of x and y are 7
and 28 respectively, which is same as the output after serial
execution of P1 and P2.

. An interleaved schedule that gives output different from the serial
schedule:
Contents of

Process Statement Registers Vall:(e of | Value of
R1[R2 | R3 | R4 y
P1 LOAD R1, X 2 - - - 2 3
P1 LOAD R2, Y 2 3 - - 2 3
P1 MUL R1,R2 6 3 - - 2 3
P2 LOAD R3, X 6 3 2 - 2 3
P2 INC R3 6 3 3 - 2 3
P2 LOAD R4, Y 6 3 3 3 2 3
P1 STORE X, R1 6 3 3 3 6 3
P1 INC R2 6 4 3 3 6 3
P1 STORE Y, R2 6 | 4 | 3 3 6 4
P2 MUL R4, R3 6 4 9 3 6 4
P2 STORE X, R3 6 4 9 3 9 4
P2 STORE Y, R4 6 4 9 3 9 3

5.7 a.

The above schedule gives the output x = 9 and y = 3, which is not
equivalent to any serial schedule.

On casual inspection, it appears that tally will fall in the range 50 <

tally < 100 since from 0 to 50 increments could go unrecorded due
to the lack of mutual exclusion. The basic argument contends that by
running these two processes concurrently we should not be able to
derive a result lower than the result produced by executing just one

of these processes sequentially. But consider the following

interleaved sequence of the load, increment, and store operations

-34-

5.8

performed by these two processes when altering the value of the
shared variable:

1. Process A loads the value of tally, increments tally, but then
loses the processor (it has incremented its register to 1, but has
not yet stored this value.

2. Process B loads the value of tally (still zero) and performs forty-
nine complete increment operations, losing the processor after it
has stored the value 49 into the shared variable tally.

3. Process A regains control long enough to perform its first store
operation (replacing the previous tally value of 49 with 1) but is
then immediately forced to relinquish the processor.

4. Process B resumes long enough to load 1 (the current value of
tally) into its register, but then it too is forced to give up the
processor (note that this was B's final load).

5. Process A is rescheduled, but this time it is not interrupted and
runs to completion, performing its remaining 49 load, increment,
and store operations, which results in setting the value of tally to
50.

6. Process B is reactivated with only one increment and store
operation to perform before it terminates. It increments its
register value to 2 and stores this value as the final value of the
shared variable.

Some thought will reveal that a value lower than 2 cannot occur.
Thus, the proper range of final values is 2 < tally < 100.

b. For the generalized case of N processes, the range of final values is 2
< tally < (N x 50), since it is possible for all other processes to be
initially scheduled and run to completion in step (5) before Process B
would finally destroy their work by finishing last.

Spinlocks refer to a mutual exclusion mechanism in which a process
executes in an infinite loop while waiting for the value of a shared
variable lock to indicate availability. In this method, a Boolean variable
lock is defined whose value can be either TRUE or FALSE. A contending
process continually checks for the value of lock. If the value of lock is
TRUE, this implies that some other process is executing in its critical
section and so this process waits. If the value of lock is FALSE, then the
process sets lock\ as TRUE and enters its critical section. After the
process has completed its execution in the critical section, it resets the
value of lock to FALSE. For implementation, a test_and_set_lock()
instruction can be defined that sets the value of lock to TRUE and returns
the original value of lock as follows:

-35-

5.9

boolean test and_set lock(boolean *lockval)

boolean retval= *lockval;
if (retval == FALSE) *lockval = TRUE;
return retval;

}

This instruction is continually executed by a contending process till it can
gain access to its critical section. This can be implemented as follows:

/* program mutualexclusion */
const int n = /* number of processes */
boolean lock;

void P(int 1)

while(true) {
while(test_and_set lock(&lock)==TRUE)
/* do nothing */;
/* critical section */
lock = FALSE;
/* remainder */

}

void main()

lock = FALSE;
parbegin(P(1), P(2), - - . , P(n));

Consider the case in which turn equals 0 and P (1) sets blocked[1] to
true and then finds blocked[0] set to false. P(0) will then set
blocked[0] to true, find turn = 0, and enter its critical section. P (1)
will then assign 1 to turn and will also enter its critical section.

5.10 a. When a process wishes to enter its critical section, it is assigned a

ticket number. The ticket number assigned is calculated by adding
one to the largest of the ticket numbers currently held by the
processes waiting to enter their critical section and the process
already in its critical section. The process with the smallest ticket
number has the highest precedence for entering its critical section.
In case more than one process receives the same ticket number,
the process with the smallest numerical name enters its critical
section. When a process exits its critical section, it resets its ticket
number to zero.

b. If each process is assigned a unique process humber, then there is
a unique, strict ordering of processes at all times. Therefore,
deadlock cannot occur.

c. To demonstrate mutual exclusion, we first need to prove the
following lemma: if Pi is in its critical section, and Pk has calculated

-36-

its number[k] and is attempting to enter its critical section, then the
following relationship holds:

(numberfi], i) < (number[k], k)

To prove the lemma, define the following times:

T, Pireads choosing[k] for the last time, for j = k, in its first wait,
so we have choosing[k] = false at T ;.
T,» Pibegins its final execution, for j = k, of the second while

loop. We therefore have T,; < T,.
T,y Pk enters the beginning of the repeat loop.
T, Pk finishes calculating number[Kk].
T3 Pk sets choosing[k] to false. We have T\ ; < T,, < T,5.

Since at Tw1, choosing[k] = false, we have either T ; < T,; or T, 5 <
T,1- In the first case, we have number[i] < number[k], since Pi was

assigned its number prior to Pk; this satisfies the condition of the
lemma.
In the second case, we have T, < T\ 5 <T,; <T,,, and

therefore T,, < T,,. This means that at T ,, Pi has read the current
value of number[k]. Moreover, as T, is the moment at which the

final execution of the second while for j = k takes place, we have
(numberl[i], i) < (number[k], k), which completes the proof of the
lemma.

It is now easy to show the mutual exclusion is enforced. Assume
that Pi is in its critical section and Pk is attempting to enter its critical
section. Pk will be unable to enter its critical section, as it will find
number[i] # 0 and
(numberfi], i) < (number[k], k).

5.11 Suppose we have two processes just beginning; call them p0 and p1.
Both reach line 3 at the same time. Now, we'll assume both read
number[0] and number[1] before either addition takes place. Let p1
complete the line, assigning 1 to number[1], but p0 block before the
assignment. Then p1l gets through the while loop at line 5 and enters
the critical section. While in the critical section, it blocks; p0O unblocks,
and assigns 1 to number[0] at line 3. It proceeds to the while loop at
line 5. When it goes through that loop for j = 1, the first condition on
line 5 is true. Further, the second condition on line 5 is false, so p0
enters the critical section. Now p0 and p1 are both in the critical
section, violating mutual exclusion. The reason for choosing is to
prevent the while loop in line 5 from being entered when process j is
setting its number[j]. Note that if the loop is entered and then process

-37-

5.12

j reaches line 3, one of two situations arises. Either number[j] has the
value 0 when the first test is executed, in which case process i moves
on to the next process, or number[j] has a non-zero value, in which
case at some point number[j] will be greater than number[i] (since
process i finished executing statement 3 before process j began).
Either way, process i will enter the critical section before process j, and
when process j reaches the while loop, it will loop at least until process
i leaves the critical section.

This is a program that provides mutual exclusion for access to a critical
resource among N processes, which can only use the resource one at a
time. The unique feature of this algorithm is that a process need wait
no more then N - 1 turns for access. The values of control [i] for
process i are interpreted as follows: 0 = outside the critical section and
not seeking entry; 1 = wants to access critical section; 2 = has
claimed precedence for entering the critical section. The value of k
reflects whose turn it is to enter the critical section. Entry algorithm:
Process i expresses the intention to enter the critical section by
setting control [i] = 1. If no other process between k and i (in
circular order) has expressed a similar intention then process i claims
its precedence for entering the critical section by setting control [i] =
2. If i is the only process to have made a claim, it enters the critical
section by setting k = 1; if there is contention, i restarts the entry
algorithm. Exit algorithm: Process i examines the array control in
circular fashion beginning with entry i + 1. If process i finds a process
with a nonzero control entry, then k is set to the identifier of that
process.

The original paper makes the following observations: First observe that
no two processes can be simultaneously processing between their
statements L3 and L6. Secondly, observe that the system cannot be
blocked; for if none of the processes contending for access to its
critical section has yet passed its statement L3, then after a point, the
value of k will be constant, and the first contending process in the
cyclic ordering (k, k + 1, ..., N, 1, ..., k = 1) will meet no resistance.
Finally, observe that no single process can be blocked. Before any
process having executed its critical section can exit the area protected
from simultaneous processing, it must designate as its unique
successor the first contending process in the cyclic ordering, assuring
the choice of any individual contending process within N — 1 turns.
Original paper: Eisenberg, A., and McGuire, M. "Other Comments on
Dijkstra's Concurrent Programming Control Problem." Communications
of the ACM, November 1972.

-38-

5.13 To incorporate bounded waiting, we can define an additional boolean
variable waiting associated with each process. A process P[i] can
enter its critical section only if waiting[i] is FALSE or key is 1. An
implementation is as follows:

/* program mutual exclusion with bounded waiting */
int const n = /7* number of processes */

int bolt;

boolean waiting[n];

void P(int i)

while (TRUE) {

}

void main()

bolt=0;

waiting[1]=TRUE;

key = 1;

do exchange(&key, &bolt)

while ((waiting[i]!= FALSE) && (key != 0));
waiting[1]= FALSE;

/> critical section */

j=(CG +1) %n;
while ((j 1= i) && (waiting[j]== FALSE))
1=0aq +1)%n;

if g ==1i)
bolt = 0;
else

waiting[j] = FALSE;

/* remainder */

parbegin (P(1), P(2), - - . , P(M);
}

In the above algorithm, we see that when a process leaves its critical
section, it scans the array waiting[n]in a cyclic order and halts at the
first process in the order that is waiting for the critical section. It then
appoints this process as the next entrant to the critical section. Thus

the condition of being bounded is met.

-39-

5.14 var j: 0..n-1;
key: boolean;
while (true) {

waiting[i] = true;
key := true;
while (waitingl[i] && key)
key = (compare_ and swap(lock, 0, 1) == 0);
waiting[i] = false;
< critical section >
j =1+ 1 mod n;
while (j != i && !waitingl[j]l) j = j + 1 mod n;
if (j == 1) lock := false
else waiting = false;

< remainder section >

The algorithm uses the common data structures
var waiting: array [0..n - 1] of boolean
lock: boolean

These data structures are initialized to false. When a process leaves its
critical section, it scans the array waiting in the cyclic ordering (i + 1, i
+2,...,.,n-1,0,...,i-1). It designates the first process in this
ordering that is in the entry section (waiting[j] = true) as the next one
to enter the critical section. Any process waiting to enter its critical
section will thus do so within n - 1 turns.

5.15 The two are equivalent. In the definition of Figure 5.3, when the value
of the semaphore is negative, its value tells you how many processes
are waiting. With the definition of this problem, you don't have that
information readily available. However, the two versions function the
same.

5.16 a. There are two problems. First, because unblocked processes must
reenter the mutual exclusion (line 10) there is a chance that newly
arriving processes (at line 5) will beat them into the critical section.
Second, there is a time delay between when the waiting processes
are unblocked and when they resume execution and update the
counters. The waiting processes must be accounted for as soon as
they are unblocked (because they might resume execution at any
time), but it may be some time before the processes actually do
resume and update the counters to reflect this. To illustrate,
consider the case where three processes are blocked at line 9. The
last active process will unblock them (lines 25-28) as it departs. But
there is no way to predict when these processes will resume
executing and update the counters to reflect the fact that they have
become active. If a new process reaches line 6 before the
unblocked ones resume, the new one should be blocked. But the
status variables have not yet been updated so the new process will

-40-

5.17 a.

5.18 a.

gain access to the resource. When the unblocked ones eventually
resume execution, they will also begin accessing the resource. The
solution has failed because it has allowed four processes to access
the resource together.

. This forces unblocked processes to recheck whether they can begin

using the resource. But this solution is more prone to starvation
because it encourages new arrivals to “cut in line” ahead of those
that were already waiting.

This approach is to eliminate the time delay. If the departing
process updates the waiting and active counters as it unblocks
waiting processes, the counters will accurately reflect the new state
of the system before any new processes can get into the mutual
exclusion. Because the updating is already done, the unblocked
processes need not reenter the critical section at all. Implementing
this pattern is easy. Identify all of the work that would have been
done by an unblocked process and make the unblocking process do
it instead.

. Suppose three processes arrived when the resource was busy, but

one of them lost its quantum just before blocking itself at line 9
(which is unlikely, but certainly possible). When the last active
process departs, it will do three semSignal operations and set
must_wait to true. If a new process arrives before the older ones
resume, the new one will decide to block itself. However, it will
breeze past the semwait in line 9 without blocking, and when the
process that lost its quantum earlier runs it will block itself instead.
This is not an error—the problem doesn’t dictate which processes
access the resource, only how many are allowed to access it.
Indeed, because the unblocking order of semaphores is
implementation dependent, the only portable way to ensure that
processes proceed in a particular order is to block each on its own
semaphore.

. The departing process updates the system state on behalf of the

processes it unblocks.

After you unblock a waiting process, you leave the critical section
(or block yourself) without opening the mutual exclusion. The
unblocked process doesn’t reenter the mutual exclusion—it takes
over your ownership of it. The process can therefore safely update
the system state on its own. When it is finished, it reopens the
mutual exclusion. Newly arriving processes can no longer cut in
line because they cannot enter the mutual exclusion until the
unblocked process has finished. Because the unblocked process
takes care of its own updating, the cohesion of this solution is
better. However, once you have unblocked a process, you must
immediately stop accessing the variables protected by the mutual
exclusion. The safest approach is to immediately leave (after line
41

26, the process leaves without opening the mutex) or block
yourself.

Only one waiting process can be unblocked even if several are
waiting—to unblock more would violate the mutual exclusion of
the status variables. This problem is solved by having the newly
unblocked process check whether more processes should be
unblocked (line 14). If so, it passes the baton to one of them (line
15); if not, it opens up the mutual exclusion for new arrivals (line
17).

This pattern synchronizes processes like runners in a relay race.
As each runner finishes her laps, she passes the baton to the next
runner. “Having the baton” is like having permission to be on the
track. In the synchronization world, being in the mutual exclusion
is analogous to having the baton—only one person can have it..

5.19 Suppose two processes each call semwait (s) when s is initially 0, and
after the first has just done semSignalB (mutex) but not done
semWaitB (delay), the second call to semWait (s) proceeds to the
same point. Because s = -2 and mutex is unlocked, if two other
processes then successively execute their calls to semSignal (s) at
that moment, they will each do semSignalB (delay), but the effect of
the second semSignalB is not defined.

5.20

5.21

The solution is to move the else line, which appears just before

the end line in semWait to just before the end line in semSignal.
Thus, the last semSignalB (mutex) in semWait becomes unconditional
and the semSignalB (mutex) in semSignal becomes conditional. For a
discussion, see "A Correct Implementation of General Semaphores," by
Hemmendinger, Operating Systems Review, July 1988.

var a, b, m: semaphore;

a

na, nm: 0 .. +00;

:= 1; b :=1; m := 0; na := 0; nm := 0;

semWait (b); na <« na + 1; semSignal (b) ;
semWait(a); nm <« nm + 1;

semWait (b); na < na - 1;

if na = 0 then semSignal (b); semSignal (m)
else semSignal (b); semSignal (a)

endif;

semWait (m); nm < nm - 1;
<critical sections>;
if nm = 0 then semSignal (a)

else semSignal (m)

endif;

The code has a major problem. The vV (passenger released) in the car
code can unblock a passenger blocked on P (passenger released)
that is NOT the one riding in the car that did the v ().

-42-

5.22

Producer Consumer S n delay
1 1 0 0
2 semWaitB(s) 0 0 0
3 n++ 0 1 0
4 if (n==1) 0 1 1
(semSignalB(dela
y))
5 semSignalB(s) 1 1 1
6 semWaitB(delay) 1 1 0
7 semWaitB(s) 0 1 0
8 n-- 0 0 0
9 if (n==0)
(semWaitB(delay))
10 semWaitB(s)

Both producer and consumer are blocked.

-43-

5.23
program producerconsumer;
var n: integer;
s: (*binary*) semaphore (:=1);
delay: (*binary*) semaphore (:= 0);
procedure producer;
begin
repeat
produce;
semWaitB(s);
append;
n:=n+1;
if n=0 then semSignalB(delay);
semSignalB(s)
forever
end;
procedure consumer;
begin
repeat
semWaitB(s);
take;
n:=n-1;
if n = -1 then
begin
semSignalB(s);
semWaitB(delay);
semWaitB(s)
end;
consume;
semSignalB(s)
forever
end;
begin (*main program*)
n:=0;
parbegin
producer; consumer
parend
end.

5.24 Any of the interchanges listed would result in an incorrect program.

The semaphore s controls access to the critical region and you only
want the critical region to include the append or take function.

-44-

5.25

Scheduled step of full's state & Buffer empty’s state &
execution queue queue
Initialization full=0 000 empty = +3

Ca executes cl full = -1 (Ca) 000 empty = +3
Cb executes c1 full = -2 (Ca, Cb) 000 empty = +3
Pa executes p1l full = -2 (Ca, Cb) 000 empty = +2
Pa executes p2 full = -2 (Ca, Cb) X00 empty = +2
Pa executes p3 full = -1 (Cb) Ca X00 empty = +2
Ca executes c2 full = -1 (Cb) 000 empty = +2
Ca executes c3 full = -1 (Cb) 000 empty = +3
Pb executes p1 full = -1 (Cb) 000 empty = +2
Pa executes p1 full = -1 (Cb) 000 empty = +1
Pa executes p2 full = -1 (Cb) X00 empty = +1
Pb executes p2 full = -1 (Cb) XXO empty = +1
Pb executes p3 full = 0 (Ch) XXO empty = +1
Pc executes p1 full = 0 (Cb) XXO empty =0
Cb executes c2 full =0 XO00 empty = 0
Pc executes p2 full=0 XXO empty =0
Cb executes c3 full =0 XXO empty = +1
Pa executes p3 full = +1 XXO empty = +1
Pb executes p1-p3 full = +2 XXX empty =0
Pc executes p3 full = +3 XXX empty =0
Pa executes p1 full = +3 XXX empty = -1(Pa)
Pd executes p1 full = +3 XXX Empty = -2(Pa, Pd)
Ca executes cl1-c3 full = +2 XXO empty = -1(Pd) Pa
Pa executes p2 full = +2 XXX empty = -1(Pd)
Cc executes cl-c2 full = +1 XXO empty = -1(Pd)
Pa executes p3 full = +2 XXO empty = -1(Pd)
Cc executes c3 full = +2 XXO empty =0(Pd
Pd executes p2-p3 full = +3 XXX empty =0

Differences from one step to the next are highlighted in red.

5.26

-45-

#define REINDEER 9 /* max # of reindeer

*/

#define ELVES 3 /*size of elf group */

/* Semaphores */

only elves =3, /* 3 go to Santa */

emutex = 1, /* update elf cnt */

rmutex = 1, /* update rein_ct */

rein_semWait = 0, /* block early arrivals
back from islands */

sleigh =0, /*all reindeer
semWait
around the sleigh */
done =0, /* toys all delivered */
santa_semSignal =0, /* Ist2 elves semWait
on
this outside Santa's shop
*/
santa = 0, /* Santa sleeps on this
blocked semaphore
*/
problem = 0, /* semWait to pose
the
question to Santa */
elf done =0; /* receive reply */

/* Shared Integers */

rein_ct=0; /* # of reindeer back
*/
elf ct=0; /* # of elves with problem
*/

/* Reindeer Process */
for (;;) {
tan on the beaches in the Pacific until
Christmas is close
semWait (rmutex)
rein_ct++
if (rein_ct == REINDEER) {
semSignal (rmutex)
semSignal (santa)
}
else {
semSignal (rmutex)
semWait (rein_semWait)
}
/* all reindeer semWaiting to be attached to
sleigh */
semWait (sleigh)
fly off to deliver toys
semWait (done)
head back to the Pacific islands
} /* end "forever" loop */

/* EIf Process */
for (;;) {
semWait (only_elves)
"in" */
semWait (emutex)
elf ct++
if (elf ct == ELVES) {
semSignal (emutex)
semSignal (santa) /* 3rd elf wakes
Santa */
}
else {
semSignal (emutex)
semWait (santa semSignal) /*
semWait outside

}
semWait (problem)

ask question /* Santa woke elf up */
semWait (elf _done)
semSignal (only_elves)
} /* end "forever" loop */
/* Santa Process */

/* only 3 elves

Santa's shop door */

for (;;) {
semWait (santa) /* Santa "rests" */
/* mutual exclusion is not needed on rein_ct
because if it is not equal to REINDEER,
then elves woke up Santa */
if (rein_ct == REINDEER) {
semWait (rmutex)
rein_ct=0 /* reset while blocked */
semSignal (rmutex)
for (1=0; 1 <REINDEER - 1; i++)
semSignal (rein_semWait)
for (i=0; 1 < REINDEER; i++)
semSignal (sleigh)
deliver all the toys and return
for (1=0; 1 < REINDEER; i++)
semSignal (done)
b

else { /* 3 elves have arrive */
for (1=0;1<ELVES - 1; i++)
semSignal (santa_semSignal)
semWait (emutex)
elf ct=0
semSignal (emutex)
for (i=0; 1 <ELVES; i++) {
semSignal (problem)
answer that question
semSignal (elf done)

46-
46}

} /* end "forever" loop */

5.27 a. There is an array of message slots that constitutes the buffer. Each
process maintains a linked list of slots in the buffer that constitute
the mailbox for that process. The message operations can
implemented as:

send (message, dest)

semWait (mbuf) semWait for message buffer available
semWait (mutex) mutual exclusion on message queue
acquire free buffer slog

copy message to slot

link slot to other messages

semSignal (dest.sem) wake destination process

semSignal (mutex) release mutual exclusion

receive (message)

semWait (own.sem) semWait for message to arrive
semWait (mutex) mutual exclusion on message queue
unlink slot from own.queue

copy buffer slot to message

add buffer slot to freelist

semSignal (mbuf) indicate message slot freed
semSignal (mutex) release mutual exclusion

where mbuf is initialized to the total number of message slots
available; own and dest refer to the queue of messages for each
process, and are initially zero.

b. This solution is taken from [TANE97]. The synchronization process
maintains a counter and a linked list of waiting processes for each
semaphore. To do a WAIT or SIGNAL, a process calls the
corresponding library procedure, wait or signal, which sends a
message to the synchronization process specifying both the operation
desired and the semaphore to be used. The library procedure then
does a RECEIVE to get the reply from the synchronization process.

When the message arrives, the synchronization process checks
the counter to see if the required operation can be completed.
SIGNALs can always complete, but WAITs will block if the value of
the semaphore is 0. If the operation is allowed, the synchronization
process sends back an empty message, thus unblocking the caller. If,
however, the operation is a WAIT and the semaphore is 0, the
synchronization process enters the caller onto the queue and does
not send a reply. The result is that the process doing the WAIT is
blocked, just as it should be. Later, when a SIGNAL is done, the
synchronization process picks one of the processes blocked on the
semaphore, either in FIFO order, priority order, or some other order,
and sends a reply. Race conditions are avoided here because the
synchronization process handles only one request at a time.

47

5.28 The code for the one-writer many readers is fine if we assume that
the readers have always priority. The problem is that the readers can
starve the writer(s) since they may never all leave the critical region,
i.e., there is always at least one reader in the critical region, hence
the ‘wrt’ semaphore may never be signaled to writers and the writer

process does not get access to ‘wrt’ semaphore and writes into the
critical region.

-48-

CHAPTER 6 DEADLOCK AND STARVATION

ANSWERS TO QUESTIONS

6.1 Examples of reusable resources are processors, I/O channels, main and
secondary memory, devices, and data structures such as files,
databases, and semaphores. Examples of consumable resources are
interrupts, signals, messages, and information in I/O buffers.

6.2 Mutual exclusion. Only one process may use a resource at a time.
Hold and wait. A process may hold allocated resources while awaiting
assignment of others. No preemption. No resource can be forcibly
removed from a process holding it.

6.3 The above three conditions, plus: Circular wait. A closed chain of
processes exists, such that each process holds at least one resource
needed by the next process in the chain.

6.4 Deadlocks can be dealt with in any of the following methods:

a. Deadlock prevention: Deadlocks can be prevented by stopping the
system from allowing one of the four necessary conditions for their
occurrence. This is done either indirectly, by preventing one of the
three necessary policy conditions (mutual exclusion, hold and wait,
no preemption), or directly, by preventing the occurrence of a
circular wait. Deadlock prevention leads to an inefficient use of
resources and an inefficient execution of processes.

b. Deadlock avoidance: This method permits the three necessary
conditions but makes judicious and dynamic choices to ensure that
the deadlock point is never reached. As such, avoidance allows more
concurrency than prevention. With deadlock avoidance, a decision is
taken on whether granting the current resource allocation request
can potentially lead to a deadlock.

c. Deadlock detection and recovery: In contrast to the above
strategies, the deadlock detection and recovery strategy does not
limit resource access or restrict process actions. Instead, the OS
periodically checks whether a deadlock has occurred in the system
and tries to recover it if one has.

6.5 Mutual exclusion restricts the usage of a resource to one user at a time.
If mutual exclusion is disallowed, then all non-sharable resources

-49-

6.6

6.7

6.1

6.2

become sharable. While this may not hamper some activities (like a
read-only file being accessed by a number of users), it poses serious
problems for activities that require non-sharable resources (like writing
to a file). Preventing mutual exclusion in these situations gives
undesirable results. Also, there are some resources (like printers) that
are inherently non-sharable, and it is impossible to disallow mutual
exclusion. Thus, in general, mutual exclusion cannot be disallowed for
practical purposes.

The circular-wait condition can be prevented by defining a linear
ordering of resource types. If a process has been allocated resources of
type R, then it may subsequently request only those resources of types
following R in the ordering.

Some methods to recover from deadlocks are:

a. Abort all deadlocked processes. Though this is a common solution
adopted in operating systems, the overhead is very high in this case.

b. Back up each deadlocked process to some previously defined
checkpoint and restart all processes. This requires that rollback and
restart mechanisms be built into the system. The risk in this
approach lies in the fact that that the original deadlock may recur.

c. Detect the deadlocked processes in a circular-wait condition.
Successively abort deadlocked processes until the circular wait is
eliminated and the deadlock no longer exists. The order in which
processes are selected for abortion should be on the basis of some
criterion of minimum cost.

d. Successively preempt resources until the deadlock no longer exists. A
process that has a resource preempted from it must be rolled back to
a point prior to its acquisition of that resource.

ANSWERS TO PROBLEMS

Mutual exclusion: Only one car can occupy a given quadrant of the
intersection at a time. Hold and wait: No car ever backs up; each car
in the intersection waits until the quadrant in front of it is available. No
preemption: No car is allowed to force another car out of its way.
Circular wait: Each car is waiting for a quadrant of the intersection
occupied by another car.

Prevention: Hold-and-wait approach: Require that a car request both
quadrants that it needs and blocking the car until both quadrants can be
granted. No preemption approach: releasing an assigned quadrant is
problematic, because this means backing up, which may not be possible
if there is another car behind this car. Circular-wait approach: assign a
linear ordering to the quadrants.

-50-

Avoidance: The algorithms discussed in the chapter apply to this

problem. Essentially, deadlock is avoided by not granting requests that

might lead to deadlock.
Detection: The problem here again is one of backup.

6.3
execution, it will be able to acquire both resources.

1. Q acquires B and A, and then releases B and A. When P resumes

2. Q acquires B and A. P executes and blocks on a request for A. Q

releases B and A. When P resumes execution, it will be able to

acquire both resources.

3. Q acquires B and then P acquires and releases A. Q acquires A and
then releases B and A. When P resumes execution, it will be able to

acquire B.

4. P acquires A and then Q acquires B. P releases A. Q acquires A and

then releases B. P acquires B and then releases B.

5. P acquires and then releases A. P acquires B. Q executes and blocks
on request for B. P releases B. When Q resumes execution, it will be

able to acquire both resources.

6. P acquires A and releases A and then acquires and releases B. When

Q resumes execution, it will be able to acquire both resources.

6.4 A sequence that does not cause deadlock:

P completes
and exits

Resources | Resources
Process | Process | Resources | Resources requested | requested
P Q held by P held by Q by P by Q
- - A, B A, B
Get A A - B A, B
Release
A - - B A, B
Get B - B B A
Get A - A B B -
Release
B - A B -
Get B - B A - -
Release)) A) - v
B
Release))) Sy
A

-51-

|Q completes

and exits

Another sequence that does not cause deadlock:

Q completes
and exits

Resources | Resources
Process | Process | Resources | Resources requested requested
P Q held by P held by Q by P by Q
- - A B A, B
Get B - B A B A
Get A A B B A
Release
A - B B A
Get A - A, B B -
Release -
B - A B
Release i i B Y
A
Get B B - - -
Release _)) -
B
6.5 Given that
Total number of existing resources:
R1 R2 | R3 | R4
6 3 4 3
Snapshot at the initial time stage:
Allocation Claim
R1 | R2 | R3 | R4 R1 | R2 | R3 | R4
P1| 3 0 1 1 6 2 1 1
P2| O 1 0 0 0 2 1 2
P3| 1 1 1 0 3 2 1 0
P4 | 1 1 0 1 1 1 1 1
P5| O 0 0 0 2 1 1 1

a. Total number of resources allocated to different processes:

R1

R2

3+41+1=5

1+1

+1=3

Available matrix = Total Existing — Total Allocated

R1

R2 | R3

1

0 2

-52-

[P completes

and exits

b. Need matrix = Claim - Allocation

Need
Process | R1 | R2 | R3 | R4
P1 3 2 0 0
P2 0 1 1 2
P3 2 1 0 0
P4 0 0 1 0
P5 2 1 1 1

c. Safety algorithm:

The following matrix shows the order in which the processes can run
to completion. It also shows the resources that become available
once a given process completes and releases the resources held by it.

At each step, a process Pi can be completed if Need[i] < Available.
The Available matrix is updated as Available = Available + Allocation

Available
Process | R1 | R2 | R3 | R4
P4 2 1 2 2
P2 2 2 2 2
P5 2 2 2 2
P3 3 3 3 2
P1 6 3 4 3

Hence, the system is in a safe state and <P4, P2, P5, P3, P1> is a
safe sequence.

d. Request from P1is (1, 1, 0, 0), whereas Available is (1, 0, 2, 1). As
Request is greater than Available, this request cannot be granted.

-53-

6.6 a.

Resrce Resrce
® o
request held by

"

There is a deadlock if the scheduler goes, for example: PO-P1-P2-P0O-
P1-P2 (line by line): Each of the 6 resources will then be held by one
process, so all 3 processes are now blocked at their third line inside
the loop, waiting for a resource that another process holds. This is
illustrated by the circular wait (thick arrows) in the RAG above:
PO—-C—P2—-D—P1—-B—PO.

A)
°<\—o M

. Any change in the order of the get() calls that alphabetizes the

resources inside each process code will avoid deadlocks. More
generally, it can be a direct or reverse alphabet order, or any
arbitrary but predefined ordered list of the resources that should be
respected inside each process.

Explanation: if resources are uniquely ordered, cycles are not
possible any more because a process cannot hold a resource that
comes after another resource it is holding in the ordered list. See this
remark in Section 6.2 about Circular Wait Prevention. For example:

A B C
B D D
C E F

With this code, and starting with the same worst-case scheduling
scenario PO-P1-P2, we can only continue with either P1-P1-CR1... or
P2-P2-CR2.... For example, in the case P1-P1, we get the following
RAG without circular wait:

-54-

6.7

6.8

6.9

A B C D E F

NN
A

After entering CR1, P1 then releases all its resources and PO and P2
are free to go. Generally the same thing would happen with any fixed
ordering of the resources: one of the 3 processes will always be able
to enter its critical area and, upon exit, let the other two progress.

A deadlock occurs when process I has filled the disk with input (i =
max) and process i is waiting to transfer more input to the disk, while
process P is waiting to transfer more output to the disk and process O is
waiting to transfer more output from the disk.

Reserve a minimum number of blocks (called reso) permanently for
output buffering, but permit the nhumber of output blocks to exceed this
limit when disk space is available. The resource constraints now
become:

i + 0 < max
I <max — reso
where
0 < reso < max

If process P is waiting to deliver output to the disk, process O will
eventually consume all previous output and make at least reso pages
available for further output, thus enabling P to continue. So P cannot be
delayed indefinitely by O. Process I can be delayed if the disk is full of
I/0O; but sooner or later, all previous input will be consumed by P and
the corresponding output will be consumed by O, thus enabling I to
continue.

i+ 0+ p <max
I+ 0 <max -resp
i+ p <max - reso
i <max - (reso + resp)

-55-

6.10 a.

6.

TOMPWNH

i<—i+1
i«<i-1, p«p+1
p«<p-1; o«<o0+1
o« o0-1
p«<p+1
p«p-1

y examining the resource constraints listed in the solution to

problem 6.7, we can conclude the following:
Procedure returns can take place immediately because they
only release resources.

. Procedure calls may exhaust the disk (p = max -reso) and

lead to deadlock.

. Output consumption can take place immediately after output

becomes available.

. Output production can be delayed temporarily until all

previous output has been consumed and made at least reso
pages available for further output.

. Input consumption can take place immediately after input

becomes available.

. Input production can be delayed until all previous input and

the corresponding output has been consumed. At this point,
when i = o = 0, input can be produced provided the user
processes have not exhausted the disk (p < max -reso).

Conclusion: the uncontrolled amount of storage assigned to the user
processes is the only possible source of a storage deadlock.

6.11 Given allocation state is:

Allocation Request Available
R1|R2|R3 | R4 R1|R2|R3 | R4 R1|R2|R3 | R4
PL/IO|[O0O]1]0 2 1 0] 0|2 2 111]2
P21 2 1 0] 0|1 11 3]0]1
P3|/ 0] 1]1]0 2| 1]1]0
P41 1]1]0]0 4 1 0[3]1

Since Request[3] < Available, P3 can run into completion. So, mark

P3.

New Available = Available + Allocation[3]

Available
R1|R2 | R3| R4
2 22| 2

Since Request[1] < Available, P1 can run into completion. So, mark

P1.

New Available = Available + Allocation[1]

-56-

Available
R1|R2 | R3|R4
22|32

At this stage, neither P2 nor P4 can run to completion as the request
vectors of P2 and P4 have at least one element greater than available.

Hence, the system is deadlocked and the deadlocked processes are P2
and P4.

6.12 A recovery strategy that may be adapted is to preempt some
resources so that one of the two processes, P1 and P2, can run to
completion. Subsequently, the other will also run to completion.

The available vector, after P3 runs to completion and releases its
allocated resources, is:

Available
R1|R2 | R3|R4 | R5
0O/ 0|01 1

Two preemptions can be identified here:
1. Preempt one instance of resource R2 from process P2. The available
vector will now be as follows:

Available
R1|R2 | R3|R4 |R5
O/1]0]|1 1

Since Request[1] < Available, P1 can run into completion. After P1
releases its allocated resources, P2 can also run into completion.

2. Preempt 1 instance of resource R3 from process P1. The available
vector will be:

Available
R1|R2|R3| R4 |R5
0O 1 1 1

Since Request[2] < Available, P2 can run into completion. After P2
releases its resources, P1 can also run into completion.

Either of the options mentioned above can be used for deadlock
recovery. However, the actual decision depends upon a number of
factors, such as processor time consumed by each process thus far,

-57-

output produced by each process thus far, relative priority of the
processes, the remaining time, and the overhead associated with the
preemption of a resource.

6.13 a. The buffer is declared to be an array of shared elements of type T.
Another array defines the number of input elements available to
each process. Each process keeps track of the index j of the buffer
element it is referring to at the moment.

var buffer: array 0..max-1 of shared T;
available: shared array 0..n-1 of 0..max;

"Initialization”
var K: 1..n-1;
region available do
begin
available(0) := max;
for every k do available (k) := 0;
end

"Process i"
var j: 0..max-1; succ: 0..n-1;
begin
j :=0; succ := (i+1) mod n;
repeat
region available do
await available (i) > 0;
region buffer(j) do consume element;
region available do
begin
available (i) := available(i) - 1;
available (succ) := available (succ) + 1;
end
j 1= (j+1) mod max;
forever
end

In the above program, the construct region defines a critical region
using some appropriate mutual-exclusion mechanism. The notation

region vdo S

means that at most one process at a time can enter the critical
region associated with variable v to perform statement S.

-58-

b. A deadlock is a situation in which:

P, waits for P_; AND
P, waits for P, AND

P..; waits for P>
because

(available (0) = 0) AND
(available (1) = 0) AND

(available (n-1) = 0)

But if max > 0, this condition cannot hold because the critical regions
satisfy the following invariant:

iclaim(i)< N nZ_l:available(i): max

i=1 i=0

6.14 a. Yes. If foo() executes semWait(S) and then bar() executes
semWait(R) both processes will then block when each executes its
next instruction. Since each will then be waiting for a semSignal()
call from the other, neither will ever resume execution.

b. No. If either process blocks on a semWait() call then either the
other process will also block as described in (a) or the other process
is executing in its critical section. In the latter case, when the
running process leaves its critical section, it will execute a
semSignal() call, which will awaken the blocked process.

6.15 The current states of the claim and allocation matrices are:

(@]
Il
oo N
>
Il
U WNN R

Total number of instances of the resource = 9
Number of available resources,a=9-(1+2+2+3)=1
Let the processes be P1, P2, P3, and P4.
Let a sequence of allocation be:
P1 sinceCl —Al=1<a
Updateaas,a=a+ Al =2

P4 sinceC4 —A4=2<a
Updateaas,a=a+ A4 =5

-50-

P2 sinceC2 —A2=4<a
Updateaas,a=a+ A2 =7

P3 sinceC3—-A3=7<a
Updateaas,a=a+ A4 =9

Because all the processes can run into completion, the system is in a
safe state.

If P4 is allocated a resource, the number of available resources will be
0. At this stage, no process can run into completion and so the system
will be deadlocked.

6.16 a. In order from most-concurrent to least, there is a rough partial

order on the deadlock-handling algorithms:
1. detect deadlock and kill thread, releasing its resources

detect deadlock and roll back thread's actions

restart thread and release all resources if thread needs to wait
None of these algorithms limit concurrency before deadlock occurs,
because they rely on runtime checks rather than static restrictions.
Their effects after deadlock is detected are harder to characterize:
they still allow lots of concurrency (in some cases they enhance it),
but the computation may no longer be sensible or efficient. The
third algorithm is the strangest, since so much of its concurrency
will be useless repetition; because threads compete for execution
time, this algorithm also prevents useful computation from
advancing. Hence it is listed twice in this ordering, at both
extremes.
2. banker's algorithm

resource ordering
These algorithms cause more unnecessary waiting than the
previous two by restricting the range of allowable computations.
The banker's algorithm prevents unsafe allocations (a proper
superset of deadlock-producing allocations) and resource ordering
restricts allocation sequences so that threads have fewer options as
to whether they must wait or not.
3. reserve all resources in advance
This algorithm allows less concurrency than the previous two, but is
less pathological than the worst one. By reserving all resources in
advance, threads have to wait longer and are more likely to block
other threads while they work, so the system-wide execution is in
effect more linear.
4. restart thread and release all resources if thread needs to wait
As noted above, this algorithm has the dubious distinction of
allowing both the most and the least amount of concurrency,
depending on the definition of concurrency.

-60-

b. In order from most-efficient to least, there is a rough partial order
on the deadlock-handling algorithms:
1. reserve all resources in advance

resource ordering
These algorithms are most efficient because they involve no
runtime overhead. Notice that this is a result of the same static
restrictions that made these rank poorly in concurrency.

2. banker's algorithm

detect deadlock and kill thread, releasing its resources
These algorithms involve runtime checks on allocations which are
roughly equivalent; the banker's algorithm performs a search to
verify safety which is O(n m) in the number of threads and
allocations, and deadlock detection performs a cycle-detection
search which is O(n) in the length of resource-dependency chains.
Resource-dependency chains are bounded by the number of
threads, the number of resources, and the number of allocations.
3. detect deadlock and roll back thread's actions
This algorithm performs the same runtime check discussed
previously but also entails a logging cost which is O(n) in the total
number of memory writes performed.

4. restart thread and release all resources if thread needs to wait
This algorithm is grossly inefficient for two reasons. First, because
threads run the risk of restarting, they have a low probability of
completing. Second, they are competing with other restarting
threads for finite execution time, so the entire system advances
towards completion slowly if at all.

This ordering does not change when deadlock is more likely. The
algorithms in the first group incur no additional runtime penalty
because they statically disallow deadlock-producing execution. The
second group incurs a minimal, bounded penalty when deadlock
occurs. The algorithm in the third tier incurs the unrolling cost,
which is O(n) in the number of memory writes performed between
checkpoints. The status of the final algorithm is questionable
because the algorithm does not allow deadlock to occur; it might be
the case that unrolling becomes more expensive, but the behavior
of this restart algorithm is so variable that accurate comparative
analysis is nearly impossible.

6.17 The problem can be solved by assighing two different rules, one for the
odd philosophers and one for the even philosophers. If all the odd
philosophers pick up the left fork first and then the right fork; and all
the even philosophers pick up the right fork first and then the left fork,
the system will be deadlock free.

The following algorithms incorporate the stated logic. For the
implementation, it has been assumed that the philosophers are

-61-

numbered in an anti-clockwise manner, with the fork to the left having
same index as that of the philosopher.

/* program evendiningphilosophers */

#define N 10

/* N can be any even number denoting the number of philosophers */
int 1;

void philosopher (int i)

while (true)

think(Q);
iF((1%2)==0) /* even philosopher */
{

wait (fork [(i+1) mod N]);
wait (Fork[i]);

eat(Q);

signal (fork[i]);
signal(fork [(i+1) mod N]);

}
else /* odd philosopher */

{
wait (fork[i]);
wait (fork [(i+1) mod N]);
eat(Q);
signal (fork [(i+1) mod N]);
signal (fork[i]);

}

}

void main()

for(i=0;i<N;i++)
parbegin (philosopher (i));
by

6.18 a. Assume that the table is in deadlock, i.e., there is a nonempty set D
of philosophers such that each Pi in D holds one fork and waits for a
fork held by neighbor. Without loss of generality, assume that Pj ¢
D is a lefty. Since Pj clutches his left fork and cannot have his right
fork, his right neighbor Pk never completes his dinner and is also a
lefty. Therefore, Pk (E D. Continuing the argument rightward
around the table shows that all philosophers in D are lefties. This
contradicts the existence of at least one righty. Therefore deadlock
is not possible.

b. Assume that lefty Pj starves, i.e., there is a stable pattern of dining
in which Pj never eats. Suppose Pj holds no fork. Then Pj's left
neighbor Pi must continually hold his right fork and never finishes
eating. Thus Pi is a righty holding his right fork, but never getting
his left fork to complete a meal, i.e., Pi also starves. Now Pi's left
neighbor must be a righty who continually holds his right fork.
Proceeding leftward around the table with this argument shows that
all philosophers are (starving) righties. But Pj is a lefty: a
contradiction. Thus Pj must hold one fork.

-62-

As Pj continually holds one fork and waits for his right fork, Pj's
right neighbor Pk never sets his left fork down and never completes
a meal, i.e., Pk is also a lefty who starves. If Pk did not continually
hold his left fork, Pj could eat; therefore Pk holds his left fork.
Carrying the argument rightward around the table shows that all
philosophers are (starving) lefties: a contradiction. Starvation is
thus precluded.

6.19 One solution (6.14) waits on available forks; the other solution (6.17)
waits for the neighboring philosophers to be free. The logic is
essentially the same. The solution of Figure 6.17 is slightly more
compact.

6.20 Atomic operations are used in LINUX systems to avoid simple race
conditions. In a uniprocessor system, a thread performing an atomic
operation cannot be interrupted once the operation has started until it
has finished. In a multiprocessor system, the variable being operated
is locked from access by other threads until this operation is
completed. Some of the benefits of the implementation are:

1. Taking locks for small operations can be avoided, thus increasing
the performance.

2. It enables code portability since the behaviour of the atomic
functions is guaranteed to be unique across any architecture that
Linux supports.

A simple program to implement counters using atomic variables is:
atomic_t *mycount;

void main(Q)

printf("Increment Counter'™);
mycondition=get_condition();
if(mycondition == 1)
atomic_inc(&mycount);
printf(""Count value = %d", *mycount);

printf(*'Decrement Counter');
mycondition=get_condition();
if(nycondition == 1)
atomic_dec(&mycount);
printf(*"Count value = %d", *mycount);

}

6.21 This code causes a deadlock, because the writer lock will spin, waiting
for all readers to release the lock, including this thread.

-63-

6.22 Without using the memory barriers, on some processors it is possible
that c receives the new value of b, while d receives the old value of a.
For example, ¢ could equal 4 (what we expect), yet d could equal 1
(not what we expect). Using the mb () insures a and b are written in
the intended order, while the rmb () insures c and d are read in the
intended order.

-64-

CHAPTER 7 MEMORY MANAGEMENT

7.1

7.2

7.3

7.4

7.5

7.6

ANSWERS TO QUESTIONS

Relocation, protection, sharing, logical organization, physical
organization.

To relocate a program is to load and execute a given program to an
arbitrary place in the memory; therefore, once a program is swapped
out to the disk, it may be swapped back anywhere in the main memory.
To allow this, each program is associated with a logical address. The
logical address is generated by the CPU and is converted, with the aid of
the memory manager, to the physical address in the main memory. A
CPU register contains the values that are added to the logical address to
generate the physical address.

Some of the advantages of organizing programs and data into modules
are: 1. Modules can be written and compiled independently. All
references from one module to another can be resolved by the system
at run time. 2. Each module can be given different degrees of protection
(like read only, read-write, execute only, read-write-execute, etc.). The
overhead associated with this is quite nominal. 3. A module can be
shared among different processes by incorporating appropriate
mechanisms.

If a number of processes are executing the same program, it is
advantageous to allow each process to access the same copy of the
program rather than have its own separate copy. Also, processes that
are cooperating on some task may need to share access to the same
data structure.

By using unequal-size fixed partitions: 1. It is possible to provide one or
two quite large partitions and still have a large humber of partitions. The
large partitions can allow the entire loading of large programs. 2.
Internal fragmentation is reduced because a small program can be put
into a small partition.

Internal fragmentation refers to the wasted space internal to a partition
due to the fact that the block of data loaded is smaller than the
partition. External fragmentation is a phenomenon associated with

-65-

7.7

7.8

7.9

7.1

dynamic partitioning, and refers to the fact that a large number of small
areas of main memory external to any partition accumulates.

Address binding is the process of associating program instructions and
data with physical memory addresses so that the program can be
executed. In effect, it is the mapping of a logical address generated by
the CPU to the physical address.

This binding can be done at the following times:

Programming time: All actual physical addresses are directly specified
by the programmer in the program itself.

Compile or assembly time: The program contains symbolic address
references, and these are converted to actual physical addresses by the
compiler or assembler.

Load time: The compiler or assembler produces relative addresses. The
loader translates these to absolute addresses at the time of program
loading.

Run time: The loaded program retains relative addresses. These are
converted dynamically to absolute addresses by processor hardware.

In a paging system, programs and data stored on disk or divided into
equal, fixed-sized blocks called pages, and main memory is divided into
blocks of the same size called frames. Exactly one page can fit in one
frame.

An alternative way in which the user program can be subdivided is
segmentation. In this case, the program and its associated data are
divided into a number of segments. It is not required that all segments
of all programs be of the same length, although there is a maximum
segment length.

ANSWERS TO PROBLEMS

Here is a rough equivalence:

Relocation

Protection

Sharing

Logical Organization
Physical Organization

support modular programming

process isolation; protection and access control
protection and access control

support of modular programming

long-term storage; automatic allocation and
management

 u

-66-

7.2 The number of partitions equals the number of bytes of main memory

7.3

7.4

7.5

7.6

divided by the number of bytes in each partition: 224/216 = 28, Eight
bits are needed to identify one of the 28 partitions.

Let s and h denote the average number of segments and holes,
respectively. The probability that a given segment is followed by a hole
in memory (and not by another segment) is 0.5, because deletions and
creations are equally probable in equilibrium. so with s segments in
memory, the average number of holes must be s/2. It is intuitively
reasonable that the number of holes must be less than the number of
segments because neighboring segments can be combined into a single
hole on deletion.

Let N be the length of list of free blocks.

Best-fit: Average length of search = N, as each free block in the list is
considered, to find the best fit.

First-fit: The probability of each free block in the list to be large enough
or not large enough, for a memory request is equally likely. Thus the
probability of first free block in the list to be first fit is 1/2. For the
second free block to be first fit, the first free block should be smaller,
and the second free block should be large enough, for the memory
request. Thus the probability of second free block to be first fit is 1/2 x
1/2 = 1/4. Proceeding in the same way, probability of ith free block in
the list to be first fit is 1/2'. Thus the average length of search = 1/2 +
2/22 + 3/23 + + N/2N + N/2N

(the last term corresponds to the case, when no free block fits the
request). Above length of search has a value between 1 and 2.
Next-fit: Same as first-fit, except for the fact that search starts where
the previous first-fit search ended.

a. A criticism of the best-fit algorithm is that the space remaining after
allocating a block of the required size is so small that in general it is
of no real use. The worst fit algorithm maximizes the chance that the
free space left after a placement will be large enough to satisfy
another request, thus minimizing the frequency of compaction. The
disadvantage of this approach is that the largest blocks are allocated
first; therefore a request for a large area is more likely to fail.

b. Same as best fit.

a. When the 2-MB process is placed, it fills the leftmost portion of the
free block selected for placement. Because the diagram shows an
empty block to the left of X, the process swapped out after X was
placed must have created that empty block. Therefore, the maximum
size of the swapped out process is 1M.

b. The free block consisted of the 5M still empty plus the space occupied
by X, for a total of 7M.

-67-

c. The answers are indicated in the following figure:

4M 1 % SM SM 2M 4M M
FE | MX| NF WF BF

7.7 The results of allocation/de-allocation at each stage:

Memory Map Internal Fragmentation
Initial 512 0
Request A:100| A 128 [256]| 28 (A: 28)
Request B:40| A 64256 52 (A:28, B:24)

B
Request C:190| A | B |64| C | 118 (A:28, B:24, C:66)
Return A|128| B |64| C 90 (B:24, C:66)
Request D:60|128| B | D | C | 94 (B:24, C:66, D:4)
Return B|128|64| D | C | 70 (D:4, C:66)
Return D 256 C | 66 (C:66)
Return C 512 0

7.8 It takes 120 ns for a page lookup in case of a hit in the registers and
600 ns if there is a page-miss.

Hit ratio = 80%
Thus, the average page-lookup time = 0.8 x 120 + 0.2 x 600 = 216 ns.

X+2% ifx mod 2¥' =0

7.9 buddy, (X)=
v(x) x—2% ifx mod 2% = 2

7.10 a. Yes, the block sizes could satisfy F, = F__; + F_ .

b. This scheme offers more block sizes than a binary buddy system,
and so has the potential for less internal fragmentation, but can
cause additional external fragmentation because many uselessly
small blocks are created.

7.11 The use of absolute addresses reduces the number of times that
dynamic address translation has to be done. However, we wish the
program to be relocatable. Therefore, it might be preferable to use
relative addresses in the instruction register. Alternatively, the address
in the instruction register can be converted to relative when a process
is swapped out of memory.

-68-

7.12 a.

7.13 a.

7.14 a.

7.15 a.

The total physical memory size is 2GB.
The number of bits in the physical address = logz (2 x 239) = 31 bits

. The page size is 8KB.

The number of bits specifying page displacement = logz (8 x 210) =
13 bits

Thus, the number of bits for the page frame number = 31 — 13 =
18 bits

. The number of physical frames = 218 = 262144
. The logical address space for each process is 128MB, requiring a

total of 27 bits. The page size is the same as that of the physical
pages (i.e., 8KB). Therefore, the logical address layout is 27 bits,
with 14 bits for the page number and 13 bits for displacement.

The page size is 512 bytes that requires 9 lower bits. So, the page
number is in the higher 7 bits: 0011000. We chop it off from the
address and replace it with the frame number, which is half the
page number, that is, shifted 1 bit to the right: 0001100. Therefore
the result is this frame number concatenated with the offset
000110011: binary physical address = 0001100000110011.

. The segment number is in the higher 5 bits: 00110. We chop it off

from the address and add the remaining offset 000 0011 0011 to
the base of the segment. The base is 20 = 10100 added to the
segment number times 4,096, that is, shifted 12 bits to the left:
10100 + 0110 0000 0000 0000 = 0110 0000 0001 0100. So adding
up the 2 two underlined numbers gives: binary physical address =
0110 0000 0100 0111.

Segment 0 starts at location 830. With the offset, we have a
physical address of 830 + 228 = 1058

. Segment 2 has a length of 408 bytes which is less than 684, so this

address triggers a segment fault.
770 + 776 = 1546

. 648 + 98 = 746
. Segment 1 has a length of 110 bytes which is less than 240, so this

address triggers a segment fault.

Observe that a reference occurs to some segment in memory each
time unit, and that one segment is deleted every t references.
Because the system is in equilibrium, a new segment must be
inserted every t references; therefore, the rate of the boundary's
movement is s/t words per unit time. The system's operation time
t, is then the time required for the boundary to cross the hole, i.e.,

t, = fmr/s, where m = size of memory. The compaction operation

requires two memory references—a fetch and a store—plus
overhead for each of the (1 -f)m words to be moved, i.e., the
compaction time t_is at least 2(1 - f)m. The fraction F of the time

-69-

spent compacting is F = 1 -t,/(t, + t.), which reduces to the

expression given.
b. k=(t/2s)-1=7;F=(1-0.25)/(1 +7 x0.25) = 0.75/2.75 =
0.28

-70-

CHAPTER 8 VIRTUAL MEMORY

ANSWERS TO QUESTIONS

8.1 The use of virtual memory improves system utilization in the following
ways:

a. More processes may be maintained in main memory: The use of
virtual memory allows the loading of only portions of a process into
the main memory. Therefore more processes can enter the system,
thus resulting in higher CPU utilization.

b. A process may be larger than all of main memory: The use of virtual
memory theoretically allows a process to be as large as the disk
storage available, without taking heed of the size of the main
memory.

8.2 Thrashing is a phenomenon in virtual memory schemes, in which the
processor spends most of its time swapping pieces rather than
executing instructions.

8.3 Algorithms can be designed to exploit the principle of locality to avoid
thrashing. In general, the principle of locality allows the algorithm to
predict which resident pages are least likely to be referenced in the near
future and are therefore good candidates for being swapped out.

8.4 Factors that determine page size are:
a. Page size versus page table size: A system with a smaller page

size uses more pages, thus requiring a page table that occupies more
space. For example, if a 232 virtual address space is mapped to 4KB
(212 bytes) pages, the number of virtual pages is 22°. However, if the
page size is increased to 32KB (21> bytes), only 217 pages are
required.

b. Page size versus TLB usage: Since every access to memory must
be mapped from a virtual to a physical address, reading the page
table every time can be quite costly. Therefore, the translation
lookaside buffer (TLB) is often used. The TLB is typically of a limited
size, and when it cannot satisfy a given request (a TLB miss) the
page tables must be searched manually (either in the hardware or
the software, depending on the architecture) for the correct mapping.

-71-

8.5

8.6

8.7

Larger page sizes mean that a TLB cache of the same size can keep
track of larger amounts of memory, which avoids the costly TLB
misses.

c. Internal fragmentation of pages: Rarely do processes require the
use of an exact number of pages. As a result, it is likely that the last
page will be only partially full, causing internal fragmentation. Larger
page sizes clearly increase the potential for wasted memory in this
way since more potentially unused portions of memory are loaded
into main memory. Smaller page sizes ensure a closer match to the
actual amount of memory required in an allocation.

d. Page size versus disk access: When transferring from disk, much
of the delay is caused by seek time—the time it takes to correctly
position the read/write heads above the disk platters. Because of
this, large sequential transfers are more efficient than several smaller
transfers; transferring the same amount of data from disk to memory
often requires less time with larger pages than with smaller pages.

The TLB is a cache that contains those page table entries that have been
most recently used. Its purpose is to avoid, most of the time, having to
go to disk to retrieve a page table entry.

Demand paging is a page fetch policy in which a page is brought into
the main memory only when it is referenced, i.e., the pages are loaded
only when they are demanded during program execution. The pages
that are not accessed are thus never brought into the main memory.
When a process starts, there is a flurry of page faults. As more pages
are brought in, the principle of locality suggests that most future
references will be to those pages that have been brought in recently.
After a while, the system generally settles down and the number of
page faults drops to a low level.

Cleaning refers to determining when a modified page should be written
out to secondary memory. Two common cleaning policies are demand
cleaning and precleaning.

There are problems with using either of the two policies exclusively. This
is because, on the one hand, precleaning involves a page being written
out but remaining in the main memory until the page replacement
algorithm dictates that it can be removed. Therefore, while precleaning
allows the writing of pages in batches, it makes little sense to write out
hundreds or thousands of pages only to find that the majority of them
have been modified again before they are replaced. The transfer
capacity of secondary memory is limited in this method; it is wasted in
unnecessary cleaning operations.

-72-

On the other hand, with demand cleaning, the writing of a dirty page is
coupled to, and precedes, the reading in of a new page. This technique
may minimize page writes, but it results in the fact that a process that
suffers a page fault may have to wait for two-page transfers before it
can be unblocked. This may decrease processor utilization.

8.8 The clock policy is similar to FIFO, except that in the clock policy, any
frame with a use bit of 1 is passed over by the algorithm.

8.9 The following steps are generally used to deal with page fault traps: 1.
An internal table in the PCB (process control block) of the process is
checked to determine whether the reference is a valid or an invalid
memory access. 2. If the reference is invalid, the process is terminated.
3. If it is valid, but the page is not in memory, it is brought in. 4. A free
frame is brought from the free-frame list. 5. A disk operation is
scheduled to read the desired page into the newly allocated frame. 6.
When the disk read is complete, the internal table (which is kept with
the process and the page table) is modified. 7. The instruction
interrupted by the trap is restarted.

8.10 Because a fixed allocation policy requires that the number of frames
allocated to a process is fixed, when it comes time to bring in a new
page for a process, one of the resident pages for that process must be
swapped out (to maintain the nhumber of frames allocated at the same
amount), which is a local replacement policy.

8.11 The resident set of a process is the current number of pages of that
process in main memory. The working set of a process is the number
of pages of that process that have been referenced recently.

8.12 With demand cleaning, a page is written out to secondary memory
only when it has been selected for replacement. A precleaning policy
writes modified pages before their page frames are needed so that
pages can be written out in batches.

ANSWERS TO PROBLEMS

8.1 a. Split binary address into virtual page number and offset; use VPN as
index into page table; extract page frame number; concatenate
offset to get physical memory address

b. (i) 6,204 = 3 x 2,048 + 60 maps to VPN 3 in PFN 6
Physical address = 6 x 2,048 + 60 = 12,348
(ii) 3,021=1 x 2,048 + 973 maps to VPN 1. Page Fault occurs.
(iii) 9,000 = 4 x 2,048 + 808 maps to VPN 4 in PFN O
Physical Address = 0 x 2,048 + 808 = 808

-73-

8.2 a. 3 page faults for every 4 executions of C[i, j] = A[i, j] +Bl[i, jl.
b. Yes. The page fault frequency can be minimized by switching the
inner and outer loops.
c. After modification, there are 3 page faults for every 256 executions.

8.3 a.4 MByte
b.Number of rows: 28 x 2 = 512 entries. Each entry consist of: 24
(page number) + 24 (frame number) + 16 bits (chain index) = 64
bits = 8 bytes.
Total: 512 x 8= 4096 bytes = 4Kbytes

8.4 a. FIFO page-replacement algorithm

Page Address |yl g clbleldlipldlblalclolelalelralt]a
Stream
alalc|c|c|clc|d|d|d|d|B|b|b|b|b|b|b|d
Frames b/b/b|ble|e|lele|je|alal|lAlalalal|f|f |f|f
d/d|d{d|d|b|/b|b|b|jc|C|c|c|c|c|ala]a
Faults F F F F F F|F F|F F
Number of Faults = 10 No. of Hits = 7
b. Optimal page-replacement algorithm
Page Address)| | p gl e [pilelld|pldlplalelblelaleltlaltf]a
Stream
alalc|c|lel|le|le|e|le|lalal|Alalalalalala|d
Frames b|b|b/b/b|/b|b|(b|b|b|b|B|b|b|b|f |f|f|f
d|d|d|d|d|d|d|d|d|c|C|c|c|c|c|c|c]|c
Faults F F F | F F F
Number of Faults = 6 No. of Hits = 11
c. LRU page-replacement algorithm
Page Address |l bl g lcllb leldlblld|blalc blclalc flalf(d
Stream
alalc|c|c|d|d|d|d|d|c|C|c|c|c|c|c|c]|d
Frames b/b|/b/b/b|/b|b|b|b|b|b|B|b|b|b|f |f |f|f
d|d|d|e|le|e|le|le|ala|A|lalalala a
Hits F F|F F| F F F
Number of Faults = 7 No. of Hits = 10

The above data shows that FIFO has highest number of page faults and
Optimal has the lowest. It has generally been found that this is the

-74-

8.5

8.7

8.8

trend for most reference strings. Page faults in FIFO occur more
frequently since the pages that are in the memory for the longest time
are replaced without regarding the fact that they may have been used
quite frequently. Since this problem is overridden in LRU, the latter
shows a better performance.

9 and 10 page transfers, respectively. This is referred to as "Belady's
anomaly," and was reported in "An Anomaly in Space-Time
Characteristics of Certain Programs Running in a Paging Machine," by
Belady et al, Communications of the ACM, June 1969.

a. LRU: Hit ratio = 16/33

2217670120304515245¢61767724273323
1111111111114 44 444 4444422222222
00006 66 6222222555055050550505051444444 4
2222220000000000222277777T777T777
---7777777333311111¢6©6¢6%6¢6¢6%6¢6 3333
F F F F F F FFF F F F F F F

b. FIFO: Hit ratio = 16/33

NN oo
NN oo
NN O
W oo
W R Ul
N Ul
N Ul
DR J0
R 30
R 30
N g0
N J0
Wk Jo0
Wk aN

9NN o
=3 IEN S e le)
=3 IR Sl e)
3O K O
WO O
oW o R B
oW o Ul
oW R 0
N RO
o N R U1 oY
H N R 90
NS 90
W g0
oW 9N

c. These two policies are equally effective for this particular page trace.

The principal advantage is a savings in physical memory space. This
occurs for two reasons: (1) a user page table can be paged in to
memory only when it is needed. (2) The operating system can allocate
user page tables dynamically, creating one only when the process is
created.

Of course, there is a disadvantage: address translation requires extra
work.

Given: Total number of frames, m = 128
Size of process pi, S1 = 45

Size of process pz2, Sz = 75

Size of process p3, S3 = 33

Size of process ps, S4 = 135

a. Equal allocation algorithm: In the equal allocation algorithm, all
processes are allotted an equal number of frames, irrespective of
their memory requirements.

75

Hence, the number of frames allotted to each process = 128/4 = 32

b. Proportional allocation algorithm: In the proportional allocation
algorithm, frames are allocated in proportion to the total memory
requirements.

Allocation is given by ai = (Si/S) x m

where ai = number of frames allocated to process pi
Si = size of pi
S = total size of all processes
m = total number of frames

Here, total memory requirement, S = 3Si =45 + 75 + 33 + 135
= 288

a1 = (S1/S) x m = (45/288) x 128 = 20

a2 = (S2/S) xm = (75/288) x 128 = 33

az = (S3/S) xm = (33/288) x 128 =15

as = (Sa/S) x m = (135/288) x 128 = 60

8.9 The S/370 segments are fixed in size and not visible to the programmer.
Thus, none of the benefits listed for segmentation are realized on the
S/370, with the exception of protection. The P bit in each segment table
entry provides protection for the entire segment.

8.10 Size of page table = page size x page table entry
=8x 1024 x 6
= 49152 bytes
= 48KB

No. of virtual pages = virtual space/page size
=6 x 1024 x 1024/8
= 786432

8.11 a. 250 ns will be taken to get the page table entry, and 250 ns will be
required to access the memory location. Thus, paged memory
reference will take 500 ns.

b. Two cases:
First, when the TLB contains the entry required. In that case we pay
the 30 ns overhead on top of the 250 ns memory access time.
Hence, for TLB hit i.e. for 85% times, the time required is 250 + 30
= 280ns.
Second, when the TLB does not contain the item. Then we pay an
additional 250 ns to get the required entry into the TLB. Hence, for
TLB miss i.e. for 15% times, the time required is 250 + 250 + 30 =
530 ns.
Effective Memory Access Time (EMAT) = (280 x 0.85) + (530 x
0.15) = 317.5ns

76

8.12

8.13

8.14

c. The higher the TLB hit rate is, the smaller the EMAT is, because the
additional 250 ns penalty to get the entry into the TLB contributes
less to the EMAT.

a. A page fault occurs when a page is brought into a frame for the first
time. So, for each distinct page, a page fault occurs. If the
reference string and the page replacement algorithm are such that
once a page is swapped out, it is never required to be swapped in
again; no further page faults will occur. Hence, the lower bound of
page faults is 8.

b. At the other extreme case, it may so happen that a referenced page
is never found in the working set. In this case, a page fault occurs
on all the 24 page references. Hence, the upper bound of page
faults is 24.

a. This is a good analogy to the CLOCK algorithm. Snow falling on the
track is analogous to page hits on the circular clock buffer. The
movement of the CLOCK pointer is analogous to the movement of
the plow.

b. Note that the density of replaceable pages is highest immediately in
front of the clock pointer, just as the density of snow is highest
immediately in front of the plow. Thus, we can expect the CLOCK
algorithm to be quite efficient in finding pages to replace. In fact, it
can be shown that the depth of the snow in front of the plow is
twice the average depth on the track as a whole. By this analogy,
the number of pages replaced by the CLOCK policy on a single
circuit should be twice the number that are replaceable at a random
time. The analogy is imperfect because the CLOCK pointer does not
move at a constant rate, but the intuitive idea remains.

The snowplow analogy to the CLOCK algorithm comes from
[CARR84]; the depth analysis comes from Knuth, D. The Art of
Computer Programming, Volume 2: Sorting and Searching.
Reading, MA: Addison-Wesley, 1997 (page 256).

The processor hardware sets the reference bit to 0 when a new page is
loaded into the frame, and to 1 when a location within the frame is
referenced. The operating system can maintain a number of queues of
page-frame tables. A page-frame table entry moves from one queue to
another according to how long the reference bit from that page frame
stays set to zero. When pages must be replaced, the pages to be
replaced are chosen from the queue of the longest-life nonreferenced
frames.

-77-

8.15a.

Seq of Window Size, A

page

refs

1 2 3 4 5 6

1 1 1 1 1 1 1
2 2 12 12 12 12 12
3 3 23 123 123 123 123
4 4 34 234 1234 | 1234 | 1234
5 5 45 345 2345 [12345[12345
2 2 52 452 3452 | 3452 [13452
1 1 21 521 4521 (3452134521
3 3 13 213 5213 4521345213
3 3 3 13 213 5213 45213
2 2 32 32 132 132 5132
3 3 23 23 23 123 123
4 4 34 234 234 234 1234
5 5 45 345 2345 | 2345 | 2345
4 4 5 4 5 4 354 2354 | 2354
5 5 45 45 45 345 2345
1 1 51 451 451 451 3451
1 1 1 51 451 451 451
3 3 13 13 513 4513 | 4513
2 2 32 132 132 5132 (45132
5 5 25 325 1325 | 1325 | 1325
b., c.
A 2 3 4 5 6

S,0(4) 1 1.85 2.5 3.1 3.55 3.9

m,(A) 0.9 0.75 0.75 0.65 0.55 0.5

S,o(A) is an increasing function of A. m,,(A) is a nonincreasing

function of A.

8.16 Consider this strategy. Use a mechanism that adjusts the value of Q at

each window time as a function of the actual page fault rate

experienced during the window. The page fault rate is computed and
compared with a system-wide value for "desirable" page fault rate for
a job. The value of Q is adjusted upward (downward) whenever the

-78-

actual page fault rate of a job is higher (lower) than the desirable
value. Experimentation using this adjustment mechanism showed that
execution of the test jobs with dynamic adjustment of Q consistently
produced a lower number of page faults per execution and a decreased
average resident set size than the execution with a constant value of Q
(within a very broad range). The memory time product (MT) versus Q
using the adjustment mechanism also produced a consistent and
considerable improvement over the previous test results using a
constant value of Q.

32
8.17 2 memory 221

page frames

o1 page size
Segment: 0 0

1 —

3
7 00021ABC
Page descriptor

table
232 memory 3

221 page frames

211 page size

Main memory
(232 bytes)

a. 8 x 2K = 16K
b. 16K x 4 = 64K
Cc. 232 = 4 GBytes

-79-

(2) (3) (11)

Logical Address: Seg- Page Offset
ment

X Y 2BC

0002 1ABC

eSS

IOOOOOOOOOOOOOIOOOOOIl|01010111100|

21-bit page frame reference offset (11 bits)
(in this case, page frame = 67)

8.18 The contents of the working set, assuming that the pages are replaced
using LRU if a page fault occurs, are as follows:

Sequence of
Page Window Size
Reference

W 2 3 4

A A A A

B A B A B A B
B ° ° °

C B C A B C A B C
A CA o o

E A E A CE A BCE
D E D A E D A CED
B DB E DB A EDB
D ° ° °

E D E o o

A E A E DA o

C A C E AC A EDC
E CE o o

B E B ECB A ECB
A B A E B A o

C A C B AC o

A ° ° °

F A F ACF ACF
D F D F D A FD
F ° ° °

-80-

8.19 It is possible to shrink a process's stack by deallocating the unused
pages. By convention, the contents of memory beyond the current top
of the stack are undefined. On almost all architectures, the current top
of stack pointer is kept in a well-defined register. Therefore, the kernel
can read its contents and deallocate any unused pages as needed. The
reason that this is not done is that little is gained by the effort. If the
user program will repeatedly call subroutines that need additional space
for local variables (a very likely case), then much time will be wasted
deallocating stack space in between calls and then reallocating it later
on. If the subroutine called is only used once during the life of the
program and no other subroutine will ever be called that needs the
stack space, then eventually the kernel will page out the unused portion
of the space if it needs the memory for other purposes. In either case,
the extra logic needed to recognize the case where a stack could be
shrunk is unwarranted.

-81-

CHAPTER 9 UNIPROCESSOR SCHEDULING

9.1

9.2

9.3

ANSWERS TO QUESTIONS

Processor scheduling in a batch system, or in the batch portion of an
0S, is done by a long-term scheduler. Newly submitted jobs are routed
to disk and held in a batch queue from which the long-term scheduler
creates processes and then places these in the ready queue so that they
can be executed. In order to do this, the scheduler has to take two
decisions:

a. When can the OS take on one or more additional processes?
This is generally determined by the desired degree of
multiprogramming. The greater the number of processes created, the
smaller the percentage of CPU time for each. The scheduler may decide
to add one or more new jobs either when a job terminates or when the
fraction of time for which the processor is idle exceeds a certain
threshold.

b. Which job or jobs should it accept and turn into processes?
This decision can be based on a simple first-come-first-served (FCFS)
basis. However, the scheduler may also include other criteria like
priority, expected execution time, and I/O requirements.

A dispatcher, or a short-term scheduler, allocates processes in the ready
queue to the CPU for immediate processing. It makes the fine-grained
decision of which process to execute next. It has to work very frequently
since, generally, a process is executed in the CPU for a very short
interval.

The dispatcher is invoked whenever an event that may lead to the
blocking of the current process occurs. It is also invoked when an event
that may provide an opportunity to preempt a currently running process
in favour of another occurs. Examples of such events include clock
interrupts, I/0 interrupts, operating system calls, and signals (e.g.,
semaphores).

The scheduling criteria that affect the performance of the system are:

a. Turnaround Time: This is the total time that has elapsed between
the submission of a process and its completion. It is the sum of the

-82-

9.4

9.5

following: time spent waiting to get into the memory, time spent
waiting in the ready queue, the CPU time, and time spent on I/O
operations.

b. Response Time: For an interactive process, this is the time from the
submission of a request to when the response begins to be received.
The scheduling discipline should attempt to achieve low response
time and to maximize the number of interactive users receiving an
acceptable response time.

c. Waiting Time: This is defined as the total time spent by a job while
waiting in the ready queue or in the suspended queue in a
multiprogramming environment.

d. Deadlines: When process completion deadlines can be specified, the
scheduling discipline should subordinate other goals to that of
maximizing the percentage of deadlines met.

e. Throughput: This is defined as the average amount of work
completed per unit time. The scheduling policy should attempt to
maximize the number of processes completed per unit of time. This
clearly depends on the average length of a process, but it is also
influenced by the scheduling policy, which may affect utilization.

f. Processor utilization: This is defined as the average fraction of
time the processor is busy executing user programs or system
modules. Generally, the higher the CPU utilization, better it is. This is
a significant criterion for expensive shared systems. In single-user
systems, and in other systems like real-time systems, this criterion is
less important than some of the others.

In pure priority-based scheduling algorithms, a process with a higher
priority is always selected at the expense of a lower-priority process.
The problem with a pure priority scheduling scheme is that lower-
priority processes may suffer starvation. This will happen if there is
always a steady supply of higher-priority ready processes. If the
scheduling is nonpreemptive, a lower priority process will run into
completion if it gets the CPU. However, in preemptive schemes, a lower
priority process may have to wait infinitely in the ready or suspended
gueue.

Advantages: 1. It ensures fairness to all processes regardless of their
priority in most cases. 2. It reduces the monopolization of the CPU by a
large process. 3. It increases the scheduling capacity of the system. 4.
Depending on the CPU time the process needs, it also gives a quick
response time for processes. Disadvantages: 1. Preemption is
associated with extra costs due to increased context-switch, increased
caching, increased bus-related costs, and the like. 2. Preemptive
scheduling results in increased dispatcher activities and, subsequently,
more time for dispatching.

-83-

9.6 As each process becomes ready, it joins the ready queue. When the
currently-running process ceases to execute, the process that has been
in the ready queue the longest is selected for running.

9.7 A clock interrupt is generated at periodic intervals. When the interrupt
occurs, the currently running process is placed in the ready queue, and
the next ready job is selected on a FCFS basis.

9.8 This is a nonpreemptive policy in which the process with the shortest
expected processing time is selected next.

9.9 This is a preemptive version of SPN. In this case, the scheduler always
chooses the process that has the shortest expected remaining
processing time. When a new process joins the ready queue, it may in
fact have a shorter remaining time than the currently running process.
Accordingly, the scheduler may preempt whenever a new process
becomes ready.

9.10 When the current process completes or is blocked, choose the ready
process with the greatest value of R, where R = (w + s)/s, with w =
time spent waiting for the processor and s = expected service time.

9.11 Scheduling is done on a preemptive (at time quantum) basis, and a
dynamic priority mechanism is used. When a process first enters the
system, it is placed in RQO (see Figure 9.4). After its first execution,
when it returns to the Ready state, it is placed in RQ1. Each
subsequent time that it is preempted, it is demoted to the next lower-
priority queue. A shorter process will complete quickly, without
migrating very far down the hierarchy of ready queues. A longer
process will gradually drift downward. Thus, newer, shorter processes
are favored over older, longer processes. Within each queue, except
the lowest-priority queue, a simple FCFS mechanism is used. Once in
the lowest-priority queue, a process cannot go lower, but is returned
to this queue repeatedly until it completes execution.

ANSWERS TO PROBLEMS

9.1 a. Shortest Remaining Time:

[PL[P1 P2 |P2]Pl|PIL [Pl |P4[P4]|P4[P4]P3|[P3][P3[P3[P3[P3[P3][P3][P3]P3]
o1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Explanation: P1 starts but is preempted after 20ms when P2 arrives
and has shorter burst time (20ms) than the remaining burst time of
P1 (30 ms) . So, P1 is preempted. P2 runs to completion. At 40ms P3
arrives, but it has a longer burst time than P1, so P1 will run. At

-84-

60ms P4 arrives. At this point P1 has a remaining burst time of 10
ms, which is the shortest time, so it continues to run. Once P1
finishes, P4 starts to run since it has shorter burst time than P3.

Non-preemptive Priority:

[PL[PL]PL|[PI[PL|P2[P2[P4[P4[P4[P4][P3[P3][P3[P3][P3[P3][P3][P3][P3]P3]
01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Explanation: P1 starts, but as the scheduler is non-preemptive, it
continues executing even though it has lower priority than P2. When
P1 finishes, P2 and P3 have arrived. Among these two, P2 has higher
priority, so P2 will be scheduled, and it keeps the processor until it
finishes. Now we have P3 and P4 in the ready queue. Among these
two, P4 has higher priority, so it will be scheduled. After P4 finishes,
P3 is scheduled to run.

Round Robin with quantum of 30 ms:

[PL|PL[PL[P2|P2[P1 [Pl [P3[P3[P3[P4][P4 P4 |P3[P3|[P3|P4][P3[P3[P3][P3]
01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Explanation: P1 arrives first, so it will get the 30ms quantum. After
that, P2 is in the ready queue, so P1 will be preempted and P2 is
scheduled for 20ms. While P2 is running, P3 arrives. Note that P3 will
be queued after P1 in the FIFO ready queue. So when P2 is done, P1
will be scheduled for the next quantum. It runs for 20ms. In the
mean time, P4 arrives and is queued after P3. So after P1 is done, P3
runs for one 30 ms quantum. Once it is done, P4 runs for a 30ms
guantum. Then again P3 runs for 30 ms, and after that P4 runs for
10 ms, and after that P3 runs for 30+10ms since there is nobody left
to compete with.

b. Shortest Remaining Time: (20+0+70+10)/4 = 25 ms.
Explanation: P2 does not wait, but P1 waits 20ms, P3 waits 70ms
and P4 waits 10ms.

Non-preemptive Priority: (0+30+10+70)/4 = 27.5ms
Explanation: P1 does not wait, P2 waits 30ms until P1 finishes, P4
waits only 10ms since it arrived at 60ms and it is scheduled at 70ms.
P3 waits 70ms.

Round-Robin: (20+10+70+70)/4 = 42.5ms

Explanation: P1 waits only for P2 (for 20ms). P2 waits only 10ms
until P1 finishes the quantum (it arrives at 20ms and the quantum is
30ms). P3 waits 30ms to start, then 40ms for P4 to finish. P4 waits
40ms to start and one quantum slice for P3 to finish.

9.2 If the time quantum q is large, round robin scheduling becomes
equivalent to FCFS scheduling and thus performance degrades. If g is

-85-

small, the number of context switches increases and q almost equals the
time taken to switch the CPU from one process to another. The system
wastes nearly half of its time context switching, thus degrading the
overall system performance. Hence, the major criteria for determining
the size of a time quantum are the time spent in context switching and
the burst times of the processes.

GANTT chart for time quantum q = 2 ms

P2[P1[P2[P3[P4[P1[P2[P3[P4[P1[P3[P1[P3[PL|[P3[P3[P3[P3][P3

2|1 4|6 |8]10[12]14|16|18|20|22|24|26|28|30|32|34|36]| 38

Turnaround time for a process = Total CPU time + Total context switch
time

Context switch time = Number of context switches in the interval x time
for 1 context switch

Turnaround time for P1 = (30 — 0) + 14 x 1 = 44 ms

Turnaround time for P2 = (16 — 2) + 6 x 1 = 20 ms

Turnaround time for P3 = (40 — 8) + 15 x1 =47 ms

Turnaround time for P4 = (20 — 10) + 4 x 1 = 14 ms

GANTT chart for time quantum q = 4 ms

P1 P2 P3 P4 P1 P2 P3 P1 P3 P3 P3

0 4 8 12 16 20 22 26 30 34 38

Turnaround time for a process = Total CPU time + Total context switch
time

Context switch time = Number of context switches in the interval x time
for 1 context switch

Turnaround time forP1 = (30 - 0) + 7x1 =37 ms
Turnaround time for P2 = (22 — 2) + 4 x 1 = 24 ms
Turnaround time for P3 = (40 — 8) + 8 x 1 =40 ms

Turnaround time for P4 = (16 — 10) + 1 x 1 =7 ms
Average turnaround time = (37 + 24 + 40 + 7)/4 = 27 ms

GANTT chart for time quantum q = 8 ms

P1 P2 P3 P4 P1 P3
0 8 14 22 26 30

Turnaround time for a process = Total CPU time + Total context switch
time

Context switch time = Number of context switches in the interval x time
for 1 context switch

-86-

9.3

Turnaround time forP1 = (30 — 0) +4 x1 =34 ms
Turnaround time for P2 = (14 —2) + 1 x1 =13 ms
Turnaround time for P3 = (40 - 8) + 4 x 1 = 36 ms
Turnaround time for P4 = (26 — 10) + 2 x 1 = 18 ms

Average turnaround time = (34 + 13 + 36 + 18)/4 = 25.25 ms

As the system allows only nonpreemptive schedules, the maximum
number of schedules is nothing but the arrangement of n processes or
the n-permutations of n objects, "Pn. Hence, the total humber of
schedules is equal to n!.

9.4 The data points for the plot:
Age of Observed Simple
Observation Value Average alpha = 0.8 alpha = 0.5
1 6 0.00 0.00 0.00
2 4 3.00 4.80 3.00
3 6 3.33 4.16 3.50
4 4 4.00 5.63 4.75
5 13 4.00 4.33 4.38
6 13 5.50 11.27 8.69
7 13 6.57 12.65 10.84

9.5

9.6

9.7

The first equation is identical to Equation 9.3, so the parameter a
provides an exponential smoothing effect. The parameter B is a delay
variance factor (e.g., 1.3 to 2.0). A smaller value of B will result in faster
adaptation to changes in the observed times, but also more fluctuation
in the estimates.

A sophisticated analysis of this type of estimation procedure is
contained in Applied Optimal Estimation, edited by Gelb, M.I.T. Press,
1974.

It depends on whether you put job A in a queue after the first time unit
or not. If you do, then it is entitled to 2 additional time units before it
can be preempted.

First, the scheduler computes the response ratios attimet + r; + r, +
r;, when all three jobs will have been finished (see figure). At that time,

job 3 will have the smallest response ratio of the three: so the scheduler
decides to execute this job last and proceeds to examine jobs 1 and 2 at
time t + r; + r,, when they will both be finished. Here the response

ratio of job 1 is the smaller, and consequently job 2 is selected for
service at time t. This algorithm is repeated each time a job is
completed to take new arrivals into account. Note that this algorithm is

-87-

not quite the same as highest response ratio next. The latter would
schedule job 1 at time t. Intuitively, it is clear that the present algorithm
attempts to minimize the maximum response ratio by consistently
postponing jobs that will suffer the least increase of their response
ratios.

| e

e
_ d
% / /
ﬁ
: d
4]
[
1
I L _
tl tZ 13 t >l'1me
I, T I3

9.8 Consider the queue at time t immediately after a departure and ignore
further arrivals. The waiting jobs are numbered 1 to n in the order in
which they will be scheduled:

job: 1 2 Co i Co. n
arrival time: ty t, .o t; t,
service time: ry ry ... r; ... ry

Among these we assume that job i will reach the highest response ratio
before its departure. When the jobs 1 to i have been executed, time
becomes

T,=t+r +r,+...+r

and job i has the response ratio

Ri(Ti)JrTi—__ti

1

-88-

The reason for executing job i last in the sequence 1 to i is that its
response ratio will be the lowest one among these jobs at time T;:

Ri(T;) = min [Ry(T}), Ry (Ty), . . ., Ry(T))]

Consider now the consequences of scheduling the same n jobs in any
other sequence:

job: a b Co j Co z
arrival time: t, t, s o g s o t,
service time: My b > o oc h > o oc r,

In the new sequence, we select the smallest subsequence of jobs, a to j,
that contains all the jobs, 1 to i, of the original subsequence (This
implies that job j is itself one of the jobs 1 to i). When the jobs a to j
have been served, time becomes

Tj=t+rp+r,+...+1

and job j reaches the response ratio
Tj

—t.
Ri(T;)+ "]

Since the jobs 1 to i are a subset of the jobs a to j, the sum of their
service times T, -t must be less than or equal to the sum of service time

Tj*t. And since response ratios increase with time, T, < TJ. implies

R,(T)) = Ry(T))

It is also known that job j is one of the jobs 1 to i, of which job j has the
smallest response ratio at time T,. The above inequality can therefore be

extended as follows:
RJ.(TJ.) > Rj(Ti) > Ri(T;)

In other words, when the scheduling algorithm is changed, there will
always be a job j that reaches response ratio RJ-(TJ-), which is greater

than or equal to the highest response ratio Ri(T;) obtained with the

original algorithm.
Notice that this proof is valid in general for priorities that are non-
decreasing functions of time. For example, in a FIFO system, priorities

-89-

9.9

increase linearly with waiting time at the same rate for all jobs.
Therefore, the present proof shows that the FIFO algorithm minimizes
the maximum waiting time for a given batch of jobs.

Before we begin, there is one result that is needed, as follows. Assume
that an item with service time T, has been in service for a time h. Then,

the expected remaining service time E [T/T > h] = T,. That is, no matter

how long an item has been in service, the expected remaining service
time is just the average service time for the item. This result, though
counter to intuition, is correct, as we now show.

Consider the exponential probability distribution function:

F(X) = Pr[X<x] =1 - e ¥

Then, we have Pr[X > x] = e X, Now let us look at the conditional
probability that X is greater than x + h given that X is greater than x:

Pr[(X > x+h),(X > x)] _DPr[X>x+h]
Pr[X > x] Pr[X > x]

Pr[X > x+hX >x]=

e-:u(x+h)_ -,Llh
- Uux =¢
e H

Pr[X>x+HX>x]=

So,
PriIX <x + h/X > x] = 1-e Hh = Pr[X < h]

Thus the probability distribution for service time given that there has
been service of duration x is the same as the probability distribution of
total service time. Therefore the expected value of the remaining service
time is the same as the original expected value of service time.

With this result, we can now proceed to the original problem.
When an item arrives for service, the total response time for that item
will consist of its own service time plus the service time of all items
ahead of it in the queue. The total expected response time has three
components.

e Expected service time of arriving process = T,

e Expected service time of all processes currently waiting to be served.
This value is simply w x T_, where w is the mean number of items

waiting to be served.
e Remaining service time for the item currently in service, if there is an
item currently in service. This value can be expressed as p x T,

where p is the utilization and therefore the probability that an item is

-90-

currently in service and T, as we have demonstrated, is the
expected remaining service time.

Thus, we have

2

Y2
I-p

A
pJ_l—p

R=Ts><(1+w+p)=Ts><(1+

9.10 Let us denote the time slice, or quantum, used in round robin
scheduling as 8. In this problem, & is assumed to be very small
compared to the service time of a process. Now, consider a newly
arrived process, which is placed at the end of the ready queue for
service. We are assuming that this particular process has a service
time of x, which is some multiple of &:

X = Mo

To begin, let us ask the question, how much time does the process
spend in the queue before it receives its first quantum of service. It
must wait until all g processes waiting in line ahead of it have been
serviced. Thus the initial wait time = g5, where q is the average
number of items in the system (waiting and being served). We can
now calculate the total time this process will spend waiting before it
has received x seconds of service. Since it must pass through the
active queue m times, and each time it waits qd seconds, the total wait
time is as follows:

Wait time m (gd)
(x/8)(qd)

gx

Then, the response time is the sum of the wait time and the total
service time

R, wait time + service time

= gx+x =(q+1)x

Referring to the queuing formulas in Chapter 20 or Appendix H, the
mean number of items in the system, q, can be expressed as

q=p/(1-p)

Thus,
R, = [p/(1-p)+ 1]x =x/(1-p)

-01-

9.11

9.12

Burst time of process A = 100 ms

Burst time of process B = 120 ms

Burst time of process C = 60 ms
Analysis of system with NRR scheduling:

GANTT chart

A B Cc A B Cc A B A B B B

0 40 80 120 | 150 | 180 | 200 | 220 | 240 | 250 | 260 | 270

Turnaround time for A = 240 ms
Turnaround time for B = 280 ms
Turnaround time for C = 200 ms
Average turnaround time = 720/3 = 240 ms

Waiting time for A = 240 — 100 = 140 ms
Waiting time for B = 280 — 120 = 160 ms
Waiting time for C = 200 — 60 = 140 msec
Average waiting time = 440/3 = 146.67 ms

In this system, the CPU time of newer processes entering the system
is greater. Thus, processes that are interactive and I/O-bound get
more CPU time than CPU bound processes. Hence, a relative priority
that prefers processes with less CPU time is automatically set. The
turnaround time of these processes is reduced as they waste less time
in context switches, which is an advantage over the normal round-
robin scheduling.

The two disadvantages of this system are: 1. it requires the overhead
of an added logic in each process to maintain its time quantum; 2. if
there is a steady influx of short processes in the system, a long job
may have to wait for a very long time for its completion.

First, we need to clarify the significance of the parameter).'. The rate
at which items arrive at the first box (the "queue" box) is A. Two
adjacent arrivals to the second box (the "service" box) will arrive at a
slightly slower rate, since the second item is delayed in its chase of the
first item. We may calculate the vertical offset y in the figure in two
different ways, based on the geometry of the diagram:

y = g/

y = [(1/20) - (1/1)]e
which therefore gives
Al = A[1 - (B/a)]
92

9.13

The total number of jobs q waiting or in service when the given job
arrives is given by:

q=p/(1-p)

independent of the scheduling algorithm. Using Little's formula (see
Appendix H):

R=q/r=s/(1-p)

Now let W and V, denote the mean times spent in the queue box and

in the service box by a job of service time x. Since priorities are
initially based only on elapsed waiting times, W is clearly independent
of the service time x. Evidently we have

R, =W+ V,
From problem 9.10, we have
V =t/(1-p') wherep'=1's

By taking the expected values of R, and S,, we have R = W + V. We

have already developed the formula for R. For V, observe that the
arrival rate to the service box is A', and therefore the utilization is p'.
Accordingly, from our basic M/M/1 formulas, we have

V =s/(1-p")

Thus,
W=R-V =s/[1/(1-p) - 1/(1-p")]

which yields the desired result for R,.

Only as long as there are comparatively few users in the system. When
the quantum is decreased to satisfy more users rapidly two things
happen: (1) processor utilization decreases, and (2) at a certain point,
the quantum becomes too small to satisfy most trivial requests. Users
will then experience a sudden increase of response times because their
requests must pass through the round-robin queue several times.

-03-

9.14 If a process uses too much processor time, it will be moved to a lower-
priority queue. This leaves I/O-bound processes in the higher-priority
queues.

9.15 a. Given a < B < 0, since both a and B are negative, the priorities
decrease with time. The new process entering the system has the
highest priority and so it preempts the running process and starts
executing. Further, the rate of decrease of priority in the ready
gueue is more than the rate of decrease of priority in the running
gueue. Hence, the processes that have just arrived in the ready
gueue have greater priority over processes that were in the queue
earlier. Processes that have got the CPU time have greater priority
over processes that have not. All these observations imply that last-
in-first-out scheduling will be observed in this case.

b. Given B > a > 0, when a and B have positive values, the priorities
of processes increase with the time they have been in the system.
Thus, the process entering the system first will get the CPU first.
Also, since the rate of increase of priority of a running process is
greater than the rate of increase of priority of a waiting process, a
process that has substantial CPU time will get the CPU again
because of its increased priority. Hence, eventually, first-come-first-
served scheduling will occur.

9.16 a. Sequence with which processes will get 1 min of processor time:

1 2 3 4 5 Elapsed
time
5

10
15
19
23
27
30
33
36
38
40
42
43
44
45

C
C
C

>>r>>r>>>>>r>>>>>>
WWWWWWIIW

(VA VEVAVAVEW)

M M M MmMmMmMmmmMmmmm

The turnaround time for each process:
A =45 min, B =35 min, C =13 min, D = 26 min, E = 42 min

-04-

The average turnaround time is = (45+35+13+26+42) /5 =
32.2 min

Priority Job Turnaround Time
3 B 9

4 E 9+ 12 =21

6 A 21 + 15 = 36

7 C 36 + 3 =39

9 D 39 + 6 =45

The average turnaround time is: (9+21+36+39+45) /5 = 30 min

Job Turnaround Time
A 15
B 15+49=24
C 24 + 3 = 27
D 27 + 6 = 33
E 33+ 12 =45

The average turnaround time is: (15+24+27+4+33+45) /5 =
28.8 min

Running Job Turnaround Time
Time

3 C 3

6 D 3+46=9

9 B 9+9=18

12 E 18 + 12 =30

15 A 30 + 15 =45

The average turnaround time is: (3+9+18+30+45) /5 = 21 min

-05-

