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NOTICE 
 
 
 
 
 

 
 This manual contains solutions to the review 
questions and homework problems in Operating 
Systems, Ninth Edition. If you spot an error in a 
solution or in the wording of a problem, I would 
greatly appreciate it if you would forward the 
information via email to wllmst@me.net. An 
errata sheet for this manual, if needed, is 
available at 
http://www.box.net/shared/fa8a0oyxxl . File 
name is S-OS9e-mmyy. 
 

W.S. 
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CHAPTER 1  COMPUTER SYSTEM OVERVIEW 

 

ANSWERS TO QUESTIONS 
1.1 A processor, which controls the operation of the computer and performs 

its data processing functions ; a main memory, which stores both data 
and instructions; I/O modules, which move data between the 
computer and its external environment; and the system bus, which 
provides for communication among processors, main memory, and I/O 
modules. 

 
1.2 User-visible registers: Enable the machine- or assembly-language 

programmer to minimize main memory references by optimizing 
register use. For high-level languages, an optimizing compiler will 
attempt to make intelligent choices of which variables to assign to 
registers and which to main memory locations. Some high-level 
languages, such as C, allow the programmer to suggest to the compiler 
which variables should be held in registers. Control and status 
registers: Used by the processor to control the operation of the 
processor and by privileged, operating system routines to control the 
execution of programs. 

 
1.3 These actions fall into four categories: Processor-memory: Data may 

be transferred from processor to memory or from memory to processor. 
Processor-I/O: Data may be transferred to or from a peripheral device 
by transferring between the processor and an I/O module. Data 
processing: The processor may perform some arithmetic or logic 
operation on data. Control: An instruction may specify that the 
sequence of execution be altered. 

 
1.4 An interrupt is a mechanism by which other modules (I/O, memory) 

may interrupt the normal sequencing of the processor. 
 
1.5 Two approaches can be taken to dealing with multiple interrupts. The 

first is to disable interrupts while an interrupt is being processed. A 
second approach is to define priorities for interrupts and to allow an 
interrupt of higher priority to cause a lower-priority interrupt handler to 
be interrupted. 
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1.6 The three key characteristics of memory are cost, capacity, and access 

time. 
 
1.7 Cache memory is a memory that is smaller and faster than main 

memory and that is interposed between the processor and main 
memory. The cache acts as a buffer for recently used memory locations. 

 
1.8 A multicore computer is a special case of a multiprocessor, in which all 

of the processors are on a single chip. 
 
1.9 Spatial locality refers to the tendency of execution to involve a 

number of memory locations that are clustered. Temporal locality 
refers to the tendency for a processor to access memory locations that 
have been used recently. 

 
1.10 Spatial locality is generally exploited by using larger cache blocks 

and by incorporating prefetching mechanisms (fetching items of 
anticipated use) into the cache control logic. Temporal locality is 
exploited by keeping recently used instruction and data values in 
cache memory and by exploiting a cache hierarchy.  

 

ANSWERS TO PROBLEMS 
1.1 Memory (contents in hex): 300: 3005;   301: 5940;   302: 7006 
 Step 1:  3005 → IR;    Step 2: 3 → AC 
 Step 3:  5940 → IR;    Step 4: 3 + 2 = 5 → AC 
 Step 5:  7006 → IR;    Step 6: AC → Device 6 
 
1.2 1. a. The PC contains 300, the address of the first instruction. This 

value is loaded in to the MAR. 
  b. The value in location 300 (which is the instruction with the value 

1940 in hexadecimal)  is loaded into the MBR, and the PC is 
incremented. These two steps can be done in parallel. 

  c. The value in the MBR is loaded into the IR.  
 2. a. The address portion of the IR (940) is loaded into the MAR. 
  b. The value in location 940 is loaded into the MBR. 
  c. The value in the MBR is loaded into the AC. 
 3. a. The value in the PC (301) is loaded in to the MAR. 
  b. The value in location 301 (which is the instruction with the value 

5941)  is loaded into the MBR, and the PC is incremented. 
  c. The value in the MBR is loaded into the IR.  
 4. a. The address portion of the IR (941) is loaded into the MAR. 
  b. The value in location 941 is loaded into the MBR. 
  c. The old value of the AC and the value of location MBR are added 

and the result is stored in the AC. 
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 5. a. The value in the PC (302) is loaded in to the MAR. 
  b. The value in location 302 (which is the instruction with the value 

2941)  is loaded into the MBR, and the PC is incremented. 
  c. The value in the MBR is loaded into the IR.  
 6. a. The address portion of the IR (941) is loaded into the MAR. 
  b. The value in the AC is loaded into the MBR. 
  c. The value in the MBR is stored in location 941. 
 
1.3 a. 224 = 16 MBytes 
 b. (1) If the local address bus is 32 bits, the whole address can be 

transferred at once and decoded in memory. However, since the data 
bus is only 16 bits, it will require 2 cycles to fetch a 32-bit instruction 
or operand. 

  (2) The 16 bits of the address placed on the address bus can't 
access the whole memory. Thus a more complex memory interface 
control is needed to latch the first part of the address and then the 
second part (since the microprocessor will end in two steps). For a 
32-bit address, one may assume the first half will decode to access a 
"row" in memory, while the second half is sent later to access a 
"column" in memory. In addition to the two-step address operation, 
the microprocessor will need 2 cycles to fetch the 32 bit 
instruction/operand. 

 c. The program counter must be at least 24 bits. Typically, a 32-bit 
microprocessor will have a 32-bit external address bus and a 32-bit 
program counter, unless on-chip segment registers are used that 
may work with a smaller program counter. If the instruction register 
is to contain the whole instruction, it will have to be 32-bits long; if it 
will contain only the op code (called the op code register) then it will 
have to be 8 bits long. 

 
1.4 In cases (a) and (b), the microprocessor will be able to access 216 = 

64K bytes; the only difference is that with an 8-bit memory each 
access will transfer a byte, while with a 16-bit memory an access may 
transfer a byte or a 16-byte word. For case (c), separate input and 
output instructions are needed, whose execution will generate 
separate "I/O signals" (different from the "memory signals" generated 
with the execution of memory-type instructions); at a minimum, one 
additional output pin will be required to carry this new signal. For case 
(d), it can support 28 = 256 input and 28 = 256 output byte ports and 
the same number of input and output 16-bit ports; in either case, the 
distinction between an input and an output port is defined by the 
different signal that the executed input or output instruction 
generated. 
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1.5 Clock cycle =  1
8 MHz

= 125 ns  

 Bus cycle = 4 × 125 ns = 500 ns 
 2 bytes transferred every 500 ns; thus transfer rate = 4 MBytes/sec 
 
 Doubling the frequency may mean adopting a new chip manufacturing 

technology (assuming each instructions will have the same number of 
clock cycles); doubling the external data bus means wider (maybe 
newer) on-chip data bus drivers/latches and modifications to the bus 
control logic. In the first case, the speed of the memory chips will also 
need to double (roughly) not to slow down the microprocessor; in the 
second case, the "word length" of the memory will have to double to be 
able to send/receive 32-bit quantities. 

 
1.6 a.  Input from the Teletype is stored in INPR. The INPR will only accept 

data from the Teletype when FGI=0. When data arrives, it is stored 
in INPR, and FGI is set to 1. The CPU periodically checks FGI. If FGI 
=1, the CPU transfers the contents of INPR to the AC and sets FGI to 
0. 

   When the CPU has data to send to the Teletype, it checks FGO. 
If FGO = 0, the CPU must wait. If FGO = 1, the CPU transfers the 
contents of the AC to OUTR and sets FGO to 0. The Teletype sets FGI 
to 1 after the word is printed. 

 b. The process described in (a) is very wasteful. The CPU, which is 
much faster than the Teletype, must repeatedly check FGI and FGO. 
If interrupts are used, the Teletype can issue an interrupt to the CPU 
whenever it is ready to accept or send data. The IEN register can be 
set by the CPU (under programmer control) 

 
1.7 If a processor is held up in attempting to read or write memory, usually 

no damage occurs except a slight loss of time. However, a DMA transfer 
may be to or from a device that is receiving or sending data in a stream 
(e.g., disk or tape), and cannot be stopped. Thus, if the DMA module is 
held up (denied continuing access to main memory), data will be lost. 

 
1.8 Let us ignore data read/write operations and assume the processor only 

fetches instructions. Then the processor needs access to main memory 
once every microsecond. The DMA module is transferring characters at a 
rate of 1200 characters per second, or one every 833 µs. The DMA 
therefore "steals" every 833rd cycle. This slows down the processor 

approximately  1
833

×100% = 0.12%  
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1.9 a. The processor can only devote 5% of its time to I/O. Thus the 

maximum I/O instruction execution rate is 106 × 0.05 = 50,000 
instructions per second. The I/O transfer rate is therefore 25,000 
words/second. 

 b. The number of machine cycles available for DMA control is 
 
  106(0.05 × 5 + 0.95 × 2) = 2.15 × 106 
 
  If we assume that the DMA module can use all of these cycles, and 

ignore any setup or status-checking time, then this value is the 
maximum I/O transfer rate. 

 
1.10 a. A reference to the first instruction is immediately followed by a 

reference to the second. 
 b. The ten accesses to a[i] within the inner for loop which occur 

within a short interval of time. 
 
1.11 Define 
 Ci = Average cost per bit, memory level i 
 Si = Size of memory level i 
 Ti = Time to access a word in memory level i 
 Hi = Probability that a word is in memory i and in no higher-level 

memory 
 Bi = Time to transfer a block of data from memory level (i + 1) to 

memory level  i 
 
 Let cache be memory level 1; main memory, memory level 2; and so 

on, for a total of N levels of memory. Then 

    

Cs =

CiSi
i=1

N
∑

Si
i=1

N
∑

  

 
 The derivation of Ts is more complicated.  We begin with the result from 

probability theory that:  

Expected Value of x = iPr x = 1[ ]
i=1

N

∑  

 We can write: 

Ts  = TiHi
i=1

N

∑  
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 We need to realize that if a word is in M1 (cache), it is read immediately. 

If it is in M2 but not M1, then a block of data is transferred from M2 to 
M1 and then read. Thus: 

   T2 = B1 + T1 
 
 Further  
   T3 = B2 + T2 = B1 + B2 + T1 
 
 Generalizing: 

Ti = Bj +T1
j=1

i−1

∑  

 So 

Ts = BjHi( )
j=1

i−1

∑
i=2

N

∑ +T1 Hi
i=1

N

∑  

 

 But   Hi
i=1

N

∑ = 1 

 
 Finally 

Ts = BjHi( )
j=1

i−1

∑
i=2

N

∑ +T1  

 
1.12 a. Cost = Cm × 8 × 106 = 8 × 103 ¢ = $80 
 b. Cost = Cc × 8 × 106 = 8 × 104 ¢ = $800 
 c. From Equation 1.1 : 1.1 × T1 = T1 + (1 – H)T2 
   (0.1)(100) = (1 – H)(1200) 
   H = 1190/1200 
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1.13 There are three cases to consider: 
 

Location of referenced 
word Probability Total time for access 

in ns 

In cache 0.9 20 

Not in cache, but in main 
memory (0.1)(0.6) = 0.06 60 + 20 = 80 

Not in cache or main 
memory (0.1)(0.4) = 0.04 12ms + 60 + 20 = 

12,000,080 
 
 So the average access time would be: 
 
 Avg = (0.9)(20) + (0.06)(80) + (0.04)(12000080) = 480026 ns 
 
1.14 Yes, if the stack is only used to hold the return address. If the stack is 

also used to pass parameters, then the scheme will work only if it is 
the control unit that removes parameters, rather than machine 
instructions. In the latter case, the processor would need both a 
parameter and the PC on top of the stack at the same time. 
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CHAPTER 2  OPERATING SYSTEM 

OVERVIEW 

 

ANSWERS TO QUESTIONS 
2.1 Convenience: An operating system makes a computer more 

convenient to use. Efficiency: An operating system allows the 
computer system resources to be used in an efficient manner. Ability 
to evolve: An operating system should be constructed in such a way as 
to permit the effective development, testing, and introduction of new 
system functions without interfering with service. 

 
2.2 The kernel is a portion of the operating system that includes the most 

heavily used portions of software. Generally, the kernel is maintained 
permanently in main memory. The kernel runs in a privileged mode and 
responds to calls from processes and interrupts from devices. 

 
2.3 Multiprogramming is a mode of operation that provides for the 

interleaved execution of two or more computer programs by a single 
processor. 

 
2.4 A process is a program in execution. A process is controlled and 

scheduled by the operating system. 
 
2.5 The execution context, or process state, is the internal data by 

which the operating system is able to supervise and control the process. 
This internal information is separated from the process, because the 
operating system has information not permitted to the process. The 
context includes all of the information that the operating system needs 
to manage the process and that the processor needs to execute the 
process properly. The context includes the contents of the various 
processor registers, such as the program counter and data registers. It 
also includes information of use to the operating system, such as the 
priority of the process and whether the process is waiting for the 
completion of a particular I/O event. 

 
2.6 Process isolation: The operating system must prevent independent 

processes from interfering with each other's memory, both data and 
instructions. Automatic allocation and management: Programs 
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should be dynamically allocated across the memory hierarchy as 
required. Allocation should be transparent to the programmer. Thus, the 
programmer is relieved of concerns relating to memory limitations, and 
the operating system can achieve efficiency by assigning memory to 
jobs only as needed. Support of modular programming: 
Programmers should be able to define program modules, and to create, 
destroy, and alter the size of modules dynamically. Protection and 
access control: Sharing of memory, at any level of the memory 
hierarchy, creates the potential for one program to address the memory 
space of another. This is desirable when sharing is needed by particular 
applications. At other times, it threatens the integrity of programs and 
even of the operating system itself. The operating system must allow 
portions of memory to be accessible in various ways by various users. 
Long-term storage: Many application programs require means for 
storing information for extended periods of time, after the computer has 
been powered down. 

 
2.7 A virtual address refers to a memory location in virtual memory. That 

location is on disk and at some times in main memory. A real address is 
an address in main memory. 

 
2.8 Round robin is a scheduling algorithm in which processes are activated 

in a fixed cyclic order; that is, all processes are in a circular queue. A 
process that cannot proceed because it is waiting for some event (e.g. 
termination of a child process or an input/output operation) returns 
control to the scheduler. 

 
2.9 A monolithic kernel is a large kernel containing virtually the complete 

operating system, including scheduling, file system, device drivers, and 
memory management. All the functional components of the kernel have 
access to all of its internal data structures and routines. Typically, a 
monolithic kernel is implemented as a single process, with all elements 
sharing the same address space. A microkernel  is a small privileged 
operating system core that provides process scheduling, memory 
management, and communication services and relies on other processes 
to perform some of the functions traditionally associated with the 
operating system kernel. 

 
2.10 Multithreading is a technique in which a process, executing an 

application, is divided into threads that can run concurrently. 
 
2.11 Simultaneous concurrent processes or threads; scheduling; 

synchronization; memory management; reliability and fault tolerance. 
 

ANSWERS TO PROBLEMS 
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2.1 The answers are the same for (a) and (b). Assume that although 

processor operations cannot overlap, I/O operations can. 
 
Number of jobs TAT Throughput Processor utilization 
1 NT 1/N 50% 
2 NT 2/N 100% 
4 (2N – 1)T 4/(2N – 1) 100% 
 
2.2 I/O-bound programs use relatively little processor time and are 

therefore favored by the algorithm. However, if a processor-bound 
process is denied processor time for a sufficiently long period of time, 
the same algorithm will grant the processor to that process since it has 
not used the processor at all in the recent past. Therefore, a processor-
bound process will not be permanently denied access. 

 
2.3 With time sharing, the concern is turnaround time. Time-slicing is 

preferred because it gives all processes access to the processor over a 
short period of time. In a batch system, the concern is with throughput, 
and the less context switching, the more processing time is available for 
the processes. Therefore, policies that minimize context switching are 
favored. 

 
2.4 A system call is used by an application program to invoke a function 

provided by the operating system. Typically, the system call results in 
transfer to a system program that runs in kernel mode. 

 
2.5 The system operator can review this quantity to determine the degree 

of "stress" on the system. By reducing the number of active jobs 
allowed on the system, this average can be kept high. A typical 
guideline is that this average should be kept above 2 minutes. This may 
seem like a lot, but it isn't. 

 
2.6 a. If a conservative policy is used, at most 20/4 = 5 processes can be 

active simultaneously. Because one of the drives allocated to each 
process can be idle most of the time, at most 5 drives will be idle at a 
time. In the best case, none of the drives will be idle. 

 b. To improve drive utilization, each process can be initially allocated 
with three tape drives. The fourth one will be allocated on demand. 
In this policy, at most ⎣20/3⎦ = 6 processes can be active 
simultaneously. The minimum number of idle drives is 0 and the 
maximum number is 2. 
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CHAPTER 3  PROCESS DESCRIPTION AND 

CONTROL 

 

ANSWERS TO QUESTIONS 
3.1 An instruction trace for a program is the sequence of instructions that 

execute for that process. 
 
3.2 New batch job; interactive logon; created by OS to provide a service; 

spawned by existing process. See Table 3.1 for details. 
 
3.3 Running: The process that is currently being executed. Ready: A 

process that is prepared to execute when given the opportunity. 
Blocked: A process that cannot execute until some event occurs, such 
as the completion of an I/O operation. New: A process that has just 
been created but has not yet been admitted to the pool of executable 
processes by the operating system. Exit: A process that has been 
released from the pool of executable processes by the operating system, 
either because it halted or because it aborted for some reason. 

 
3.4 Process preemption occurs when an executing process is interrupted by 

the processor so that another process can be executed. 
 
3.5 Swapping involves moving part or all of a process from main memory to 

disk. When none of the processes in main memory is in the Ready state, 
the operating system swaps one of the blocked processes out onto disk 
into a suspend queue, so that another process may be brought into 
main memory to execute. 

 
3.6 There are two independent concepts: whether a process is waiting on an 

event (blocked or not), and whether a process has been swapped out of 
main memory (suspended or not). To accommodate this 2 × 2 
combination, we need two Ready states and two Blocked states. 

 
3.7 1. The process is not immediately available for execution. 2. The 

process may or may not be waiting on an event. If it is, this blocked 
condition is independent of the suspend condition, and occurrence of the 
blocking event does not enable the process to be executed. 3. The 
process was placed in a suspended state by an agent; either itself, a 
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parent process, or the operating system, for the purpose of preventing 
its execution. 4. The process may not be removed from this state until 
the agent explicitly orders the removal. 

 
3.8 The OS maintains tables for entities related to memory, I/O, files, and 

processes. See Table 3.10 for details. 
 
3.9 Process identification, processor state information, and process control 

information. 
 
3.10 The user mode has restrictions on the instructions that can be 

executed and the memory areas that can be accessed. This is to 
protect the operating system from damage or alteration. In kernel 
mode, the operating system does not have these restrictions, so that it 
can perform its tasks. 

 
3.11 1. Assign a unique process identifier to the new process. 2. Allocate 

space for the process. 3. Initialize the process control block. 4. Set the 
appropriate linkages. 5. Create or expand other data structures. 

 
3.12 An interrupt is due to some sort of event that is external to and 

independent of the currently running process, such as the completion 
of an I/O operation. A trap relates to an error or exception condition 
generated within the currently running process, such as an illegal file 
access attempt. 

 
3.13 Clock interrupt, I/O interrupt, memory fault. 
 
3.14 A mode switch may occur without changing the state of the process 

that is currently in the Running state. A process switch involves taking 
the currently executing process out of the Running state in favor of 
another process. The process switch involves saving more state 
information. 

ANSWERS TO PROBLEMS 

3.1 RUN to READY can be caused by a time-quantum expiration 
 READY to NONRESIDENT occurs if memory is overcommitted, and a 

process is temporarily swapped out of memory 
 READY to RUN occurs only if a process is allocated the CPU by the 

dispatcher 
 RUN to BLOCKED can occur if a process issues an I/O or other kernel 

request. 
 BLOCKED to READY occurs if the awaited event completes (perhaps I/O 

completion) 
 BLOCKED to NONRESIDENT - same as READY to NONRESIDENT. 
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3.2 At time 22: 
  P1: blocked for I/O 
  P3: blocked for I/O 
  P5: ready/running 
  P7: blocked for I/O 
  P8: ready/running 
 At time 37 
  P1: ready/running 
  P3: ready/running 
  P5: blocked suspend 
  P7: blocked for I/O 
  P8: ready/running 
 At time 47 
  P1: ready/running 
  P3: ready/running 
  P5: ready suspend 
  P7: blocked for I/O 
  P8: exit 
 
3.3 a. New → Ready or Ready/Suspend: covered in text 
  Ready → Running or Ready/Suspend: covered in text 
  Ready/Suspend → Ready: covered in text 
  Blocked → Ready or Blocked/Suspend: covered in text 
  Blocked/Suspend → Ready /Suspend or Blocked: covered in 

text 
  Running → Ready, Ready/Suspend, or Blocked: covered in text 
  Any State → Exit: covered in text 
 b. New → Blocked, Blocked/Suspend, or Running: A newly created 

process remains in the new state until the processor is ready to take 
on an additional process, at which time it goes to one of the Ready 
states. 

  Ready → Blocked or Blocked/Suspend: Typically, a process that 
is ready cannot subsequently be blocked until it has run. Some 
systems may allow the OS to block a process that is currently ready, 
perhaps to free up resources committed to the ready process. 

  Ready/Suspend → Blocked or Blocked/Suspend: Same 
reasoning as preceding entry. 

  Ready/Suspend → Running: The OS first brings the process into 
memory, which puts it into the Ready state. 

  Blocked → Ready /Suspend: this transition would be done in 2 
stages. A blocked process cannot at the same time be made ready 
and suspended, because these transitions are triggered by two 
different causes. 
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  Blocked → Running: When a process is unblocked, it is put into the 

Ready state. The dispatcher will only choose a process from the 
Ready state to run 

  Blocked/Suspend → Ready: same reasoning as Blocked → Ready 
/Suspend 

  Blocked/Suspend → Running: same reasoning as Blocked → 
Running 

  Running → Blocked/Suspend: this transition would be done in 2 
stages 

  Exit → Any State: Can't turn back the clock 
 
3.4 Figure 9.3 in Chapter 9 shows the result for a single blocked queue. The 

figure readily generalizes to multiple blocked queues. 
 

3.5 Penalize the Ready, suspend processes by some fixed amount, such as 
one or two priority levels, so that a Ready, suspend process is chosen 
next only if it has a higher priority than the highest-priority Ready 
process by several levels of priority. 

 
3.6 a. A separate queue is associated with each wait state. The 

differentiation of waiting processes into queues reduces the work 
needed to locate a waiting process when an event occurs that affects 
it. For example, when a page fault completes, the scheduler know 
that the waiting process can be found on the Page Fault Wait queue. 

 b. In each case, it would be less efficient to allow the process to be 
swapped out while in this state. For example, on a page fault wait, it 
makes no sense to swap out a process when we are waiting to bring 
in another page so that it can execute. 

 c. The state transition diagram can be derived from the following state 
transition table: 

 
 Next State 

Current State Currently 
Executing 

Computable 
(resident) 

Computable 
(outswapped) 

Variety of 
wait states 
(resident) 

Variety of 
wait states 

(outswapped) 

Currently 
Executing  Rescheduled  Wait  

Computable 
(resident) Scheduled  Outswap   

Computable 
(outswapped)  Inswap    

Variety of wait 
states 

(resident) 
 Event satisfied Outswap   

Variety of wait 
states 

(outswapped) 
  Event satisfied   
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3.7 a. The advantage of four modes is that there is more flexibility to 

control access to memory, allowing finer tuning of memory 
protection. The disadvantage is complexity and processing overhead. 
For example, procedures running at each of the access modes 
require separate stacks with appropriate accessibility. 

 b. In principle, the more modes, the more flexibility, but it seems 
difficult to justify going beyond four. 

 
3.8 With j < i, a process running in Di is prevented from accessing objects in 

Dj. Thus, if Dj contains information that is more privileged or is to be 
kept more secure than information in Di, this restriction is appropriate. 
However, this security policy can be circumvented in the following way. 
A process running in Dj could read data in Dj and then copy that data 
into Di. Subsequently, a process running in Di could access the 
information. 

 
3.9 a. An application may be processing data received from another process 

and storing the results on disk. If there is data waiting to be taken 
from the other process, the application may proceed to get that data 
and process it. If a previous disk write has completed and there is 
processed data to write out, the application may proceed to write to 
disk. There may be a point where the process is waiting both for 
additional data from the input process and for disk availability. 

 b. There are several ways that could be handled. A special type of 
either/or queue could be used. Or the process could be put in two 
separate queues. In either case, the operating system would have to 
handle the details of alerting the process to the occurrence of both 
events, one after the other. 

 
3.10 This technique is based on the assumption that an interrupted process 

A will continue to run after the response to an interrupt. But, in 
general, an interrupt may cause the basic monitor to preempt a 
process A in favor of another process B. It is now necessary to copy 
the execution state of process A from the location associated with the 
interrupt to the process description associated with A. The machine 
might as well have stored them there in the first place. 

 
3.11 Because there are circumstances under which a process may not be 

preempted (i.e., it is executing in kernel mode), it is impossible for the 
operating system to respond rapidly to real-time requirements. 
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3.12 0 
  <child pid> 
  or 
  <child pid> 
  0 
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CHAPTER 4  THREADS 

 

ANSWERS TO QUESTIONS 
4.1 This will differ from system to system, but in general, resources are 

owned by the process and each thread has its own execution state. A 
few general comments about each category in Table 3.5: 
Identification: the process must be identified but each thread within 
the process must have its own ID. Processor State Information: 
these are generally process-related. Process control information: 
scheduling and state information would mostly be at the thread level; 
data structuring could appear at both levels; interprocess 
communication and interthread communication may both be supported; 
privileges may be at both levels; memory management would generally 
be at the process level; and resource info would generally be at the 
process level. 

 
4.2 Less state information is involved. 
 
4.3 Resource ownership and scheduling/execution. 
 
4.4 Foreground/background work; asynchronous processing; speedup of 

execution by parallel processing of data; modular program structure. 
 
4.5 Address space, file resources, execution privileges are examples. 
 
4.6 1. Thread switching does not require kernel mode privileges because all 

of the thread management data structures are within the user address 
space of a single process. Therefore, the process does not switch to the 
kernel mode to do thread management. This saves the overhead of two 
mode switches (user to kernel; kernel back to user). 2. Scheduling can 
be application specific. One application may benefit most from a simple 
round-robin scheduling algorithm, while another might benefit from a 
priority-based scheduling algorithm. The scheduling algorithm can be 
tailored to the application without disturbing the underlying OS 
scheduler. 3. ULTs can run on any operating system. No changes are 
required to the underlying kernel to support ULTs. The threads library is 
a set of application-level utilities shared by all applications. 
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4.7 1. In a typical operating system, many system calls are blocking. Thus, 

when a ULT executes a system call, not only is that thread blocked, but 
also all of the threads within the process are blocked. 2. In a pure ULT 
strategy, a multithreaded application cannot take advantage of 
multiprocessing. A kernel assigns one process to only one processor at a 
time. Therefore, only a single thread within a process can execute at a 
time.  

 
4.8 Jacketing converts a blocking system call into a nonblocking system call 

by using an application-level I/O routine which checks the status of the 
I/O device. 

ANSWERS TO PROBLEMS 

4.1 Yes, because more state information must be saved to switch from one 
process to another. 

 
4.2 Because, with ULTs, the thread structure of a process is not visible to 

the operating system, which only schedules on the basis of processes. 
 
4.3 a. The use of sessions is well suited to the needs of an interactive 

graphics interface for personal computer and workstation use. It 
provides a uniform mechanism for keeping track of where graphics 
output and keyboard/mouse input should be directed, easing the task 
of the operating system. 

 b. The split would be the same as any other process/thread scheme, 
with address space and files assigned at the process level. 

 
4.4 The issue here is that a machine spends a considerable amount of its 

waking hours waiting for I/O to complete. In a multithreaded program, 
one KLT can make the blocking system call, while the other KLTs can 
continue to run. On uniprocessors, a process that would otherwise have 
to block for all these calls can continue to run its other threads. 

 
4.5 No. When a process exits, it takes everything with it—the KLTs, the 

process structure, the memory space, everything—including threads.  
 
4.6 As much information as possible about an address space can be 

swapped out with the address space, thus conserving main memory. 
 
4.7 a. The function counts the number of positive elements in a list. 
 b. This should work correctly, because count_positives in this specific 

case does not update global_positives, and hence the two threads 
operate on distinct global data and require no locking. Source: Boehn, 
H. et al. "Multithreading in C and C++." ;login, February 2007. 

 

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently 
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

This work is protected by United States copyright laws  

and is provided solely for the use of instructors in teaching  

their courses and assessing student learning. Dissemination  

or sale of any part of this work (including on the W
orld W

ide W
eb) 

will destroy the integrity of the work and is not permitted.



 

-23- 

 
4.8 This transformation is clearly consistent with the C language 

specification, which addresses only single-threaded execution. In a 
single-threaded environment, it is indistinguishable from the original. 
The pthread specification also contains no clear prohibition against this 
kind of transformation. And since it is a library and not a language 
specification, it is not clear that it could. However, in a multithreaded 
environment, the transformed version is quite different, in that it 
assigns to global_positives, even if the list contains only negative 
elements. The original program is now broken, because the update of 
global_positives by thread B may be lost, as a result of thread A 
writing back an earlier value of global_positives. By pthread rules, a 
thread-unaware compiler has turned a perfectly legitimate program into 
one with undefined semantics. Source: Boehn, H. et al. "Multithreading 
in C and C++." ;login, February 2007. 

 
4.9 a. This program creates a new thread. Both the main thread and the 

new thread then increment the global variable myglobal 20 times. 
 b. Quite unexpected! Because myglobal starts at zero, and both the 

main thread and the new thread each increment it by 20, we should 
see myglobal equaling 40 at the end of the program. But myglobal 
equals 21, so we know that something fishy is going on here. In 
thread_function(), notice that we copy myglobal into a local variable 
called j. The program increments j, then sleeps for one second, and 
only then copies the new j value into myglobal. That's the key. 
Imagine what happens if our main thread increments myglobal just 
after our new thread copies the value of myglobal into j. When 
thread_function() writes the value of j back to myglobal, it will 
overwrite the modification that the main thread made. Source: 
Robbins, D. "POSIX Threads Explained." IBM Developer Works, July 
2000. www.ibm.com/developerworks/library/l-posix1.html  

 
4.10 Every call that can possibly change the priority of a thread or make a 

higher- priority thread runnable will also call the scheduler, and it in 
turn will preempt the lower-priority active thread. So there will never 
be a runnable, higher-priority thread. 

 
4.11 a. Some programs have logical parallelism that can be exploited to 

simplify and structure the code but do not need hardware 
parallelism. For example, an application that employs multiple 
windows, only one of which is active at a time, could with 
advantage be implemented as a set of ULTs on a single LWP. The 
advantage of restricting such applications to ULTs is efficiency. ULTs 
may be created, destroyed, blocked, activated, and so on. without 
involving the kernel. If each ULT were known to the kernel, the 
kernel would have to allocate kernel data structures for each one 
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and perform thread switching.  Kernel-level thread switching is 
more expensive than user-level thread switching. 

 b. The execution of user-level threads is managed by the threads 
library whereas the LWP is managed by the kernel. 

 c. An unbound thread can be in one of four states: runnable, active, 
sleeping, or stopped. These states are managed by the threads 
library. A ULT in the active state is currently assigned to a LWP and 
executes while the underlying kernel thread executes. We can view 
the LWP state diagram as a detailed description of the ULT active 
state, because an thread only has an LWP assigned to it when it is 
in the Active state. The LWP state diagram is reasonably self-
explanatory. An active thread is only executing when its LWP is in 
the Running state. When an active thread executes a blocking 
system call, the LWP enters the Blocked state. However, the ULT 
remains bound to that LWP and, as far as the threads library is 
concerned, that ULT remains active. 

 
4.12 As the text describes, the Uninterruptible state is another blocked 

state. The difference between this and the Interruptible state is that in 
an uninterruptible state, a process is waiting directly on hardware 
conditions and therefore will not handle any signals. This is used in 
situations where the process must wait without interruption or when 
the event is expected to occur quite quickly. For example, this state 
may be used when a process opens a device file and the corresponding 
device driver starts probing for a corresponding hardware device. The 
device driver must not be interrupted until the probing is complete, or 
the hardware device could be left in an unpredictable state. 
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CHAPTER 5  MUTUAL EXCLUSION AND 

SYNCHRONIZATION 

 

ANSWERS TO QUESTIONS 
5.1 Communication among processes, sharing of and competing for 

resources, synchronization of the activities of multiple processes, and 
allocation of processor time to processes. 

 
5.2 Multiple applications, structured applications, operating-system 

structure. 
 
5.3 The ability to enforce mutual exclusion. 
 
5.4 Processes unaware of each other: These are independent processes 

that are not intended to work together. Processes indirectly aware of 
each other: These are processes that are not necessarily aware of each 
other by their respective process IDs, but that share access to some 
object, such as an I/O buffer. Processes directly aware of each 
other: These are processes that are able to communicate with each 
other by process ID and which are designed to work jointly on some 
activity. 

 
5.5 Competing processes need access to the same resource at the same 

time, such as a disk, file, or printer. Cooperating processes either 
share access to a common object, such as a memory buffer or are able 
to communicate with each other, and cooperate in the performance of 
some application or activity. 

 
5.6 Mutual exclusion: competing processes can only access a resource 

that both wish to access one at a time; mutual exclusion mechanisms 
must enforce this one-at-a-time policy. Deadlock: if competing 
processes need exclusive access to more than one resource then 
deadlock can occur if each processes gained control of one resource and 
is waiting for the other resource. Starvation: one of a set of competing 
processes may be indefinitely denied access to a needed resource 
because other members of the set are monopolizing that resource. 
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5.7 1. Mutual exclusion must be enforced: only one process at a time is 

allowed into its critical section, among all processes that have critical 
sections for the same resource or shared object. 2. A process that halts 
in its non-critical section must do so without interfering with other 
processes. 3. It must not be possible for a process requiring access to a 
critical section to be delayed indefinitely: no deadlock or starvation. 4. 
When no process is in a critical section, any process that requests entry 
to its critical section must be permitted to enter without delay. 5. No 
assumptions are made about relative process speeds or number of 
processors. 6. A process remains inside its critical section for a finite 
time only. 

 
5.8 1. A semaphore may be initialized to a nonnegative value. 2. The wait 

operation decrements the semaphore value. If the value becomes 
negative, then the process executing the wait is blocked. 3. The signal 
operation increments the semaphore value. If the value is not positive, 
then a process blocked by a wait operation is unblocked. 

 
5.9 A binary semaphore may only take on the values 0 and 1. A general 

semaphore may take on any integer value. 
 
5.10 A strong semaphore requires that processes that are blocked on that 

semaphore are  unblocked using a first-in-first-out policy. A weak 
semaphore does not dictate the order in which blocked processes are 
unblocked. 

 
5.11 A monitor is a programming language construct providing abstract 

data types and mutually exclusive access to a set of procedures 
 
5.12 There are two aspects, the send and receive primitives. When a send 

primitive is executed in a process, there are two possibilities: either 
the sending process is blocked until the message is received, or it is 
not. Similarly, when a process issues a receive primitive, there are two 
possibilities: If a message has previously been sent, the message is 
received and execution continues. If there is no waiting message, then 
either (a) the process is blocked until a message arrives, or (b) the 
process continues to execute, abandoning the attempt to receive. 

  
5.13 1. Any number of readers may simultaneously read the file. 2. Only 

one writer at a time may write to the file. 3. If a writer is writing to the 
file, no reader may read it. 

 

ANSWERS TO PROBLEMS 

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently 
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

This work is protected by United States copyright laws  

and is provided solely for the use of instructors in teaching  

their courses and assessing student learning. Dissemination  

or sale of any part of this work (including on the W
orld W

ide W
eb) 

will destroy the integrity of the work and is not permitted.



 

-27- 

 
5.1 a. Process P1 will only enter its critical section if flag[0] = false. Only P1 

may modify flag[1], and P1 tests flag[0] only when flag[1] = true. It 
follows that when P1 enters its critical section we have: 

 
   (flag[1] and (not flag[0])) = true 
 
  Similarly, we can show that when P0 enters its critical section: 
 
   (flag[1] and (not flag[0])) = true 
 
 b. Case 1: A single process P(i) is attempting to enter its critical 

section. It will find flag[1-i] set to false, and enters the section 
without difficulty. 

  Case 2: Both process are attempting to enter their critical section, 
and turn = 0 (a similar reasoning applies to the case of turn = 1). 
Note that once both processes enter the while loop, the value of 
turn is modified only after one process has exited its critical section. 

   Subcase 2a: flag[0] = false. P1 finds flag[0] = 0, and can enter 
its critical section immediately. 

   Subcase 2b: flag[0] = true. Since turn = 0, P0 will wait in its 
external loop for flag[1] to be set to false (without modifying the 
value of flag[0]. Meanwhile, P1 sets flag[1] to false (and will wait 
in its internal loop because turn = 0). At that point, P0 will enter 
the critical section. 

  Thus, if both processes are attempting to enter their critical section, 
there is no deadlock. 

 
5.2 It doesn't work. There is no deadlock; mutual exclusion is enforced; but 

starvation is possible if turn is set to a non-contending process. 
 
5.3 a. There is no variable that is both read and written by more than one 

process (like the variable turn in Dekker's algorithm). Therefore, the 
bakery algorithm does not require atomic load and store to the same 
global variable. 

 b. Because of the use of flag to control the reading of turn, we again 
do not require atomic load and store to the same global variable. 

 
5.4 On uniprocessors you can avoid interruption and thus concurrency by 

disabling interrupts. Also on multiprocessor machines another problem 
arises: memory ordering (multiple processors accessing the memory 
unit). 

 
5.5 b. The read coroutine reads the cards and passes characters through a 

one-character buffer, rs, to the squash coroutine. The read 
coroutine also passes the extra blank at the end of every card image. 
The squash coroutine need known nothing about the 80-character 
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structure of the input; it simply looks for double asterisks and passes 
a stream of modified characters to the print coroutine via a one-
character buffer, sp. Finally, print simply accepts an incoming 
stream of characters and prints it as a sequence of 125-character 
lines. 

 d. This can be accomplished using three concurrent processes. One of 
these, Input, reads the cards and simply passes the characters (with 
the additional trailing space) through a finite buffer, say InBuffer, to 
a process Squash which simply looks for double asterisks and passes 
a stream of modified characters through a second finite buffer, say 
OutBuffer, to a process Output, which extracts the characters from 
the second buffer and prints them in 15 column lines. A 
producer/consumer semaphore approach can be used. 

 
5.6 a. For "x is 10", the interleaving producing the required behavior is easy 

to find since it requires only an interleaving at the source language 
statement level. The essential fact here is that the test for the value 
of x is interleaved with the increment of x by the other process. 
Thus, x was not equal to 10 when the test was performed, but was 
equal to 10 by the time the value of x was read from memory for 
printing. 

 
                                       M(x) 
        P1: x = x - 1;                  9 
        P1: x = x + 1;                  10 
        P2: x = x - 1;                  9 
        P1: if(x != 10)                 9 
        P2: x = x + 1;                  10 
        P1: printf("x is %d", x);       10 
 
  "x is 10" is printed. 
 
 b. For "x is 8" we need to be more inventive, since we need to use 

interleavings of the machine instructions to find a way for the value 
of x to be established as 9 so it can then be evaluated as 8 in a later 
cycle. Notice how the first two blocks of statements correspond to C 
source lines, but how later blocks of machine language statements 
interleave portions of a source language statement. 

 
        Instruction                     M(x)    P1-R0   P2-R0 
        P1: LD   R0, x                  10      10      -- 
        P1: DECR R0                     10      9       -- 
        P1: STO  R0, x                  9       9       -- 
` 
        P2: LD   R0, x                  9       9       9 
        P2: DECR R0                     9       9       8 
        P2: STO  R0, x                  8       9       8 
 

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently 
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

This work is protected by United States copyright laws  

and is provided solely for the use of instructors in teaching  

their courses and assessing student learning. Dissemination  

or sale of any part of this work (including on the W
orld W

ide W
eb) 

will destroy the integrity of the work and is not permitted.



 

-29- 

 
        P1: LD   R0, x                  8       8       8 
        P1: INCR R0                     8       9       -- 
 
        P2: LD   R0, x                  8       9       8 
        P2: INCR R0                     8       9       9 
        P2: STO  R0, x                  9       9       9 
        P2: if(x != 10) printf("x is %d", x); 
        P2: "x is 9" is printed. 
 
        P1: STO  R0, x                  9       9       9 
        P1: if(x != 10) printf("x is %d", x); 
        P1: "x is 9" is printed. 
 
        P1: LD   R0, x                  9       9       9 
        P1: DECR R0                     9       8       -- 
        P1: STO  R0, x                  8       8       -- 
 
        P2: LD   R0, x                  8       8       8 
        P2: DECR R0                     8       8       7 
        P2: STO  R0, x                  7       8       7 
 
        P1: LD   R0, x                  7       7       7 
        P1: INCR R0                     8       8       7 
        P1: STO  R0, x                  8       8       7 
        P1: if(x != 10) printf("x is %d", x); 
        P1: "x is 8" is printed. 
 
5.7 a. On casual inspection, it appears that tally will fall in the range 50 ≤ 

tally ≤ 100 since from 0 to 50 increments could go unrecorded due 
to the lack of mutual exclusion. The basic argument contends that by 
running these two processes concurrently we should not be able to 
derive a result lower than the result produced by executing just one 
of these processes sequentially. But consider the following 
interleaved sequence of the load, increment, and store operations 
performed by these two processes when altering the value of the 
shared variable: 

 
  1. Process A loads the value of tally, increments tally, but then 

loses the processor (it has incremented its register to 1, but has 
not yet stored this value. 

  2. Process B loads the value of tally (still zero) and performs forty-
nine complete increment operations, losing the processor after it 
has stored the value 49 into the shared variable tally. 

  3. Process A regains control long enough to perform its first store 
operation (replacing the previous tally value of 49 with 1) but is 
then immediately forced to relinquish the processor. 
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  4. Process B resumes long enough to load 1 (the current value of 

tally) into its register, but then it too is forced to give up the 
processor (note that this was B's final load). 

  5. Process A is rescheduled, but this time it is not interrupted and 
runs to completion, performing its remaining 49 load, increment, 
and store operations, which results in setting the value of tally 
to 50. 

  6. Process B is reactivated with only one increment and store 
operation to perform before it terminates. It increments its 
register value to 2 and stores this value as the final value of the 
shared variable. 

 
  Some thought will reveal that a value lower than 2 cannot occur. 

Thus, the proper range of final values is 2 ≤ tally ≤ 100. 
 b. For the generalized case of N processes, the range of final values is 2 

≤ tally ≤ (N × 50), since it is possible for all other processes to be 
initially scheduled and run to completion in step (5) before Process B 
would finally destroy their work by finishing last. 

 
5.8 On average, yes, because busy-waiting consumes useless instruction 

cycles. However, in a particular case, if a process comes to a point in 
the program where it must wait for a condition to be satisfied, and if 
that condition is already satisfied, then the busy-wait will find that out 
immediately, whereas, the blocking wait will consume OS resources 
switching out of and back into the process. 

 
5.9 Consider the case in which turn equals 0 and P(1) sets blocked[1] to 

true and then finds blocked[0] set to false. P(0) will then set 
blocked[0] to true, find turn = 0, and enter its critical section. P(1) 
will then assign 1 to turn and will also enter its critical section.  

 
5.10 a. When a process wishes to enter its critical section, it is assigned a 

ticket number. The ticket number assigned is calculated by adding 
one to the largest of the ticket numbers currently held by  the 
processes waiting to enter their critical section and the process 
already in its critical section. The process with the smallest ticket 
number has the highest precedence for entering its critical section. 
In case more than one process receives the same ticket number, 
the process with the smallest numerical name enters its critical 
section. When a process exits its critical section, it resets its ticket 
number to zero.  

 b. If each process is assigned a unique process number, then there is 
a unique, strict ordering of processes at all times. Therefore, 
deadlock cannot occur. 

 c. To demonstrate mutual exclusion, we first need to prove the 
following lemma: if Pi is in its critical section, and Pk has calculated 
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its number[k] and is attempting to enter its critical section, then 
the following relationship holds: 

  
  ( number[i], i ) < ( number[k], k ) 

 
  To prove the lemma, define the following times: 
 
  Tw1 Pi reads choosing[k] for the last time, for j = k, in its first wait, 

so we have choosing[k] = false at Tw1. 
  Tw2 Pi begins its final execution, for j = k, of the second while 

loop. We therefore have Tw1 < Tw2. 
  Tk1 Pk enters the beginning of the repeat loop. 
  Tk2 Pk finishes calculating number[k]. 
  Tk3 Pk sets choosing[k] to false. We have Tk1 < Tk2 < Tk3. 
 
  Since at Tw1, choosing[k] = false, we have either Tw1 < Tk1 or Tk3 < 

Tw1. In the first case, we have number[i] < number[k], since Pi was 
assigned its number prior to Pk; this satisfies the condition of the 
lemma. 

   In the second case, we have Tk2 < Tk3 < Tw1 < Tw2, and 
therefore Tk2 < Tw2. This means that at Tw2, Pi has read the current 
value of number[k]. Moreover, as Tw2 is the moment at which the 
final execution of the second while for j = k takes place, we have 
(number[i], i ) < ( number[k], k), which completes the proof of the 
lemma. 

   It is now easy to show the mutual exclusion is enforced. Assume 
that Pi is in its critical section and Pk is attempting to enter its critical 
section. Pk will be unable to enter its critical section, as it will find 
number[i] ≠ 0 and 

  ( number[i], i ) < ( number[k], k ). 
 
5.11 Suppose we have two processes just beginning; call them p0 and p1. 

Both reach line 3 at the same time. Now, we'll assume both read 
number[0] and number[1] before either addition takes place. Let p1 
complete the line, assigning 1 to number[1], but p0 block before the 
assignment. Then p1 gets through the while loop at line 5 and enters 
the critical section. While in the critical section, it blocks; p0 unblocks, 
and assigns 1 to number[0] at line 3. It proceeds to the while loop at 
line 5. When it goes through that loop for j = 1, the first condition on 
line 5 is true. Further, the second condition on line 5 is false, so p0 
enters the critical section. Now p0 and p1 are both in the critical 
section, violating mutual exclusion. The reason for choosing is to 
prevent the while loop in line 5 from being entered when process j is 
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setting its number[j]. Note that if the loop is entered and then process 
j reaches line 3, one of two situations arises. Either number[j] has the 
value 0 when the first test is executed, in which case process i moves 
on to the next process, or number[j] has a non-zero value, in which 
case at some point number[j] will be greater than number[i] (since 
process i finished executing statement 3 before process j began). 
Either way, process i will enter the critical section before process j, and 
when process j reaches the while loop, it will loop at least until process 
i leaves the critical section. 

 
5.12 This is a program that provides mutual exclusion for access to a critical 

resource among N processes, which can only use the resource one at a 
time. The unique feature of this algorithm is that a process need wait 
no more then N - 1 turns for access. The values of control[i] for 
process i are interpreted as follows: 0 = outside the critical section and 
not seeking entry; 1 = wants to access critical section; 2 = has 
claimed precedence for entering the critical section. The value of k 
reflects whose turn it is to enter the critical section. Entry algorithm: 
Process i expresses the intention to enter the critical section by 
setting control[i] = 1. If no other process between k and i (in 
circular order) has expressed a similar intention then process i claims 
its precedence for entering the critical section by setting control[i] = 
2. If i is the only process to have made a claim, it enters the critical 
section by setting k = 1; if there is contention, i restarts the entry 
algorithm. Exit algorithm: Process i examines the array control in 
circular fashion beginning with entry i + 1. If process i finds a process 
with a nonzero control entry, then k is set to the identifier of that 
process. 

  The original paper makes the following observations: First observe that 
no two processes can be simultaneously processing between their 
statements L3 and L6. Secondly, observe that the system cannot be 
blocked; for if none of the processes contending for access to its critical 
section has yet passed its statement L3, then after a point, the value of 
k will be constant, and the first contending process in the cyclic ordering 
(k, k + 1, ..., N, 1, ..., k – 1) will meet no resistance. Finally, observe 
that no single process can be blocked. Before any process having 
executed its critical section can exit the area protected from 
simultaneous processing, it must designate as its unique successor the 
first contending process in the cyclic ordering, assuring the choice of 
any individual contending process within N – 1 turns. Original paper: 
Eisenberg, A., and McGuire, M. "Other Comments on Dijkstra's 
Concurrent Programming Control Problem." Communications of the 
ACM, November 1972. 

 
5.13 a. exchange(keyi, bolt) 
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 b. The statement bolt = 0 is preferable. An atomic statement such as 

exchange will use more resources. 
 
5.14 var j: 0..n-1; 
  key: boolean; 
 while (true) { 
  waiting[i] = true; 
  key := true; 
  while (waiting[i] && key) 
   key = (compare_and_swap(lock, 0, 1) == 0); 
  waiting[i] = false; 
  < critical section > 
  j = i + 1 mod n; 
  while (j != i && !waiting[j]) j = j + 1 mod n; 
  if (j == i) lock := false 
  else waiting = false; 
  < remainder section > 
 } 
 
 The algorithm uses the common data structures 
  var waiting: array [0..n – 1] of boolean 
   lock: boolean  
 
 These data structures are initialized to false. When a process leaves its 

critical section, it scans the array waiting in the cyclic ordering (i + 1, i 
+ 2, ..., n – 1, 0, ..., i – 1). It designates the first process in this 
ordering that is in the entry section (waiting[j] = true) as the next one 
to enter the critical section. Any process waiting to enter its critical 
section will thus do so within n – 1 turns. 

 
5.15 The two are equivalent. In the definition of Figure 5.3, when the value 

of the semaphore is negative, its value tells you how many processes 
are waiting. With the definition of this problem, you don't have that 
information readily available. However, the two versions function the 
same. 

 
5.16 a. There are two problems. First, because unblocked processes must 

reenter the mutual exclusion (line 10) there is a chance that newly 
arriving processes (at line 5) will beat them into the critical section. 
Second, there is a time delay between when the waiting processes 
are unblocked and when they resume execution and update the 
counters. The waiting processes must be accounted for as soon as 
they are unblocked (because they might resume execution at any 
time), but it may be some time before the processes actually do 
resume and update the counters to reflect this. To illustrate, 
consider the case where three processes are blocked at line 9. The 
last active process will unblock them (lines 25-28) as it departs. But 
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there is no way to predict when these processes will resume 
executing and update the counters to reflect the fact that they have 
become active. If a new process reaches line 6 before the 
unblocked ones resume, the new one should be blocked. But the 
status variables have not yet been updated so the new process will 
gain access to the resource. When the unblocked ones eventually 
resume execution, they will also begin accessing the resource. The 
solution has failed because it has allowed four processes to access 
the resource together. 

 b. This forces unblocked processes to recheck whether they can begin 
using the resource. But this solution is more prone to starvation 
because it encourages new arrivals to “cut in line” ahead of those 
that were already waiting. 

 
5.17 a. This approach is to eliminate the time delay. If the departing 

process updates the waiting and active counters as it unblocks 
waiting processes, the counters will accurately reflect the new state 
of the system before any new processes can get into the mutual 
exclusion. Because the updating is already done, the unblocked 
processes need not reenter the critical section at all. Implementing 
this pattern is easy. Identify all of the work that would have been 
done by an unblocked process and make the unblocking process do 
it instead. 

 b. Suppose three processes arrived when the resource was busy, but 
one of them lost its quantum just before blocking itself at line 9 
(which is unlikely, but certainly possible). When the last active 
process departs, it will do three semSignal operations and set 
must_wait to true. If a new process arrives before the older ones 
resume, the new one will decide to block itself. However, it will 
breeze past the semWait in line 9 without blocking, and when the 
process that lost its quantum earlier runs it will block itself instead. 
This is not an error—the problem doesn’t dictate which processes 
access the resource, only how many are allowed to access it. 
Indeed, because the unblocking order of semaphores is 
implementation dependent, the only portable way to ensure that 
processes proceed in a particular order is to block each on its own 
semaphore. 

 c. The departing process updates the system state on behalf of the 
processes it unblocks. 

 
5.18 a. After you unblock a waiting process, you leave the critical section 

(or block yourself) without opening the mutual exclusion. The 
unblocked process doesn’t reenter the mutual exclusion—it takes 
over your ownership of it. The process can therefore safely update 
the system state on its own. When it is finished, it reopens the 
mutual exclusion. Newly arriving processes can no longer cut in 
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line because they cannot enter the mutual exclusion until the 
unblocked process has finished. Because the unblocked process 
takes care of its own updating, the cohesion of this solution is 
better. However, once you have unblocked a process, you must 
immediately stop accessing the variables protected by the mutual 
exclusion. The safest approach is to immediately leave (after line 
26, the process leaves without opening the mutex) or block 
yourself. 

 b. Only one waiting process can be unblocked even if several are 
waiting—to unblock more would violate the mutual exclusion of 
the status variables. This problem is solved by having the newly 
unblocked process check whether more processes should be 
unblocked (line 14). If so, it passes the baton to one of them (line 
15); if not, it opens up the mutual exclusion for new arrivals (line 
17). 

 c. This pattern synchronizes processes like runners in a relay race. 
As each runner finishes her laps, she passes the baton to the next 
runner. “Having the baton” is like having permission to be on the 
track. In the synchronization world, being in the mutual exclusion 
is analogous to having the baton—only one person can have it.. 

 
5.19 Suppose two processes each call semWait(s) when s is initially 0, and 

after the first has just done semSignalB(mutex) but not done 
semWaitB(delay), the second call to semWait(s) proceeds to the 
same point. Because s = –2 and mutex is unlocked, if two other 
processes then successively execute their calls to semSignal(s) at 
that moment, they will each do semSignalB(delay), but the effect of 
the second semSignalB is not defined. 

  The solution is to move the else line, which appears just before 
the end line in semWait to just before the end line in semSignal. 
Thus, the last semSignalB(mutex) in semWait becomes unconditional 
and the semSignalB(mutex) in semSignal becomes conditional. For a 
discussion, see "A Correct Implementation of General Semaphores," by 
Hemmendinger, Operating Systems Review, July 1988. 

 
5.20  
 var a, b, m: semaphore; 
        na, nm: 0 … +∞; 
 a := 1; b := 1; m := 0; na := 0; nm := 0; 
 semWait(b); na ← na + 1; semSignal(b); 
 semWait(a); nm ← nm + 1; 
   semWait(b); na ← na – 1; 
   if na = 0 then semSignal(b); semSignal(m) 
        else semSignal(b); semSignal(a) 
   endif; 
 semWait(m); nm ← nm – 1; 
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 <critical section>; 
 if nm = 0 then semSignal(a) 
    else semSignal(m) 
 endif; 
 
5.21 The code has a major problem. The V(passenger_released) in the 

car code can unblock a passenger blocked on 
P(passenger_released) that is NOT the one riding in the car that did 
the V(). 

 
5.22 

 Producer Consumer s n delay 
1   1 0 0 
2 semWaitB(s)  0 0 0 
3 n++  0 1 0 
4 if (n==1) 

(semSignalB(dela
y)) 

 0 1 1 

5 semSignalB(s)  1 1 1 
6  semWaitB(delay) 1 1 0 
7  semWaitB(s) 0 1 0 
8  n-- 0 0 0 
9  if (n==0) 

(semWaitB(delay)) 
   

10 semWaitB(s)     
 
Both producer and consumer are blocked. 
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5.23  
 program producerconsumer; 
 var  n: integer; 
   s: (*binary*) semaphore (:= 1); 
   delay: (*binary*) semaphore (:= 0); 
 procedure producer; 
 begin 
  repeat 
   produce; 
   semWaitB(s); 
   append; 
   n := n + 1; 
   if n=0 then semSignalB(delay); 
   semSignalB(s) 
  forever 
 end; 
 procedure consumer; 
 begin 
  repeat 
   semWaitB(s); 
   take; 
   n := n – 1; 
   if n = -1 then 
    begin 
    semSignalB(s); 
    semWaitB(delay); 
    semWaitB(s) 
    end; 
   consume; 
   semSignalB(s) 
  forever 
 end; 
 begin (*main program*) 
  n := 0; 
  parbegin 
   producer; consumer 
  parend 
 end. 
 
5.24 Any of the interchanges listed would result in an incorrect program. 

The semaphore s controls access to the critical region and you only 
want the critical region to include the append or take function. 
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5.25   
Scheduled step of 

execution 
full’s state & 

queue 
Buffer empty’s state & 

queue 
Initialization full = 0 OOO empty = +3 

Ca executes c1 full = –1 (Ca) OOO empty = +3 
Cb executes c1 full = –2 (Ca, Cb) OOO empty = +3 
Pa executes p1 full = –2 (Ca, Cb) OOO empty = +2 
Pa executes p2 full = –2 (Ca, Cb) XOO empty = +2 
Pa executes p3 full = –1 (Cb) Ca XOO empty = +2 
Ca executes c2 full = –1 (Cb) OOO empty = +2 
Ca executes c3 full = –1 (Cb) OOO empty = +3 
Pb executes p1 full = –1 (Cb) OOO empty = +2 
Pa executes p1 full = –1 (Cb) OOO empty = +1 
Pa executes p2 full = –1 (Cb) XOO empty = +1 
Pb executes p2 full = –1 (Cb) XXO empty = +1 
Pb executes p3 full = 0 (Cb) XXO empty = +1 
Pc executes p1 full = 0 (Cb) XXO empty = 0 
Cb executes c2 full = 0 XOO empty = 0 
Pc executes p2 full = 0 XXO empty = 0 
Cb executes c3 full = 0 XXO empty = +1 
Pa executes p3 full = +1 XXO empty = +1 

Pb executes p1-p3 full = +2 XXX empty = 0 
Pc executes p3 full = +3 XXX empty = 0 
Pa executes p1 full = +3 XXX empty = –1(Pa) 
Pd executes p1 full = +3 XXX Empty = –2(Pa, Pd) 

Ca executes c1-c3 full = +2 XXO empty = –1(Pd) Pa 
Pa executes p2 full = +2 XXX empty = –1(Pd) 

Cc executes c1-c2 full = +1 XXO empty = –1(Pd) 
Pa executes p3 full = +2 XXO empty = –1(Pd) 
Cc executes c3 full = +2 XXO empty =0(Pd 

Pd executes p2-p3 full = +3 XXX empty = 0 
  
Differences from one step to the next are highlighted in red. 
 
5.26 
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#define REINDEER 9 /* max # of reindeer 
*/ 
#define ELVES        3 /* size of elf group */ 

/* Semaphores */ 
only_elves = 3, /* 3 go to Santa */ 
emutex = 1, /* update elf_cnt */ 
rmutex = 1, /* update rein_ct */ 
rein_semWait = 0, /* block early arrivals  
    back from islands */ 
sleigh = 0, /*all reindeer 
semWait  
   around the sleigh */ 
done = 0, /* toys all delivered */ 
santa_semSignal = 0, /* 1st 2 elves semWait 
on  
                                 this outside Santa's shop 
*/ 
santa = 0, /* Santa sleeps on this  
   blocked semaphore 
*/ 
problem = 0, /* semWait to pose 
the  
     question to Santa */ 
elf_done = 0; /* receive reply */ 

/* Shared Integers */ 
rein_ct = 0; /* # of reindeer back 
*/ 
elf_ct = 0;              /* # of elves with problem 
*/ 

/* Reindeer Process */ 
for (;;) { 
  tan on the beaches in the Pacific until  
      Christmas is close 
  semWait (rmutex) 
       rein_ct++ 
       if (rein_ct == REINDEER) { 
           semSignal (rmutex) 
           semSignal (santa) 
       } 
       else { 
            semSignal (rmutex) 
            semWait (rein_semWait) 
       } 
/* all reindeer semWaiting to be attached to 
sleigh */ 
  semWait (sleigh) 
   fly off to deliver toys 
   semWait (done) 
   head back to the Pacific islands 
} /* end "forever" loop */ 

/* Elf Process */ 
for (;;) { 
  semWait (only_elves)          /* only 3 elves 
"in" */ 
      semWait (emutex) 
          elf_ct++ 
          if (elf_ct == ELVES) { 
             semSignal (emutex) 
             semSignal (santa)  /* 3rd elf wakes 
Santa */ 
          } 
          else { 
              semSignal (emutex) 
              semWait (santa _semSignal)  /* 
semWait outside 
                                          Santa's shop door */ 
          } 
      semWait (problem) 
       ask question      /* Santa woke elf up */ 
       semWait (elf_done) 
  semSignal (only_elves) 
} /* end "forever" loop */ 

/* Santa Process */ 
for (;;) { 
  semWait (santa)                  /* Santa "rests" */ 
  /* mutual exclusion is not needed on rein_ct 
      because if it is not equal to REINDEER,  
      then elves woke up Santa */ 
   if (rein_ct == REINDEER) { 
      semWait (rmutex) 
      rein_ct = 0            /* reset while blocked */ 
      semSignal (rmutex) 
      for (i = 0; i < REINDEER – 1; i++) 
           semSignal (rein_semWait) 
      for (i = 0; i < REINDEER; i++) 
           semSignal (sleigh) 
      deliver all the toys and return 
      for (i = 0; i < REINDEER; i++) 
           semSignal (done) 
   } 
    else {                      /* 3 elves have arrive */ 
      for (i = 0; i < ELVES – 1; i++) 
           semSignal (santa_semSignal) 
      semWait (emutex) 
            elf_ct = 0 
      semSignal (emutex) 
      for (i = 0; i < ELVES; i++)  { 
           semSignal (problem) 
           answer that question 
           semSignal (elf_done) 
      } 
   } 
} /* end "forever" loop */ 
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5.27 a. There is an array of message slots that constitutes the buffer. Each 

process maintains a linked list of slots in the buffer that constitute 
the mailbox for that process. The message operations can 
implemented as: 

 
 send (message, dest) 
 semWait (mbuf) semWait for message buffer available 
 semWait (mutex) mutual exclusion on message queue 
 acquire free buffer slog 
 copy message to slot 
 link slot to other messages 
 semSignal (dest.sem) wake destination process 
 semSignal (mutex) release mutual exclusion 
 
 receive (message) 
 semWait (own.sem) semWait for message to arrive 
 semWait (mutex) mutual exclusion on message queue 
 unlink slot from own.queue 
 copy buffer slot to message 
 add buffer slot to freelist 
 semSignal (mbuf) indicate message slot freed 
 semSignal (mutex) release mutual exclusion 
 
 where mbuf is initialized to the total number of message slots 

available; own and dest refer to the queue of messages for each 
process, and are initially zero. 

 b. This solution is taken from [TANE97]. The synchronization process 
maintains a counter and a linked list of waiting processes for each 
semaphore. To do a WAIT or SIGNAL, a process calls the 
corresponding library procedure, wait or signal, which sends a 
message to the synchronization process specifying both the operation 
desired and the semaphore to be used. The library procedure then 
does a RECEIVE to get the reply from the synchronization process. 

  When the message arrives, the synchronization process checks 
the counter to see if the required operation can be completed. 
SIGNALs can always complete, but WAITs will block if the value of 
the semaphore is 0. If the operation is allowed, the synchronization 
process sends back an empty message, thus unblocking the caller. If, 
however, the operation is a WAIT and the semaphore is 0, the 
synchronization process enters the caller onto the queue and does 
not send a reply. The result is that the process doing the WAIT is 
blocked, just as it should be. Later, when a SIGNAL is done, the 
synchronization process picks one of the processes blocked on the 
semaphore, either in FIFO order, priority order, or some other order, 
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and sends a reply. Race conditions are avoided here because the 
synchronization process handles only one request at a time. 

 
5.28 The code for the one-writer many readers is fine if we assume that 

the readers have always priority. The problem is that the readers can 
starve the writer(s) since they may never all leave the critical region, 
i.e., there is always at least one reader in the critical region, hence 
the ‘wrt’ semaphore may never be signaled to writers and the writer 
process does not get access to ‘wrt’ semaphore and writes into the 
critical region. 

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently 
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

This work is protected by United States copyright laws  

and is provided solely for the use of instructors in teaching  

their courses and assessing student learning. Dissemination  

or sale of any part of this work (including on the W
orld W

ide W
eb) 

will destroy the integrity of the work and is not permitted.



 

-42- 

 
 

CHAPTER 6  DEADLOCK AND STARVATION 

 

ANSWERS TO QUESTIONS 
6.1 Examples of reusable resources are processors, I/O channels, main and 

secondary memory, devices, and data structures such as files, 
databases, and semaphores. Examples of consumable resources are 
interrupts, signals, messages, and information in I/O buffers. 

 
6.2 Mutual exclusion. Only one process may use a resource at a time. 

Hold and wait. A process may hold allocated resources while awaiting 
assignment of others. No preemption. No resource can be forcibly 
removed from a process holding it. 

 
6.3 The above three conditions, plus: Circular wait. A closed chain of 

processes exists, such that each process holds at least one resource 
needed by the next process in the chain. 

 
6.4 The hold-and-wait condition can be prevented by requiring that a 

process request all of its required resources at one time, and blocking 
the process until all requests can be granted simultaneously. 

 
6.5 First, if a process holding certain resources is denied a further request, 

that process must release its original resources and, if necessary, 
request them again together with the additional resource. Alternatively, 
if a process requests a resource that is currently held by another 
process, the operating system may preempt the second process and 
require it to release its resources. 

 
6.6 The circular-wait condition can be prevented by defining a linear 

ordering of resource types. If a process has been allocated resources of 
type R, then it may subsequently request only those resources of types 
following R in the ordering. 

 
6.7 Deadlock prevention constrains resource requests to prevent at least 

one of the four conditions of deadlock; this is either done indirectly, by 
preventing one of the three necessary policy conditions (mutual 
exclusion, hold and wait, no preemption), or directly, by preventing 
circular wait. Deadlock avoidance allows the three necessary 
conditions, but makes judicious choices to assure that the deadlock 
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point is never reached. With deadlock detection, requested resources 
are granted to processes whenever possible.; periodically, the operating 
system performs an algorithm that allows it to detect the circular wait 
condition. 

 

ANSWERS TO PROBLEMS 

6.1 Mutual exclusion: Only one car can occupy a given quadrant of the 
intersection at a time. Hold and wait: No car ever backs up; each car 
in the intersection waits until the quadrant in front of it is available. No 
preemption: No car is allowed to force another car out of its way. 
Circular wait: Each car is waiting for a quadrant of the intersection 
occupied by another car. 

 
6.2 Prevention: Hold-and-wait approach: Require that a car request both 

quadrants that it needs and blocking the car until both quadrants can be 
granted. No preemption approach: releasing an assigned quadrant is 
problematic, because this means backing up, which may not be possible 
if there is another car behind this car. Circular-wait approach: assign a 
linear ordering to the quadrants. 

 Avoidance: The algorithms discussed in the chapter apply to this 
problem. Essentially, deadlock is avoided by not granting requests that 
might lead to deadlock. 

 Detection: The problem here again is one of backup. 
 
6.3 1. Q acquires B and A, and then releases B and A. When P resumes 

execution, it will be able to acquire both resources. 
 2. Q acquires B and A. P executes and blocks on a request for A. Q 

releases B and A. When P resumes execution, it will be able to 
acquire both resources. 

 3. Q acquires B and then P acquires and releases A. Q acquires A and 
then releases B and A. When P resumes execution, it will be able to 
acquire B. 

 4. P acquires A and then Q acquires B. P releases A. Q acquires  A and 
then releases B. P acquires B and then releases B. 

 5. P acquires and then releases A. P acquires B. Q executes and blocks 
on request for B. P releases B. When Q resumes execution, it will be 
able to acquire both resources. 

 6. P acquires A and releases A and then acquires and releases B. When 
Q resumes execution, it will be able to acquire both resources. 

 
6.4 If Q acquires B and A before P requests A, then Q can use these two 

resources and then release them, allowing A to proceed. If P acquires A 
before Q requests A, then at most Q can proceed to the point of 
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requesting A and then is blocked. However, once P releases A, Q can 
proceed. Once Q releases B, A can proceed. 

 
6.5 a. 15 – (2+0+4+1+1+1) = 6 
  6 – (0+1+1+0+1+0) = 3 
  9 – (2+1+0+0+0+1) = 5 
  10 – (1+1+2+1+0+1) = 4 
 b. Need Matrix = Max Matrix – Allocation Matrix 
 
 

 need 
process A B C D 

P0 7 5 3 4 
P1 2 1 2 2 
P2 3 4 4 2 
P3 2 3 3 1 
P4 4 1 2 1 
P5 3 4 3 3 

 
 c. The following matrix shows the order in which the processes finish 

and shows what is available once each process finishes 
 

 available 
process A B C D 

P5 7 3 6 5 
P4 8 4 6 5 
P3 9 4 6 6 
P2 13 5 6 8 
P1 13 6 7 9 
P0 15 6 9 10 

  
 d. ANSWER is NO for the following reasons: If this request were 

granted, then the new allocation matrix would be: 
 

 allocation 
process A B C D 

P0 2 0 2 1 
P1 0 1 1 1 
P2 4 1 0 2 
P3 1 0 0 1 
P4 1 1 0 0 
P5 4 2 4 4 

  
  Then the new need matrix would be 
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 allocation 

process A B C D 
P0 7 5 3 4 
P1 2 1 2 2 
P2 3 4 4 2 
P3 2 3 3 1 
P4 4 1 2 1 
P5 0 2 0 0 

  
  And Available is then: 
 

Available 
A B C D 
3 1 2 1 

 
  Which means we could NOT satisfy ANY process’ need. 
 
6.6 a.  

Process

P0 P1 P2

request held by

Resrce
Process

A B C D E F

Resrce

 
  There is a deadlock if the scheduler goes, for example: P0-P1-P2-P0-

P1-P2 (line by line): Each of the 6 resources will then be held by one 
process, so all 3 processes are now blocked at their third line inside 
the loop, waiting for a resource that another process holds. This is 
illustrated by the circular wait (thick arrows) in the RAG above: 
P0→C→P2→D→P1→B→P0. 

 b. Any change in the order of the get() calls that alphabetizes the 
resources inside each process code will avoid deadlocks. More 
generally, it can be a direct or reverse alphabet order, or any 
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arbitrary but predefined ordered list of the resources that should be 
respected inside each process. 

   Explanation: if resources are uniquely ordered, cycles are not 
possible any more because a process cannot hold a resource that 
comes after another resource it is holding in the ordered list. See this 
remark in Section 6.2 about Circular Wait Prevention. For example: 

   A B C 
   B D D 
   C E F 
  With this code, and starting with the same worst-case scheduling 

scenario P0-P1-P2, we can only continue with either P1-P1-CR1… or 
P2-P2-CR2…. For example, in the case P1-P1, we get the following 
RAG without circular wait: 

 

P0 P1 P2

A B C D E F

 
 
  After entering CR1, P1 then releases all its resources and P0 and P2 

are free to go. Generally the same thing would happen with any fixed 
ordering of the resources: one of the 3 processes will always be able 
to enter its critical area and, upon exit, let the other two progress. 

 
6.7 A deadlock occurs when process I has filled the disk with input (i = 

max) and process i is waiting to transfer more input to the disk, while 
process P is waiting to transfer more output to the disk and process O is 
waiting to transfer more output from the disk. 

 
6.8 Reserve a minimum number of blocks (called reso) permanently for 

output buffering, but permit the number of output blocks to exceed this 
limit when disk space is available. The resource constraints now 
become: 

 
i + o ≤ max 

i  ≤ max – reso 
 where 

0 < reso < max 
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 If process P is waiting to deliver output to the disk, process O will 

eventually consume all previous output and make at least reso pages 
available for further output, thus enabling P to continue. So P cannot be 
delayed indefinitely by O. Process I can be delayed if the disk is full of 
I/O; but sooner or later, all previous input will be consumed by P and 
the corresponding output will be consumed by O, thus enabling I to 
continue. 

 
6.9  i + o + p ≤ max 
  i + o  ≤ max – resp 
  i + p ≤ max – reso 
  i  ≤ max – (reso + resp) 
 
6.10 a. 1. i ← i + 1 
   2. i ← i – 1;  p ← p + 1 
   3. p ← p – 1;  o ← o + 1 
   4. o ← o – 1 
   5. p ← p + 1 
   6. p ← p – 1 
  b. By examining the resource constraints listed in the solution to 

problem 6.7, we can conclude the following: 
   6. Procedure returns can take place immediately because they 

only release resources. 
   5. Procedure calls may exhaust the disk (p = max – reso) and 

lead to deadlock. 
   4. Output consumption can take place immediately after output 

becomes available. 
   3. Output production can be delayed temporarily until all 

previous output has been consumed and made at least reso 
pages available for further output. 

   2. Input consumption can take place immediately after input 
becomes available. 

   1. Input production can be delayed until all previous input and 
the corresponding output has been consumed. At this point, 
when i = o = 0, input can be produced provided the user 
processes have not exhausted the disk ( p < max – reso). 

  Conclusion: the uncontrolled amount of storage assigned to the user 
processes is the only possible source of a storage deadlock.  
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6.11 a. Creating the process would result in the state: 
 

Process Max Hold Claim Free 
1 70 45 25 25 
2 60 40 20  
3 60 15 45  
4 60 25 35  

 
 There is sufficient free memory to guarantee the termination of 

either P1 or P2. After that, the remaining three jobs can be 
completed in any order. 

  
 b. Creating the process would result in the trivially unsafe state:  
 

Process Max Hold Claim Free 
1 70 45 25 15 
2 60 40 20  
3 60 15 45  
4 60 35 25  

 
6.12 It is unrealistic: don't know max demands in advance, number of 

processes can change over time, number of resources can change over 
time (something can break).  Most OS's ignore deadlock.  But Solaris 
only lets the superuser use the last process table slot. 
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6.13 a. The buffer is declared to be an array of shared elements of type T. 

Another array defines the number of input elements available to 
each process. Each process keeps track of the index j of the buffer 
element it is referring to at the moment. 

 
 var  buffer: array 0..max-1 of shared T; 
         available: shared array 0..n-1 of 0..max; 
 
 "Initialization" 
 var K: 1..n-1; 
 region available do 
 begin 
  available(0) := max; 
  for every k do available (k) := 0; 
 end 
 
 "Process i" 
 var j: 0..max-1; succ: 0..n-1; 
 begin 
  j := 0; succ := (i+1) mod n; 
  repeat 
   region available do 
   await available (i) > 0; 
   region buffer(j) do consume element; 
   region available do 
   begin 
    available (i) := available(i) – 1; 
    available (succ) := available (succ) + 1; 
   end 
   j := (j+1) mod max; 
  forever 
 end 
 
  In the above program, the construct region defines a critical region 

using some appropriate mutual-exclusion mechanism. The notation 
 

region v do S 
 
  means that at most one process at a time can enter the critical 

region associated with variable v to perform statement S. 
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 b. A deadlock is a situation in which: 
 
   P0 waits for Pn-1 AND 
   P1 waits for P0    AND 
   . . . . . 
   Pn-1 waits for Pn-2  
 
  because 
 
   (available (0) = 0) AND 
   (available (1) = 0) AND 
   . . . . . 
   (available (n-1) = 0)  
 
  But if max > 0, this condition cannot hold because the critical regions 

satisfy the following invariant: 

claim(i)
i=1

N

∑ < N available(i)
i=0

n−1

∑ = max  

 
6.14 a. Yes. If foo( ) executes semWait(S) and then bar( ) executes 

semWait(R) both processes will then block when each executes its 
next instruction. Since each will then be waiting for a semSignal( ) 
call from the other, neither will ever resume execution. 

 b. No. If either process blocks on a semWait( ) call then either the 
other process will also block as described in (a) or the other process 
is executing in its critical section. In the latter case, when the 
running process leaves its critical section, it will execute a 
semSignal( ) call, which will awaken the blocked process. 

 
6.15 The number of available units required for the state to be safe is 3, 

making a total of 10 units in the system. In the state shown in the 
problem, if one additional unit is available, P2 can run to completion, 
releasing its resources, making 2 units available. This would allow P1 
to run to completion making 3 units available. But at this point P3 
needs 6 units and P4 needs 5 units. If to begin with, there had been 3 
units available instead of 1 unit, there would now be 5 units available. 
This would allow P4 to run to completion, making 7 units available, 
which would allow P3 to run to completion. 

 
6.16 a. In order from most-concurrent to least, there is a rough partial 

order on the deadlock-handling algorithms:  
  1. detect deadlock and kill thread, releasing its resources  
   detect deadlock and roll back thread's actions  
   restart thread and release all resources if thread needs to wait  
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  None of these algorithms limit concurrency before deadlock occurs, 

because they rely on runtime checks rather than static restrictions. 
Their effects after deadlock is detected are harder to characterize: 
they still allow lots of concurrency (in some cases they enhance it), 
but the computation may no longer be sensible or efficient. The 
third algorithm is the strangest, since so much of its concurrency 
will be useless repetition; because threads compete for execution 
time, this algorithm also prevents useful computation from 
advancing. Hence it is listed twice in this ordering, at both 
extremes. 

  2. banker's algorithm 
   resource ordering  
  These algorithms cause more unnecessary waiting than the 

previous two by restricting the range of allowable computations. 
The banker's algorithm prevents unsafe allocations (a proper 
superset of deadlock-producing allocations) and resource ordering 
restricts allocation sequences so that threads have fewer options as 
to whether they must wait or not. 

  3. reserve all resources in advance  
  This algorithm allows less concurrency than the previous two, but is 

less pathological than the worst one. By reserving all resources in 
advance, threads have to wait longer and are more likely to block 
other threads while they work, so the system-wide execution is in 
effect more linear. 

  4. restart thread and release all resources if thread needs to wait  
  As noted above, this algorithm has the dubious distinction of 

allowing both the most and the least amount of concurrency, 
depending on the definition of concurrency.  

 b. In order from most-efficient to least, there is a rough partial order 
on the deadlock-handling algorithms:  

  1. reserve all resources in advance 
   resource ordering  
  These algorithms are most efficient because they involve no 

runtime overhead. Notice that this is a result of the same static 
restrictions that made these rank poorly in concurrency.  

  2. banker's algorithm 
    detect deadlock and kill thread, releasing its resources  
  These algorithms involve runtime checks on allocations which are 

roughly equivalent; the banker's algorithm performs a search to 
verify safety which is O(n m) in the number of threads and 
allocations, and deadlock detection performs a cycle-detection 
search which is O(n) in the length of resource-dependency chains. 
Resource-dependency chains are bounded by the number of 
threads, the number of resources, and the number of allocations.  

  3. detect deadlock and roll back thread's actions  
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  This algorithm performs the same runtime check discussed 

previously but also entails a logging cost which is O(n) in the total 
number of memory writes performed.  

  4. restart thread and release all resources if thread needs to wait  
  This algorithm is grossly inefficient for two reasons. First, because 

threads run the risk of restarting, they have a low probability of 
completing. Second, they are competing with other restarting 
threads for finite execution time, so the entire system advances 
towards completion slowly if at all.  

   This ordering does not change when deadlock is more likely. The 
algorithms in the first group incur no additional runtime penalty 
because they statically disallow deadlock-producing execution. The 
second group incurs a minimal, bounded penalty when deadlock 
occurs. The algorithm in the third tier incurs the unrolling cost, 
which is O(n) in the number of memory writes performed between 
checkpoints. The status of the final algorithm is questionable 
because the algorithm does not allow deadlock to occur; it might be 
the case that unrolling becomes more expensive, but the behavior 
of this restart algorithm is so variable that accurate comparative 
analysis is nearly impossible. 

 
6.17 The philosophers can starve while repeatedly picking up and putting 

down their left forks in perfect unison. 
 
6.18 a. Assume that the table is in deadlock, i.e., there is a nonempty set D 

of philosophers such that each Pi in D holds one fork and waits for a 
fork held by neighbor. Without loss of generality, assume that Pj ∈ 
D is a lefty. Since Pj clutches his left fork and cannot have his right 
fork, his right neighbor Pk never completes his dinner and is also a 
lefty. Therefore, Pk Œ D. Continuing the argument rightward 
around the table shows that all philosophers in D are lefties. This 
contradicts the existence of at least one righty. Therefore deadlock 
is not possible. 

 b. Assume that lefty Pj starves, i.e., there is a stable pattern of dining 
in which Pj never eats. Suppose Pj holds no fork. Then Pj's left 
neighbor Pi must continually hold his right fork and never finishes 
eating. Thus Pi is a righty holding his right fork, but never getting 
his left fork to complete a meal, i.e., Pi also starves. Now Pi's left 
neighbor must be a righty who continually holds his right fork. 
Proceeding leftward around the table with this argument shows that 
all philosophers are (starving) righties. But Pj is a lefty: a 
contradiction. Thus Pj must hold one fork. 

   As Pj continually holds one fork and waits for his right fork, Pj's 
right neighbor Pk never sets his left fork down and never completes 
a meal, i.e., Pk is also a lefty who starves. If Pk did not continually 
hold his left fork, Pj could eat; therefore Pk holds his left fork. 
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Carrying the argument rightward around the table shows that all 
philosophers are (starving) lefties: a contradiction. Starvation is 
thus precluded. 

 
6.19 One solution (6.14) waits on available forks; the other solution (6.17) 

waits for the neighboring philosophers to be free. The logic is 
essentially the same. The solution of Figure 6.17 is slightly more 
compact. 

 
6.20 Atomic operations operate on atomic data types, which have their own 

internal format. Therefore, a simple read operation cannot be used, 
but a special read operation for the atomic data type is needed. 

 
6.21 This code causes a deadlock, because the writer lock will spin, waiting 

for all readers to release the lock, including this thread. 
 
6.22 Without using the memory barriers, on some processors it is possible 

that c receives the new value of b, while d receives the old value of a. 
For example, c could equal 4 (what we expect), yet d could equal 1 
(not what we expect). Using the mb() insures a and b are written in 
the intended order, while the rmb() insures c and d are read in the 
intended order. 
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CHAPTER 7  MEMORY MANAGEMENT 

 

ANSWERS TO QUESTIONS 
7.1 Relocation, protection, sharing, logical organization, physical 

organization. 
 
7.2 Typically, it is not possible for the programmer to know in advance 

which other programs will be resident in main memory at the time of 
execution of his or her program. In addition, we would like to be able to 
swap active processes in and out of main memory to maximize 
processor utilization by providing a large pool of ready processes to 
execute. In both these cases, the specific location of the process in main 
memory is unpredictable. 

 
7.3 Because the location of a program in main memory is unpredictable, it is 

impossible to check absolute addresses at compile time to assure 
protection. Furthermore, most programming languages allow the 
dynamic calculation of addresses at run time, for example by computing 
an array subscript or a pointer into a data structure. Hence all memory 
references generated by a process must be checked at run time to 
ensure that they refer only to the memory space allocated to that 
process. 

 
7.4 If a number of processes are executing the same program, it is 

advantageous to allow each process to access the same copy of the 
program rather than have its own separate copy. Also, processes that 
are cooperating on some task may need to share access to the same 
data structure. 

 
7.5 By using unequal-size fixed partitions: 1. It is possible to provide one or 

two quite large partitions and still have a large number of partitions. 
The large partitions can allow the entire loading of large programs. 2. 
Internal fragmentation is reduced because a small program can be put 
into a small partition. 

 
7.6 Internal fragmentation refers to the wasted space internal to a partition 

due to the fact that the block of data loaded is smaller than the 
partition. External fragmentation is a phenomenon associated with 
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dynamic partitioning, and refers to the fact that a large number of small 
areas of main memory external to any partition accumulates. 

 
7.7 A logical address is a reference to a memory location independent of 

the current assignment of data to memory; a translation must be made 
to a physical address before the memory access can be achieved. A 
relative address is a particular example of logical address, in which 
the address is expressed as a location relative to some known point, 
usually the beginning of the program. A physical address, or absolute 
address, is an actual location in main memory. 

 
7.8 In a paging system, programs and data stored on disk or divided into 

equal, fixed-sized blocks called pages, and main memory is divided into 
blocks of the same size called frames. Exactly one page can fit in one 
frame. 

 
7.9 An alternative way in which the user program can be subdivided is 

segmentation. In this case, the program and its associated data are 
divided into a number of segments. It is not required that all segments 
of all programs be of the same length, although there is a maximum 
segment length. 

 

ANSWERS TO PROBLEMS 

7.1 Here is a rough equivalence: 
 

 Relocation ≈ support modular programming 
 Protection ≈ process isolation; protection and access control 
 Sharing ≈ protection and access control 
 Logical Organization ≈ support of modular programming 
 Physical Organization ≈ long-term storage; automatic allocation and 

management 
 
7.2 The number of partitions equals the number of bytes of main memory 

divided by the number of bytes in each partition: 224/216 = 28. Eight 
bits are needed to identify one of the 28 partitions. 

 
7.3 Let s and h denote the average number of segments and holes, 

respectively. The probability that a given segment is followed by a hole 
in memory (and not by another segment) is 0.5, because deletions and 
creations are equally probable in equilibrium. so with s segments in 
memory, the average number of holes must be s/2. It is intuitively 
reasonable that the number of holes must be less than the number of 
segments because neighboring segments can be combined into a single 
hole on deletion. 
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7.4 Let N be the length of list of free blocks. 
 Best-fit: Average length of search = N, as each free block in the list is 

considered, to find the best fit. 
 First-fit: The probability of each free block in the list to be large enough 

or not large enough, for a memory request is equally likely. Thus the 
probability of first free block in the list to be first fit is 1/2. For the 
second free block to be first fit, the first free block should be smaller, 
and the second free block should be large enough, for the memory 
request. Thus the probability of second free block to be first fit is 1/2 x 
1/2 = 1/4. Proceeding in the same way, probability of ith free block in 
the list to be first fit is 1/2i. Thus the average length of search = 1/2 + 
2/22 + 3/23 + … … + N/2N + N/2N 

 (the last term corresponds to the case, when no free block fits the 
request). Above length of search has a value between 1 and 2. 

 Next-fit: Same as first-fit, except for the fact that search starts where 
the previous first-fit search ended. 

 
7.5 a. A criticism of the best-fit algorithm is that the space remaining after 

allocating a block of the required size is so small that in general it is 
of no real use. The worst fit algorithm maximizes the chance that the 
free space left after a placement will be large enough to satisfy 
another request, thus minimizing the frequency of compaction. The 
disadvantage of this approach is that the largest blocks are allocated 
first; therefore a request for a large area is more likely to fail. 

 b. Same as best fit. 
 
7.6 a. When the 2-MB process is placed, it fills the leftmost portion of the 

free block selected for placement. Because the diagram shows an 
empty block to the left of X, the process swapped out after X was 
placed must have created that empty block. Therefore, the maximum 
size of the swapped out process is 1M. 

 b. The free block consisted of the 5M still empty plus the space occupied 
by X, for a total of 7M. 

 c. The answers are indicated in the following figure: 
 

4M
FF NF WF BFX 5M 8M 2M 4M 3M1

M
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7.7 a. 
 
Request 70 A 128 256 512 
Request 35 A B 64 256 512 
Request 80 A B 64 C 128 512 

Return A 128 B 64 C 128 512 
Request 60 128 B D C 128 512 

Return B 128 64 D C 128 512 
Return D 256 C 128 512 
Return C 1024 

 
 b. 

 
 
7.8 a. 011011110100 
 b. 011011100000 
 

7.9  buddyk x( ) = x + 2k if x mod 2k+1 = 0

x − 2k if x mod 2k+1 = 2k

⎧
⎨
⎪

⎩⎪
 

 
7.10 a. Yes, the block sizes could satisfy Fn = Fn-1 + Fn-2. 
 b. This scheme offers more block sizes than a binary buddy system, 

and so has the potential for less internal fragmentation, but can 
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cause additional external fragmentation because many uselessly 
small blocks are created. 

 
7.11 The use of absolute addresses reduces the number of times that 

dynamic address translation has to be done. However, we wish the 
program to be relocatable. Therefore, it might be preferable to use 
relative addresses in the instruction register. Alternatively, the address 
in the instruction register can be converted to relative when a process 
is swapped out of memory. 

 
7.12 a. The number of bytes in the logical address space is (216 pages) × 

(210 bytes/page) = 226 bytes. Therefore, 26 bits are required for 
the logical address. 

 b. A frame is the same size as a page, 210 bytes. 
 c. The number of frames in main memory is (232 bytes of main 

memory)/(210 bytes/frame) = 222 frames. So 22 bits is needed to 
specify the frame. 

 d. There is one entry for each page in the logical address space. 
Therefore there are 216 entries. 

 e. In addition to the valid/invalid bit, 22 bits are needed to specify the 
frame location in main memory, for a total of 23 bits. 

 
7.13 a. The page number is in the higher 8 bits: 00010100. We chop it off 

from the address and replace it with the frame number, which is 4 
times less, that is, shifted 2 bits to the right: 00000101. Therefore 
the result is this frame number concatenated with the offset 
10111010: 

  binary physical address = 0000010110111010 
 b. The segment number is in the higher 6 bits: 000101. We chop it off 

from the address and add the remaining offset 0010111010 to the 
base of the segment. The base is 22 = 10110 added to the segment 
number times 4,096, that is, shifted 12 bits to the left: 10110 + 
0101000000000000 = 0101000000010110. So adding up the 2 two 
underlined numbers gives: 

  binary physical address = 0101000011010000 
 
7.14 a. Segment 0 starts at location 660. With the offset, we have a 

physical address of 660 + 198 = 858 
 b. 222 + 156 = 378 
 c. Segment 1 has a length of 422 bytes, so this address triggers a 

segment fault. 
 d. 996 + 444 = 1440 

 e. 660 + 222 = 882 
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7.15 a. Observe that a reference occurs to some segment in memory each 

time unit, and that one segment is deleted every t references. 
Because the system is in equilibrium, a new segment must be 
inserted every t references; therefore, the rate of the boundary's 
movement is s/t words per unit time. The system's operation time 
t0 is then the time required for the boundary to cross the hole, i.e., 
t0 = fmr/s, where m = size of memory. The compaction operation 
requires two memory references—a fetch and a store—plus 
overhead for each of the (1 – f)m words to be moved, i.e., the 
compaction time tc is at least 2(1 – f)m. The fraction F of the time 
spent compacting is F = 1 – t0/(t0 + tc), which reduces to the 
expression given. 

 b. k = (t/2s) – 1 = 9;  F ≥ (1 – 0.2)/(1 + 1.8) = 0.29 
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CHAPTER 8  VIRTUAL MEMORY 

ANSWERS TO QUESTIONS 
8.1 Simple paging: all the pages of a process must be in main memory for 

process to run, unless overlays are used. Virtual memory paging: not 
all pages of a process need be in main memory frames for the process 
to run.; pages may be read in as needed 

 
8.2 Thrashing is a phenomenon in virtual memory schemes, in which the 

processor spends most of its time swapping pieces rather than 
executing instructions. 

 
8.3 Algorithms can be designed to exploit the principle of locality to avoid 

thrashing. In general, the principle of locality allows the algorithm to 
predict which resident pages are least likely to be referenced in the near 
future and are therefore good candidates for being swapped out. 

 
8.4 Frame number: the sequential number that identifies a page in main 

memory; present bit: indicates whether this page is currently in main 
memory; modify bit: indicates whether this page has been modified 
since being brought into main memory. 

 
8.5 The TLB is a cache that contains those page table entries that have 

been most recently used. Its purpose is to avoid, most of the time, 
having to go to disk to retrieve a page table entry. 

 
8.6 With demand paging, a page is brought into main memory only when 

a reference is made to a location on that page. With prepaging, pages 
other than the one demanded by a page fault are brought in. 

 
8.7 Resident set management deals with the following two issues: (1) 

how many page frames are to be allocated to each active process; and 
(2) whether the set of pages to be considered for replacement should be 
limited to those of the process that caused the page fault or encompass 
all the page frames in main memory. Page replacement policy deals 
with the following issue: among the set of pages considered, which 
particular page should be selected for replacement. 

 
8.8 The clock policy is similar to FIFO, except that in the clock policy, any 

frame with a use bit of 1 is passed over by the algorithm. 
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8.9 (1) If a page is taken out of a resident set but is soon needed, it is still 

in main memory, saving a disk read. (2) Modified page can be written 
out in clusters rather than one at a time, significantly reducing the 
number of I/O operations and therefore the amount of disk access time. 

 
8.10 Because a fixed allocation policy requires that the number of frames 

allocated to a process is fixed, when it comes time to bring in a new 
page for a process, one of the resident pages for that process must be 
swapped out (to maintain the number of frames allocated at the same 
amount), which is a local replacement policy. 

 
8.11 The resident set of a process is the current number of pages of that 

process in main memory. The working set of a process is the number 
of pages of that process that have been referenced recently. 

 
8.12 With demand cleaning, a page is written out to secondary memory 

only when it has been selected for replacement. A precleaning policy 
writes modified pages before their page frames are needed so that 
pages can be written out in batches. 

 

ANSWERS TO PROBLEMS 

8.1 a. Split binary address into virtual page number and offset; use VPN as 
index into page table; extract page frame number; concatenate 
offset to get physical memory address 

 b. (i) 1052 = 1024 + 28 maps to VPN 1 in PFN 7, (7 × 1024+28 = 
7196) 

  (ii) 2221 = 2 × 1024 + 173 maps to VPN 2, page fault 
  (iii) 5499 = 5 × 1024 + 379 maps to VPN 5 in PFN 0, (0 × 1024+379 

= 379) 
 
8.2 a. 3 page faults for every 4 executions of C[i, j] = A[i, j] +B[i, j]. 
 b. Yes. The page fault frequency can be minimized by switching the 

inner and outer loops. 
 c. After modification, there are 3 page faults for every 256 executions. 
 
8.3 a. 4 MByte 
 b. Number of rows: 26 x 2=128 entries. Each entry consist of: 20 (page 

number) + 20 (frame number) + 8 bits (chain index) = 48 bits = 6 
bytes. 

  Total: 128 × 6= 768 bytes 
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8.4 a. FIFO: 
 

7 0 1 2 0 3 0 4 2 3 0 3 2 
7 7 7 2 2 2 2 4 4 4 0 0 0 
 0 0 0 0 3 3 3 2 2 2 2 2 
  1 1 1 1 0 0 0 3 3 3 3 
   F  F F F F F F   

 
 b. LRU: 
 

7 0 1 2 0 3 0 4 2 3 0 3 2 
7 7 7 2 2 2 2 4 4 4 0 0 0 
 0 0 0 0 0 0 0 0 3 3 3 3 
  1 1 1 3 3 3 2 2 2 2 2 
   F  F  F F F F   

 
 c. Clock: 
 

7  0  1  2  0  3  0 
7*  7* → 7*  2*  2* → 2* → 2* 
  0*  0* → 0 → 0*  0  0* 
 →   1*  1  1  3*  3* 
      F    F   

 
 4  2  3  0  3  2 
 4*  4*  4* → 4  3*  3* 
→ 0  2*  2*  2 → 2 → 2* 
 3 → 3 → 3*  0*  0*  0* 
 F  F    F  F   

 
 d. OPT: 
 

7 0 1 2 0 3 0 4 2 3 0 3 2 
7 7 7 2 2 2 2 2 2 2 2 2 2 
 0 0 0 0 0 0 4 4 4 0 0 0 
  1 1 3 3 3 3 3 3 3 3 3 
   F  F     F   

 
 e. FIFO: page faults = 7   miss rate = 70% 
  LRU: page faults = 6   miss rate = 60% 
  Clock: page faults = 6   miss rate = 60% 
  OPT: page faults = 3   miss rate = 30% 
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8.5 9 and 10 page transfers, respectively. This is referred to as "Belady's 

anomaly," and was reported in "An Anomaly in Space-Time 
Characteristics of Certain Programs Running in a Paging Machine," by 
Belady et al, Communications of the ACM, June 1969. 

 
8.6 a. LRU: Hit ratio = 16/33 
 
1 0 2 2 1 7 6 7 0 1 2 0 3 0 4 5 1 5 2 4 5 6 7 6 7 2 4 2 7 3 3 2 3 
 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 4 4 4 4 4 4 4 4 4 4 2 2 2 2 2 2 2 2 
- 0 0 0 0 0 6 6 6 6 2 2 2 2 2 5 5 5 5 5 5 5 5 5 5 5 4 4 4 4 4 4 4 
- - 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 2 2 2 2 7 7 7 7 7 7 7 7 7 7 7 
- - - - - 7 7 7 7 7 7 7 3 3 3 3 1 1 1 1 1 6 6 6 6 6 6 6 6 3 3 3 3 
F F F     F F   F   F   F   F F F   F     F F     F F     F 
 
 b. FIFO: Hit ratio = 16/33 
 
1 0 2 2 1 7 6 7 0 1 2 0 3 0 4 5 1 5 2 4 5 6 7 6 7 2 4 2 7 3 3 2 3 
 
1 1 1 1 1 1 6 6 6 6 6 6 6 6 4 4 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 2 2 
- 0 0 0 0 0 0 0 0 1 1 1 1 1 1 5 5 5 5 5 5 5 7 7 7 7 7 7 7 7 7 7 7 
- - 2 2 2 2 2 2 2 2 2 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 4 4 4 4 4 4 4 
- - - - - 7 7 7 7 7 7 7 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 
F F F     F F     F   F F   F F F   F     F F       F     F   F 

 
 c. These two policies are equally effective for this particular page trace. 
 
8.7 The principal advantage is a savings in physical memory space. This 

occurs for two reasons: (1) a user page table can be paged in to 
memory only when it is needed. (2) The operating system can allocate 
user page tables dynamically, creating one only when the process is 
created. 
 Of course, there is a disadvantage: address translation requires extra 
work. 
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8.8 The machine language version of this program, loaded in main memory 

starting at address 4000, might appear as: 
 
 4000 (R1) ← ONE Establish index register for i 

 4001 (R1) ← n Establish n in R2 
 4002 compare R1, R2 Test i > n 
 4003 branch greater 4009 
 4004 (R3) ← B(R1) Access B[i] using index register R1 

 4005 (R3) ← (R3) + C(R1) Add C[i] using index register R1 

 4006 A(R1) ← (R3) Store sum in A[i] using index register R1 

 4007 (R1) ← (R1) + ONE Increment i 
 4008 branch 4002 
 6000-6999 storage for A 
 7000-7999 storage for B 
 8000-8999 storage for C 
 9000 storage for ONE 
 9001 storage for n 
 
 The reference string generated by this loop is 
 
  494944(47484649444)1000 
  
 consisting of over 11,000 references, but involving only five distinct 

pages. 
 
8.9 The S/370 segments are fixed in size and not visible to the 

programmer. Thus, none of the benefits listed for segmentation are 
realized on the S/370, with the exception of protection. The P bit in each 
segment table entry provides protection for the entire segment. 

 
8.10 Since each page table entry is 4 bytes and each page contains 4 

Kbytes, then a one-page page table would point to 1024 = 210 pages, 
addressing a total of 210 × 212 = 222 bytes. The address space however 
is 264 bytes. Adding a second layer of page tables, the top page table 
would point to 210 page tables, addressing a total of 232 bytes. 
Continuing this process, 

 
Depth Address Space 

1  222 bytes 
2  232 bytes 
3  242 bytes 
4  252 bytes 
5  262 bytes 
6  272 bytes (> 264 bytes) 
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 we can see that 5 levels do not address the full 64-bit address space, 

so a 6th level is required. But only 2 bits of the 6th level are required, 
not the entire 10 bits.  So instead of requiring your virtual addresses 
be 72 bits long, you could mask out and ignore all but the 2 lowest 
order bits of the 6th level. This would give you a 64-bit address. Your 
top-level page table then would have only 4 entries. Yet another 
option is to revise the criteria that the top-level page table fit into a 
single physical page and instead make it fit into 4 pages. This would 
save a physical page, which is not much. 

 
8.11 a. 400 nanoseconds. 200 to get the page table entry, and 200 to 

access the memory location. 
 b. This is a familiar effective time calculation: 
 

(220 × 0.85) + (420 × 0.15) = 250 
 
  Two cases: First, when the TLB contains the entry required. In that 

case we pay the 20 ns overhead on top of the 200 ns memory 
access time. Second, when the TLB does not contain the item. Then 
we pay an additional 200 ns to get the required entry into the TLB. 

 c. The higher the TLB hit rate is, the smaller the EMAT is, because the 
additional 200 ns penalty to get the entry into the TLB contributes 
less to the EMAT. 

 
8.12 a. N 
 b. P 
 
8.13 a. This is a good analogy to the CLOCK algorithm. Snow falling on the 

track is analogous to page hits on the circular clock buffer. The 
movement of the CLOCK pointer is analogous to the movement of 
the plow. 

 b. Note that the density of replaceable pages is highest immediately in 
front of the clock pointer, just as the density of snow is highest 
immediately in front of the plow. Thus, we can expect the CLOCK 
algorithm to be quite efficient in finding pages to replace. In fact, it 
can be shown that the depth of the snow in front of the plow is 
twice the average depth on the track as a whole. By this analogy, 
the number of pages replaced by the CLOCK policy on a single 
circuit should be twice the number that are replaceable at a random 
time. The analogy is imperfect because the CLOCK pointer does not 
move at a constant rate, but the intuitive idea remains. 

  The snowplow analogy to the CLOCK algorithm comes from 
[CARR84]; the depth analysis comes from Knuth, D. The Art of 
Computer Programming, Volume 2: Sorting and Searching. 
Reading, MA: Addison-Wesley, 1997 (page 256). 
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8.14 The processor hardware sets the reference bit to 0 when a new page is 

loaded into the frame, and to 1 when a location within the frame is 
referenced. The operating system can maintain a number of queues of 
page-frame tables. A page-frame table entry moves from one queue to 
another according to how long the reference bit from that page frame 
stays set to zero. When pages must be replaced, the pages to be 
replaced are chosen from the queue of the longest-life nonreferenced 
frames. 

 
8.15 a.  
 
Seq of 
page 
refs 

Window Size, ∆ 

 1 2 3 4 5 6 
1 1 1 1 1 1 1 
2 2 1 2 1 2 1 2 1 2 1 2 
3 3 2 3 1 2 3 1 2 3 1 2 3 1 2 3 
4 4 3 4 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 
5 5 4 5 3 4 5 2 3 4 5 1 2 3 4 5 1 2 3 4 5 
2 2 5 2 4 5 2 3 4 5 2 3 4 5 2 1 3 4 5 2 
1 1 2 1 5 2 1 4 5 2 1 3 4 5 2 1 3 4 5 2 1 
3 3 1 3 2 1 3 5 2 1 3 4 5 2 1 3 4 5 2 1 3 
3 3 3 1 3 2 1 3 5 2 1 3 4 5 2 1 3 
2 2 3 2 3 2 1 3 2 1 3 2 5 1 3 2 
3 3 2 3 2 3 2 3 1 2 3 1 2 3 
4 4 3 4 2 3 4 2 3 4 2 3 4 1 2 3 4 
5 5 4 5 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 
4 4 5 4 5 4 3 5 4 2 3 5 4 2 3 5 4 
5 5 4 5 4 5 4 5 3 4 5 2 3 4 5 
1 1 5 1 4 5 1  4 5 1  4 5 1  3 4 5 1  
1 1 1 5 1 4 5 1 4 5 1 4 5 1 
3 3 1 3 1 3 5 1 3  4 5 1 3  4 5 1 3 
2 2 3 2 1 3 2 1 3 2 5 1 3 2 4 5 1 3 2 
5 5 2 5 3 2 5 1 3 2 5 1 3 2 5 1 3 2 5 

 
 b., c. 
 
∆ 1 2 3 4 5 6 

s20(∆) 1 1.85 2.5 3.1 3.55 3.9 
m20(∆) 0.9 0.75 0.75 0.65 0.55 0.5 
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 s20(∆) is an increasing function of ∆. m20(∆) is a nonincreasing 

function of ∆. 
 
8.16 Consider this strategy. Use a mechanism that adjusts the value of Q at 

each window time as a function of the actual page fault rate 
experienced during the window. The page fault rate is computed and 
compared with a system-wide value for "desirable" page fault rate for 
a job. The value of Q is adjusted upward (downward) whenever the 
actual page fault rate of a job is higher (lower) than the desirable 
value. Experimentation using this adjustment mechanism showed that 
execution of the test jobs with dynamic adjustment of Q consistently 
produced a lower number of page faults per execution and a decreased 
average resident set size than the execution with a constant value of Q 
(within a very broad range). The memory time product (MT) versus Q 
using the adjustment mechanism also produced a consistent and 
considerable improvement over the previous test results using a 
constant value of Q. 

 

8.17 
  

232 memory
211 page size

= 221 page frames
 

 
Segment: 0

1
2
3

0

7

Page descriptor
table

00021ABC

Main memory
(232 bytes)

232 memory
211 page size

= 221 page frames

 
 
 a. 8 × 2K = 16K 
 b. 16K × 4 = 64K 
 c. 232 = 4 GBytes 
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8.18 a. 

page number (5) offset (11) 
 
 b. 32 entries, each entry is 9 bits wide. 
 c. If total number of entries stays at 32 and the page size does not 

change, then each entry becomes 8 bits wide. 
 
8.19 It is possible to shrink a process's stack by deallocating the unused 

pages. By convention, the contents of memory beyond the current top 
of the stack are undefined. On almost all architectures, the current top 
of stack pointer is kept in a well-defined register. Therefore, the kernel 
can read its contents and deallocate any unused pages as needed. The 
reason that this is not done is that little is gained by the effort. If the 
user program will repeatedly call subroutines that need additional space 
for local variables (a very likely case), then much time will be wasted 
deallocating stack space in between calls and then reallocating it later 
on. If the subroutine called is only used once during the life of the 
program and no other subroutine will ever be called that needs the 
stack space, then eventually the kernel will page out the unused portion 
of the space if it needs the memory for other purposes. In either case, 
the extra logic needed to recognize the case where a stack could be 
shrunk is unwarranted. 
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CHAPTER 9  UNIPROCESSOR SCHEDULING 

ANSWERS TO QUESTIONS 
9.1 Long-term scheduling: The decision to add to the pool of processes to 

be executed. Medium-term scheduling: The decision to add to the 
number of processes that are partially or fully in main memory. Short-
term scheduling: The decision as to which available process will be 
executed by the processor 

 
9.2 Response time. 
 
9.3 Turnaround time is the total time that a request spends in the system 

(waiting time plus service time. Response time is the elapsed time 
between the submission of a request until the response begins to 
appear as output. 

 
9.4 In UNIX and many other systems, larger priority values represent lower 

priority processes. Some systems, such as Windows, use the opposite 
convention: a higher number means a higher priority 

 
9.5 Nonpreemptive: If a process is in the Running state, it continues to 

execute until (a) it terminates or (b) blocks itself to wait for I/O or to 
request some operating system service. Preemptive: The currently 
running process may be interrupted and moved to the Ready state by 
the operating system. The decision to preempt may be performed when 
a new process arrives, when an interrupt occurs that places a blocked 
process in the Ready state, or periodically based on a clock interrupt. 

 
9.6 As each process becomes ready, it joins the ready queue. When the 

currently-running process ceases to execute, the process that has been 
in the ready queue the longest is selected for running. 

 
9.7 A clock interrupt is generated at periodic intervals. When the interrupt 

occurs, the currently running process is placed in the ready queue, and 
the next ready job is selected on a FCFS basis. 

 
9.8 This is a nonpreemptive policy in which the process with the shortest 

expected processing time is selected next. 
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9.9 This is a preemptive version of SPN. In this case, the scheduler always 

chooses the process that has the shortest expected remaining 
processing time. When a new process joins the ready queue, it may in 
fact have a shorter remaining time than the currently running process. 
Accordingly, the scheduler may preempt whenever a new process 
becomes ready. 

 
9.10 When the current process completes or is blocked, choose the ready 

process with the greatest value of R, where R = (w + s)/s, with w = 
time spent waiting for the processor and s = expected service time. 

 
9.11 Scheduling is done on a preemptive (at time quantum) basis, and a 

dynamic priority mechanism is used. When a process first enters the 
system, it is placed in RQ0 (see Figure 9.4). After its first execution, 
when it returns to the Ready state, it is placed in RQ1. Each 
subsequent time that it is preempted, it is demoted to the next lower-
priority queue. A shorter process will complete quickly, without 
migrating very far down the hierarchy of ready queues. A longer 
process will gradually drift downward. Thus, newer, shorter processes 
are favored over older, longer processes. Within each queue, except 
the lowest-priority queue, a simple FCFS mechanism is used. Once in 
the lowest-priority queue, a process cannot go lower, but is returned 
to this queue repeatedly until it completes execution. 

 

ANSWERS TO PROBLEMS 

9.1 a. Shortest Remaining Time: 
 

P1 P1 P2 P2 P1 P1 P1 P4 P4 P4 P4 P3 P3 P3 P3 P3 P3 P3 P3 P3 P3 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
 
 Explanation: P1 starts but is preempted after 20ms when P2 arrives 

and has shorter burst time (20ms) than the remaining burst time of 
P1 (30 ms) . So, P1 is preempted. P2 runs to completion. At 40ms P3 
arrives, but it has a longer burst time than P1, so P1 will run. At 
60ms P4 arrives. At this point P1 has a remaining burst time of 10 
ms, which is the shortest time, so it continues to run. Once P1 
finishes, P4 starts to run since it has shorter burst time than P3. 

 
 Non-preemptive Priority: 
 

P1 P1 P1 P1 P1 P2 P2 P4 P4 P4 P4 P3 P3 P3 P3 P3 P3 P3 P3 P3 P3 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
 
 Explanation: P1 starts, but as the scheduler is non-preemptive, it 

continues executing even though it has lower priority than P2. When 
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P1 finishes, P2 and P3 have arrived. Among these two, P2 has higher 
priority, so P2 will be scheduled, and it keeps the processor until it 
finishes. Now we have P3 and P4 in the ready queue. Among these 
two, P4 has higher priority, so it will be scheduled. After P4 finishes, 
P3 is scheduled to run. 

 
 Round Robin with quantum of 30 ms: 
 

P1 P1 P1 P2 P2 P1 P1 P3 P3 P3 P4 P4 P4 P3 P3 P3 P4 P3 P3 P3 P3 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
 
 Explanation: P1 arrives first, so it will get the 30ms quantum. After 

that, P2 is in the ready queue, so P1 will be preempted and P2 is 
scheduled for 20ms. While P2 is running, P3 arrives. Note that P3 will 
be queued after P1 in the FIFO ready queue. So when P2 is done, P1 
will be scheduled for the next quantum. It runs for 20ms. In the 
mean time, P4 arrives and is queued after P3. So after P1 is done, P3 
runs for one 30 ms quantum. Once it is done, P4 runs for a 30ms 
quantum. Then again P3 runs for 30 ms, and after that P4 runs for 
10 ms, and after that P3 runs for 30+10ms since there is nobody left 
to compete with. 

 b. Shortest Remaining Time: (20+0+70+10)/4 = 25 ms. 
  Explanation: P2 does not wait, but P1 waits 20ms, P3 waits 70ms 

and P4 waits 10ms. 
  Non-preemptive Priority: (0+30+10+70)/4 = 27.5ms 
  Explanation: P1 does not wait, P2 waits 30ms until P1 finishes, P4 

waits only 10ms since it arrived at 60ms and it is scheduled at 70ms. 
P3 waits 70ms. 

  Round-Robin: (20+10+70+70)/4 = 42.5ms 
  Explanation: P1 waits only for P2 (for 20ms). P2 waits only 10ms 

until P1 finishes the quantum (it arrives at 20ms and the quantum is 
30ms). P3 waits 30ms to start, then 40ms for P4 to finish. P4 waits 
40ms to start and one quantum slice for P3 to finish. 

 
9.2 Each square represents one time unit; the number in the square refers 

to the currently-running process. 
 
FCFS A A A B B B B B C C D D D D D E E E E E 
RR, q = 1 A B A B C A B C B D B D E D E D E D E E 
RR, q = 4 A A A B B B B C C B D D D D E E E E D E 
SPN A A A C C B B B B B D D D D D E E E E E 
SRT A A A C C B B B B B D D D D D E E E E E 
HRRN A A A B B B B B C C D D D D D E E E E E 
Feedback, q = 1 A B A C B C A B B D B D E D E D E D E E 
Feedback, q = 2i A B A A C B B C B B D D E D D E E D E E 
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  A B C D E  

 Ta 0 1 3 9 12  
 Ts 3 5 2 5 5  

FCFS Tf 3 8 10 15 20  
 Tr 3.00 7.00 7.00 6.00 8.00 6.20 
 Tr/Ts 1.00 1.40 3.50 1.20 1.60 1.74 

RR q = 1 Tf 6.00 11.00 8.00 18.00 20.00  
 Tr 6.00 10.00 5.00 9.00 8.00 7.60 
 Tr/Ts 2.00 2.00 2.50 1.80 1.60 1.98 

RR q = 4 Tf 3.00 10.00 9.00 19.00 20.00  
 Tr 3.00 9.00 6.00 10.00 8.00 7.20 
 Tr/Ts 1.00 1.80 3.00 2.00 1.60 1.88 

SPN Tf 3.00 10.00 5.00 15.00 20.00  
 Tr 3.00 9.00 2.00 6.00 8.00 5.60 
 Tr/Ts 1.00 1.80 1.00 1.20 1.60 1.32 

SRT Tf 3.00 10.00 5.00 15.00 20.00  
 Tr 3.00 9.00 2.00 6.00 8.00 5.60 
 Tr/Ts 1.00 1.80 1.00 1.20 1.60 1.32 

HRRN Tf 3.00 8.00 10.00 15.00 20.00  
 Tr 3.00 7.00 7.00 6.00 8.00 6.20 
 Tr/Ts 1.00 1.40 3.50 1.20 1.60 1.74 

FB q = 1 Tf 7.00 11.00 6.00 18.00 20.00  
 Tr 7.00 10.00 3.00 9.00 8.00 7.40 
 Tr/Ts 2.33 2.00 1.50 1.80 1.60 1.85 

FB  Tf 4.00 10.00 8.00 18.00 20.00  

q = 2i Tr 4.00 9.00 5.00 9.00 8.00 7.00 
 Tr/Ts 1.33 1.80 2.50 1.80 1.60 1.81 

 
9.3 We will prove the assertion for the case in which a batch of n jobs arrive 

at the same time, and ignoring further arrivals. The proof can be 
extended to cover later arrivals. 

  Let the service times of the jobs be 
 

t1 ≤ t2 ≤ . . . ≤ tn 
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 Then, n users must wait for the execution of job 1; n – 1 users must 

wait for the execution of job 2, and so on. Therefore, the average 
response time is 

 

 
      
n × t1 + n − 1( ) × t2 +!+tn

n
 

 
 If we make any changes in this schedule, for example by exchanging jobs j and k 

(where j < k), the average response time is increased by the amount 
 

 
    

k − j( ) × tk − tj( )
n

≥ 0 

 
 In other words, the average response time can only increase if the SPN 

algorithm is not used. 
 
9.4 The data points for the plot: 
 

Age of 
Observation 

Observed 
Value 

Simple 
Average 

 
alpha = 0.8 

 
alpha = 0.5 

1 6 0.00 0.00 0.00 
2 4 3.00 4.80 3.00 
3 6 3.33 4.16 3.50 
4 4 4.00 5.63 4.75 
5 13 4.00 4.33 4.38 
6 13 5.50 11.27 8.69 
7 13 6.57 12.65 10.84 

 
9.5 The first equation is identical to Equation 9.3, so the parameter a 

provides an exponential smoothing effect. The parameter β is a delay 
variance factor (e.g., 1.3 to 2.0). A smaller value of β will result in 
faster adaptation to changes in the observed times, but also more 
fluctuation in the estimates. 

  A sophisticated analysis of this type of estimation procedure is 
contained in Applied Optimal Estimation, edited by Gelb, M.I.T. Press, 
1974. 

 
9.6 It depends on whether you put job A in a queue after the first time unit 

or not. If you do, then it is entitled to 2 additional time units before it 
can be preempted. 

 
9.7 First, the scheduler computes the response ratios at time t + r1 + r2 + 

r3, when all three jobs will have been finished (see figure). At that time, 
job 3 will have the smallest response ratio of the three: so the scheduler 
decides to execute this job last and proceeds to examine jobs 1 and 2 at 
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time t + r1 + r2, when they will both be finished. Here the response 
ratio of job 1 is the smaller, and consequently job 2 is selected for 
service at time t. This algorithm is repeated each time a job is 
completed to take new arrivals into account. Note that this algorithm is 
not quite the same as highest response ratio next. The latter would 
schedule job 1 at time t. Intuitively, it is clear that the present algorithm 
attempts to minimize the maximum response ratio by consistently 
postponing jobs that will suffer the least increase of their response 
ratios.     

 
9.8 Consider the queue at time t immediately after a departure and ignore 

further arrivals. The waiting jobs are numbered 1 to n in the order in 
which they will be scheduled: 

 
job: 1 2 .  .  . i .  .  . n 

arrival time: t1 t2 .  .  . ti .  .  . tn 
service time: r1 r2 .  .  . ri .  .  . rn 

 
 Among these we assume that job i will reach the highest response ratio 

before its departure. When the jobs 1 to i have been executed, time 
becomes 

 
Ti = t + r1 + r2 + . . . + ri 
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 and job i has the response ratio 
 

 
  
Ri Ti( ) + Ti − ti

ri
 

 
 The reason for executing job i last in the sequence 1 to i is that its 

response ratio will be the lowest one among these jobs at time Ti: 
 

Ri(Ti) = min [ R1(Ti), R2(Ti), . . . , Ri(Ti) ] 
 
 Consider now the consequences of scheduling the same n jobs in any 

other sequence: 
 

job: a b .  .  . j .  .  . z 
arrival time: ta tb .  .  . tj .  .  . tz 
service time: ra rb .  .  . rj .  .  . rz 

 
 In the new sequence, we select the smallest subsequence of jobs, a to j, 

that contains all the jobs, 1 to i, of the original subsequence (This 
implies that job j is itself one of the jobs 1 to i). When the jobs a to j 
have been served, time becomes 

 
Tj = t + ra + rb + . . . + rj 

 
 and job j reaches the response ratio 
 

  
Rj T j( ) + T j − tj

rj
 

 
 Since the jobs 1 to i are a subset of the jobs a to j, the sum of their 

service times Ti
 – t must be less than or equal to the sum of service time 

Tj
 – t. And since response ratios increase with time, Ti ≤ Tj implies 

 
Rj(Tj) ≥ Rj(Ti) 

 
 It is also known that job j is one of the jobs 1 to i, of which job j has the 

smallest response ratio at time Ti. The above inequality can therefore be 
extended as follows: 

 
Rj(Tj) ≥ Rj(Ti) ≥ Ri(Ti) 

 
 In other words, when the scheduling algorithm is changed, there will 

always be a job j that reaches response ratio Rj(Tj), which is greater 
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than or equal to the highest response ratio Ri(Ti) obtained with the 
original algorithm. 

  Notice that this proof is valid in general for priorities that are non-
decreasing functions of time. For example, in a FIFO system, priorities 
increase linearly with waiting time at the same rate for all jobs. 
Therefore, the present proof shows that the FIFO algorithm minimizes 
the maximum waiting time for a given batch of jobs. 

 
9.9 Before we begin, there is one result that is needed, as follows. Assume 

that an item with service time Ts has been in service for a time h. Then, 
the expected remaining service time E [T/T > h] = Ts. That is, no 
matter how long an item has been in service, the expected remaining 
service time is just the average service time for the item. This result, 
though counter to intuition, is correct, as we now show. 

  Consider the exponential probability distribution function: 
 

F(x) = Pr[X ≤ x] = 1 – e–µx 
 
 Then, we have Pr[X > x] = e-µx. Now let us look at the conditional 

probability that X is greater than x + h given that X is greater than x: 
 

    
Pr X > x + h X > x[ ] = Pr X > x + h( ), X > x( )[ ]

Pr X > x[ ]
=

Pr X > x + h[ ]
Pr X > x[ ]

 

 

    
Pr X > x + h X > x[ ] = e

- x+h( )

e- x = e- h  

 
 
 So, 

Pr[X ≤ x + h/X > x] = 1 – e–µh = Pr[X ≤ h] 
 
 Thus the probability distribution for service time given that there has 

been service of duration x is the same as the probability distribution of 
total service time. Therefore the expected value of the remaining 
service time is the same as the original expected value of service time. 

  With this result, we can now proceed to the original problem. When an item 
arrives for service, the total response time for that item will consist of its own 
service time plus the service time of all items ahead of it in the queue. The total 
expected response time has three components. 

 
 •Expected service time of arriving process = Ts 
 •Expected service time of all processes currently waiting to be 

served. This value is simply w × Ts, where w is the mean number of 
items waiting to be served. 
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 •Remaining service time for the item currently in service, if there is 

an item currently in service. This value can be expressed as ρ × Ts, 
where ρ is the utilization and therefore the probability that an item 
is currently in service and Ts, as we have demonstrated, is the 
expected remaining service time. 

 
 Thus, we have 
 

R = Ts × 1+w + ρ( ) = Ts × 1+ ρ2

1− ρ
+ ρ

⎛
⎝⎜

⎞
⎠⎟
= Ts
1− ρ

 

 
9.10 Let us denote the time slice, or quantum, used in round robin 

scheduling as δ. In this problem, δ is assumed to be very small 
compared to the service time of a process. Now, consider a newly 
arrived process, which is placed at the end of the ready queue for 
service. We are assuming that this particular process has a service 
time of x, which is some multiple of δ: 

 
x = mδ 

 
 To begin, let us ask the question, how much time does the process 

spend in the queue before it receives its first quantum of service. It 
must wait until all q processes waiting in line ahead of it have been 
serviced. Thus the initial wait time = qδ, where q is the average 
number of items in the system (waiting and being served). We can 
now calculate the total time this process will spend waiting before it 
has received x seconds of service. Since it must pass through the 
active queue m times, and each time it waits qδ seconds, the total wait 
time is as follows: 

 
  Wait time = m (qδ) 
   = (x/δ)(qδ) 
   = qx 
 
 Then, the response time is the sum of the wait time and the total 

service time 
 
  Rx = wait time + service time 
   = qx + x  = (q + 1) x 
 
 Referring to the queuing formulas in Chapter 20 or Appendix H, the 

mean number of items in the system, q, can be expressed as 
 

q = ρ/(1 – ρ) 
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 Thus, 

Rx = [ρ/(1 – ρ) + 1]x = x/(1 – ρ) 
 
9.11 a. Because the ready queue has multiple pointers to the same 

process, the system is giving that process preferential treatment 
That is, this process will get double the processor time than a 
process with only one pointer. 

 b. The advantage is that more important jobs could be given more 
processor time by just adding an additional pointer (i.e., very little 
extra overhead to implement). 

 c. Want longer time slice to processes deserving higher priority. 
  - add bit in PCB that says whether a process is allowed to execute 

two time slices 
  - add integer in PCB that indicates the number of time slices a 

process is allowed to execute 
  - have two ready queues, one of which has a longer time slice for 

higher priority jobs 
 
9.12 First, we need to clarify the significance of the parameter λ'. The rate 

at which items arrive at the first box (the "queue" box) is λ. Two 
adjacent arrivals to the second box (the "service" box) will arrive at a 
slightly slower rate, since the second item is delayed in its chase of the 
first item. We may calculate the vertical offset y in the figure in two 
different ways, based on the geometry of the diagram: 

 
y = β/λ' 

y = [(1/λ') – (1/λ)]α 
 

 which therefore gives 
 

λ' = λ[1 – (β/α)]
 

 
 
 The total number of jobs q waiting or in service when the given job 

arrives is given by: 
 

q = ρ/(1 – ρ)
 

 
 independent of the scheduling algorithm. Using Little's formula (see 

Appendix H): 
 

R = q/λ = s/(1 – ρ) 
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 Now let W and Vx denote the mean times spent in the queue box and 

in the service box by a job of service time x. Since priorities are 
initially based only on elapsed waiting times, W is clearly independent 
of the service time x. Evidently we have 

 
Rx = W + Vx 

 
 From problem 9.10, we have 

 
V = t/(1-ρ')  where ρ' = λ's 

 
 By taking the expected values of Rx and Sx, we have R = W + V. We 

have already developed the formula for R. For V, observe that the 
arrival rate to the service box is λ', and therefore the utilization is ρ'. 
Accordingly, from our basic M/M/1 formulas, we have  

 
V = s/(1-ρ') 

 
 Thus, 

W = R – V = s/[1/(1-ρ) – 1/(1-ρ')] 
 
 which yields the desired result for Rx. 
 
9.13 Only as long as there are comparatively few users in the system. 

When the quantum is decreased to satisfy more users rapidly two 
things happen: (1) processor utilization decreases, and (2) at a certain 
point, the quantum becomes too small to satisfy most trivial requests. 
Users will then experience a sudden increase of response times 
because their requests must pass through the round-robin queue 
several times.  

 
9.14 If a process uses too much processor time, it will be moved to a lower-

priority queue. This leaves I/O-bound  processes in the higher-priority 
queues. 

 
9.15 Dekker's algorithm relies on the fairness of the hardware and the OS. 

The use of `priorities risks starvation as follows. It may happen if P0 is 
a very fast repetitive process which, as it constantly finds flag [1] = 
false, keeps entering its critical section, while P1, leaving the internal 
loop in which it was waiting for its turn, cannot set flag [1] to true, 
being prevented from doing so by P0's reading of the variable 
(remember that access to the variable takes place under mutual 
exclusion). 

 
9.16 a. Sequence with which processes will get 1 min of processor time: 
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1 2 3 4 5 Elapsed 
time 

A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 

B 
B 
B 
B 
B 
B 
B 
B 
B 

C 
C 
C 

D 
D 
D 
D 
D 
D 

E 
E 
E 
E 
E 
E 
E 
E 
E 
E 
E 
E 

5 
10 
15 
19 
23 
27 
30 
33 
36 
38 
40 
42 
43 
44 
45 

 
        The turnaround time for each process: 
        A = 45 min, B = 35 min, C = 13 min, D = 26 min, E = 42 min 
        The average turnaround time is = (45+35+13+26+42) / 5 = 32.2 min 
 
 b. 

Priority Job Turnaround Time 
3 
4 
6 
7 
9 

B 
E 
A 
C 
D 

9 
9 + 12 = 21 
21 + 15 = 36 
36 + 3 = 39 
39 + 6 = 45 

 
 The average turnaround time is:  (9+21+36+39+45) / 5 = 30 min 
 
 c. 

Job Turnaround Time 
A 
B 
C 
D 
E 

15 
15 + 9 = 24 
24 + 3 = 27 
27 + 6 = 33 
33 + 12 = 45 

 
 The average turnaround time is:  (15+24+27+33+45) / 5 = 28.8 min 
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 d. 

Running 
Time 

Job Turnaround Time 

3 
6 
9 
12 
15 

C 
D 
B 
E 
A 

3 
3 + 6 = 9 
9 + 9 = 18 
18 + 12 = 30 
30 + 15 = 45 

 
 The average turnaround time is:  (3+9+18+30+45) / 5 = 21 min 
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