SOLUTIONS MANUAL

OPERATING SYSTEMS
NiNTH EDITION

CHAPTERS 1-9

WILLIAM STALLINGS

Copyright 2017: William Stallings

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This mate | p ted under all c py gh t laws as they curr ently
exist. No portion of this material may be reproduced, in any form or by any me h ut permission i ing fr f om { h e publisher

-2-

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

NOTICE

This manual contains solutions to the review
questions and homework problems in Operating
Systems, Ninth Edition. If you spot an error in a
solution or in the wording of a problem, I would
greatly appreciate it if you would forward the
information via email to wlilmst@me.net. An
errata sheet for this manual, if needed, is
available at
http://www.box.net/shared/fa8a0oyxxl . File
name is S-0S9e-mmyy.

W.S.

-3-

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

TABLE OF CONTENTS

Chapter 1 Computer System OVErVIEWccvviiiiiiiiniiieiiineeinnenns 5
Chapter 2 Operating System Overviewccovviiiiiiiiiiiiiiice e, 12
Chapter 3 Process Description and Control ..o, 15
Chapter 4 Threads ..c.cviiiiiiiii i i e e anes 21
Chapter 5 Mutual Exclusion and Synchronization......................... 25
Chapter 6 Deadlock and Starvation ... 42
Chapter 7 Memory Managementoovviiiii i ennne e enneens 54
Chapter 8 Virtual MemoOry ...ccveiii i e naeeas 60
Chapter 9 Uniprocessor Schedulingccooviiiiiiiiiiiiiiiiiec e 69
4

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

CHAPTER 1 COMPUTER SYSTEM OVERVIEW

ANSWERS TO QUESTIONS

1.1 A processor, which controls the operation of the computer and performs
its data processing functions ; a main memory, which stores both data
and instructions; I/0 modules, which move data between the
computer and its external environment; and the system bus, which
provides for communication among processors, main memory, and I/O
modules.

1.2 User-visible registers: Enable the machine- or assembly-language
programmer to minimize main memory references by optimizing
register use. For high-level'languages, an optimizing compiler will
attempt to make intelligent choices of which variables to assign to
registers and which to main memory locations. Some high-level
languages, such as C, allow the programmer to suggest to the compiler
which variables should be held in registers. Control and status
registers: Used by the processor to control the operation of the
processor and by privileged, operating system routines to control the
execution of programs.

1.3 These actions fall into four categories: Processor-memory: Data may
be transferred from processor to memory or from memory to processor.
Processor-I/0: Data may be transferred to or from a peripheral device
by transferring between the processor and an I/O module. Data
processing: The processor may perform some arithmetic or logic
operation on data. Control: An instruction may specify that the
sequence of execution be altered.

1.4 An interrupt is a mechanism by which other modules (I/O, memory)
may interrupt the normal sequencing of the processor.

1.5 Two approaches can be taken to dealing with multiple interrupts. The
first is to disable interrupts while an interrupt is being processed. A
second approach is to define priorities for interrupts and to allow an
interrupt of higher priority to cause a lower-priority interrupt handler to
be interrupted.

-5-

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

1.6 The three key characteristics of memory are cost, capacity, and access
time.

1.7 Cache memory is a memory that is smaller and faster than main
memory and that is interposed between the processor and main
memory. The cache acts as a buffer for recently used memory locations.

1.8 A multicore computer is a special case of a multiprocessor, in which all
of the processors are on a single chip.

1.9 Spatial locality refers to the tendency of execution to involve a
number of memory locations that are clustered. Temporal locality
refers to the tendency for a processor to access memory locations that
have been used recently.

1.10 Spatial locality is generally exploited by using larger cache blocks
and by incorporating prefetching mechanisms (fetching items of
anticipated use) into the cache control logic. Temporal locality is
exploited by keeping recently used instruction and data values in
cache memory and by exploiting a cache hierarchy.

ANSWERS TO PROBLEMS

1.1 Memory (contents in hex): 300: 3005; '301: 5940; 302: 7006
Step 1: 3005 - IR; Step 2: 3 > AC
Step 3: 5940 - IR; Step4:3+2=5-AC
Step 5: 7006 —» IR; Step 6: AC — Device 6

1.2 1. a. The PC contains 300, the address of the first instruction. This
value is loaded in to the MAR.
b. The value in location 300 (which is the instruction with the value
1940 in hexadecimal) is loaded into the MBR, and the PC is
incremented. These two steps can be done in parallel.
The value in the MBR is loaded into the IR.
The address portion of the IR (940) is loaded into the MAR.
. The value in location 940 is loaded into the MBR.
The value in the MBR is loaded into the AC.
The value in the PC (301) is loaded in to the MAR.
. The value in location 301 (which is the instruction with the value
5941) is loaded into the MBR, and the PC is incremented.
The value in the MBR is loaded into the IR.
The address portion of the IR (941) is loaded into the MAR.
. The value in location 941 is loaded into the MBR.
The old value of the AC and the value of location MBR are added
and the result is stored in the AC.

-6-

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

Ty o TYO

ooTYo

5. a. The value in the PC (302) is loaded in to the MAR.

The value in location 302 (which is the instruction with the value
2941) is loaded into the MBR, and the PC is incremented.

The value in the MBR is loaded into the IR.

. The address portion of the IR (941) is loaded into the MAR.

The value in the AC is loaded into the MBR.

The value in the MBR is stored in location 941.

s

oToo

1.3 a. 224 = 16 MBytes

b. (1) If the local address bus is 32 bits, the whole address can be
transferred at once and decoded in memory. However, since the data
bus is only 16 bits, it will require 2 cycles to fetch a 32-bit instruction
or operand.

(2) The 16 bits of the address placed on the address bus can't
access the whole memory. Thus a more complex memory interface
control is needed to latch the first part of the address and then the
second part (since the microprocessor will end in two steps). For a
32-bit address, one may assume the first half will decode to access a
"row" in memory, while the second half is sent later to access a
"column" in memory. In addition to the two-step address operation,
the microprocessor will need 2 cycles to fetch the 32 bit
instruction/operand.

c. The program counter must be at least 24 bits. Typically, a 32-bit
microprocessor will have a 32-bit external address bus and a 32-bit
program counter, unless on-chip segment registers are used that
may work with a smaller program counter. If the instruction register
is to contain the whole instruction, it will have to be 32-bits long; if it
will contain only the op code (called the op code register) then it will
have to be 8 bits long.

1.4 In cases (a) and (b), the microprocessor will be able to access 216 =
64K bytes; the only difference is that with an 8-bit memory each
access will transfer a byte, while with a 16-bit memory an access may
transfer a byte or a 16-byte word. For case (c), separate input and
output instructions are needed, whose execution will generate
separate "I/O signals" (different from the "memory signals" generated
with the execution of memory-type instructions); at a minimum, one
additional output pin will be required to carry this new signal. For case
(d), it can support 28 = 256 input and 28 = 256 output byte ports and
the same number of input and output 16-bit ports; in either case, the
distinction between an input and an output port is defined by the
different signal that the executed input or output instruction
generated.

-7-

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

1.5 Clock cycle = =125 ns

Hz

Bus cycle = 4 x 125 ns = 500 ns
2 bytes transferred every 500 ns; thus transfer rate = 4 MBytes/sec

Doubling the frequency may mean adopting a new chip manufacturing
technology (assuming each instructions will have the same number of
clock cycles); doubling the external data bus means wider (maybe
newer) on-chip data bus drivers/latches and modifications to the bus
control logic. In the first case, the speed of the memory chips will also
need to double (roughly) not to slow down the microprocessor; in the
second case, the "word length" of the memory will have to double to be
able to send/receive 32-bit quantities.

1.6 a. Input from the Teletype is stored in INPR. The INPR will only accept
data from the Teletype when FGI=0. When data arrives, it is stored
in INPR, and FGI is set to 1. The CPU periodically checks FGI. If FGI
=1, the CPU transfers the contents of INPR to the AC and sets FGI to
0.

When the CPU has data to send to the Teletype, it checks FGO.
If FGO = 0, the CPU must wait. If FGO = 1, the CPU transfers the
contents of the AC to OUTR and sets FGO to 0. The Teletype sets FGI
to 1 after the word is printed.

b. The process described in (a) is very wasteful. The CPU, which is

much faster than the Teletype, must repeatedly check FGI and FGO.
If interrupts are used, the Teletype can issue an interrupt to the CPU
whenever it is ready to accept or send data. The IEN register can be
set by the CPU (under programmer control)

1.7 If a processor is held up in attempting to read or write memory, usually
no damage occurs except a slight loss of time. However, a DMA transfer
may be to or from a device that is receiving or sending data in a stream
(e.g., disk or tape), and cannot be stopped. Thus, if the DMA module is
held up (denied continuing access to main memory), data will be lost.

1.8 Let us ignore data read/write operations and assume the processor only
fetches instructions. Then the processor needs access to main memory
once every microsecond. The DMA module is transferring characters at a
rate of 1200 characters per second, or one every 833 us. The DMA
therefore "steals" every 833rd cycle. This slows down the processor

approximately éx 100% = 0.12%

-8-

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

1.9 a. The processor can only devote 5% of its time to I/O. Thus the
maximum I/O instruction execution rate is 10® x 0.05 = 50,000
instructions per second. The I/O transfer rate is therefore 25,000
words/second.

b. The number of machine cycles available for DMA control is

10%(0.05x 5 + 0.95 x 2) = 2.15 x 106

If we assume that the DMA module can use all of these cycles, and
ignore any setup or status-checking time, then this value is the
maximum I/O transfer rate.

1.10 a. A reference to the first instruction is immediately followed by a
reference to the second.
b. The ten accesses to a[i] within the inner for loop which occur
within a short interval of time.

1.11 Define
C, = Average cost per bit, memory level i
S, = Size of memory leveli
T, = Time to access a word.in. memory level i
H, = Probability that a word is.in. memory i and in no higher-level

memory
B. = Time to transfer a block of data from memory level (i + 1) to

memory level i

Let cache be memory level 1; main memory, memory level 2; and so
on, for a total of N levels of memory. Then

N
>.GSi
Cs ==k

2Si

i=1

The derivation of T is more complicated. We begin with the result from
probability theory that:

N
Expected Value of x = Zi Pr[x=1]
i=1

We can write:

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

We need to realize that if a word is in M; (cache), it is read immediately.
If it is in M, but not M,, then a block of data is transferred from M, to
M; and then read. Thus:

T, =By + T4

Further
T;,=B,+T,=B,+B,+T,

Generalizing:

Ii= iB,- +T,
j=1
So
N i-1 N
T=Y Y (BH)+T, 2 H,
i=2 j=1 i=1
N
But H, =1
=1
Finally

i=1

Ti= i (BH,)+T,

1.12 a. Cost=Cm><8><106=8><103¢ = $80
b. Cost = C_x 8 x 10 = 8 x 10% ¢ = $800
c. From Equation 1.1 : 1.1 xT, =T, + (1 - H)T,

(0.1)(100) = (1 - H)(1200)
H = 1190/1200

-10-

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

1.13 There are three cases to consider:

Location of referenced Total time for access

Probability

word 1) i
In cache 0.9 20
Not in cache, but in main (0.1)(0.6) = 0.06 60 + 20 = 80

memory

Not in cache or main _ 12ms + 60 + 20 =
memory (-0 = UL, 12,000,080

So the average access time would be:

Avg = (0.9)(20) + (0.06)(80) + (0.04)(12000080) = 480026 ns

1.14 Yes, if the stack is only used to hold the return address. If the stack is
also used to pass parameters, then the scheme will work only if it is
the control unit that removes parameters, rather than machine
instructions. In the latter case, the processor would need both a
parameter and the PC on top of the stack at the same time.

-11-

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

CHAPTER 2 OPERATING SYSTEM
OVERVIEW

ANSWERS TO QUESTIONS

2.1 Convenience: An operating system makes a computer more
convenient to use. Efficiency: An operating system allows the
computer system resources to be used in an efficient manner. Ability
to evolve: An operating system should be constructed in such a way as
to permit the effective development, testing, and introduction of new
system functions without interfering with service.

2.2 The kernel is a portion of the operating system that includes the most
heavily used portions of software. Generally, the kernel is maintained
permanently in main memory. The kernel runs in a privileged mode and
responds to calls from processes and interrupts from devices.

2.3 Multiprogramming is a mode of operation that provides for the
interleaved execution of two or more computer programs by a single
processor.

2.4 A process is a program in execution. A process is controlled and
scheduled by the operating system.

2.5 The execution context, or process state, is the internal data by
which the operating system is able to supervise and control the process.
This internal information is separated from the process, because the
operating system has information not permitted to the process. The
context includes all of the information that the operating system needs
to manage the process and that the processor needs to execute the
process properly. The context includes the contents of the various
processor registers, such as the program counter and data registers. It
also includes information of use to the operating system, such as the
priority of the process and whether the process is waiting for the
completion of a particular I/O event.

2.6 Process isolation: The operating system must prevent independent
processes from interfering with each other's memory, both data and
instructions. Automatic allocation and management: Programs

12

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

should be dynamically allocated across the memory hierarchy as
required. Allocation should be transparent to the programmer. Thus, the
programmer is relieved of concerns relating to memory limitations, and
the operating system can achieve efficiency by assigning memory to
jobs only as needed. Support of modular programming:
Programmers should be able to define program modules, and to create,
destroy, and alter the size of modules dynamically. Protection and
access control: Sharing of memory, at any level of the memory
hierarchy, creates the potential for one program to address the memory
space of another. This is desirable when sharing is needed by particular
applications. At other times, it threatens the integrity of programs and
even of the operating system itself. The operating system must allow
portions of memory to be accessible in various ways by various users.
Long-term storage: Many application programs require means for
storing information for extended periods of time, after the computer has
been powered down.

2.7 A virtual address refers to a memory location in virtual memory. That
location is on disk and at some times in main memory. A real address is
an address in main memory.

2.8 Round robin is a scheduling algorithm in which processes are activated
in a fixed cyclic order; that is, all processes are in a circular queue. A
process that cannot proceed because it is waiting for some event (e.g.
termination of a child process or an input/output operation) returns
control to the scheduler.

2.9 A monolithic kernel is a large kernel containing virtually the complete
operating system, including scheduling, file system, device drivers, and
memory management. All the functional components of the kernel have
access to all of its internal data structures and routines. Typically, a
monolithic kernel is implemented as a single process, with all elements
sharing the same address space. A microkernel is a small privileged
operating system core that provides process scheduling, memory
management, and communication services and relies on other processes
to perform some of the functions traditionally associated with the
operating system kernel.

2.10 Multithreading is a technique in which a process, executing an
application, is divided into threads that can run concurrently.

2.11 Simultaneous concurrent processes or threads; scheduling;
synchronization; memory management; reliability and fault tolerance.

ANSWERS TO PROBLEMS
13

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

2.1 The answers are the same for (a) and (b). Assume that although
processor operations cannot overlap, I/O operations can.

Number of jobs | TAT Throughput Processor utilization
1 NT 1/N 50%

2 NT 2/N 100%

4 (2N -)T [4/(2N-1) 100%

2.2 I/O-bound programs use relatively little processor time and are
therefore favored by the algorithm. However, if a processor-bound
process is denied processor time for a sufficiently long period of time,
the same algorithm will grant the processor to that process since it has
not used the processor at all in the recent past. Therefore, a processor-
bound process will not be permanently denied access.

2.3 With time sharing, the concern is turnaround time. Time-slicing is
preferred because it gives all processes access to the processor over a
short period of time. In a batch system, the concern is with throughput,
and the less context switching, the more processing time is available for
the processes. Therefore, policies that minimize context switching are
favored.

2.4 A system call is used by an application program to invoke a function
provided by the operating system. Typically, the system call results in
transfer to a system program that runs in kernel mode.

2.5 The system operator can review this quantity to determine the degree
of "stress" on the system. By reducing the number of active jobs
allowed on the system, this average can be kept high. A typical
guideline is that this average should be kept above 2 minutes. This may
seem like a lot, but it isn't.

2.6 a. If a conservative policy is used, at most 20/4 = 5 processes can be
active simultaneously. Because one of the drives allocated to each
process can be idle most of the time, at most 5 drives will be idle at a
time. In the best case, none of the drives will be idle.

b. To improve drive utilization, each process can be initially allocated
with three tape drives. The fourth one will be allocated on demand.
In this policy, at most [20/3] = 6 processes can be active
simultaneously. The minimum number of idle drives is 0 and the
maximum number is 2.

-14-

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

CHAPTER 3 PROCESS DESCRIPTION AND
CONTROL

ANSWERS TO QUESTIONS

3.1 An instruction trace for a program is the sequence of instructions that
execute for that process.

3.2 New batch job; interactive logon; created by OS to provide a service;
spawned by existing process. See Table 3.1 for details.

3.3 Running: The process that is currently being executed. Ready: A
process that is prepared to execute when given the opportunity.
Blocked: A process that cannot execute until some event occurs, such
as the completion of an I/O operation. New: A process that has just
been created but has not yet been admitted to the pool of executable
processes by the operating system. Exit: A process that has been
released from the pool of executable processes by the operating system,
either because it halted or because it aborted for some reason.

3.4 Process preemption occurs when an executing process is interrupted by
the processor so that another process can be executed.

3.5 Swapping involves moving part or all of a process from main memory to
disk. When none of the processes in main memory is in the Ready state,
the operating system swaps one of the blocked processes out onto disk
into a suspend queue, so that another process may be brought into
main memory to execute.

3.6 There are two independent concepts: whether a process is waiting on an
event (blocked or not), and whether a process has been swapped out of
main memory (suspended or not). To accommodate this 2 x2
combination, we need two Ready states and two Blocked states.

3.7 1. The process is not immediately available for execution. 2. The
process may or may not be waiting on an event. If it is, this blocked
condition is independent of the suspend condition, and occurrence of the
blocking event does not enable the process to be executed. 3. The
process was placed in a suspended state by an agent; either itself, a

-15-

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

parent process, or the operating system, for the purpose of preventing
its execution. 4. The process may not be removed from this state until
the agent explicitly orders the removal.

3.8 The OS maintains tables for entities related to memory, 1/0, files, and
processes. See Table 3.10 for details.

3.9 Process identification, processor state information, and process control
information.

3.10 The user mode has restrictions on the instructions that can be
executed and the memory areas that can be accessed. This is to
protect the operating system from damage or alteration. In kernel
mode, the operating system does not have these restrictions, so that it
can perform its tasks.

3.11 1. Assign a unique process identifier to the new process. 2. Allocate
space for the process. 3. Initialize the process control block. 4. Set the
appropriate linkages. 5. Create or expand other data structures.

3.12 An interrupt is due to some sort of event that is external to and
independent of the currently running process, such as the completion
of an I/O operation. A trap relates to an error or exception condition
generated within the currently running process, such as an illegal file
access attempt.

3.13 Clock interrupt, I/0O interrupt, memory fault.

3.14 A mode switch may occur without changing the state of the process
that is currently in the Running state. A process switch involves taking
the currently executing process out of the Running state in favor of
another process. The process switch involves saving more state
information.

ANSWERS TO PROBLEMS

3.1 RUN to READY can be caused by a time-quantum expiration
READY to NONRESIDENT occurs if memory is overcommitted, and a
process is temporarily swapped out of memory
READY to RUN occurs only if a process is allocated the CPU by the

dispatcher

RUN to BLOCKED can occur if a process issues an I/O or other kernel
request.

BLOCKED to READY occurs if the awaited event completes (perhaps I/0O
completion)

BLOCKED to NONRESIDENT - same as READY to NONRESIDENT.

-16-

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

3.2 At time 22:
P1: blocked for I/O
P3: blocked for I/O
P5: ready/running
P7: blocked for I/O
P8: ready/running
At time 37
P1: ready/running
P3: ready/running
P5: blocked suspend
P7: blocked for I/O
P8: ready/running
At time 47
P1: ready/running
P3: ready/running
P5: ready suspend
P7: blocked for I/O
P8: exit

3.3 a. New — Ready or Ready/Suspend: covered in text

Ready —» Running or Ready/Suspend: covered in text
Ready/Suspend —» Ready: covered in text
Blocked — Ready or Blocked/Suspend: covered in text
Blocked/Suspend — Ready /Suspend or Blocked: covered in
text
Running —» Ready, Ready/Suspend, or Blocked: covered in text
Any State — Exit: covered in text

b. New — Blocked, Blocked/Suspend, or Running: A newly created
process remains in the new state until the processor is ready to take
on an additional process, at which time it goes to one of the Ready
states.
Ready — Blocked or Blocked/Suspend: Typically, a process that
is ready cannot subsequently be blocked until it has run. Some
systems may allow the OS to block a process that is currently ready,
perhaps to free up resources committed to the ready process.
Ready/Suspend — Blocked or Blocked/Suspend: Same
reasoning as preceding entry.
Ready/Suspend —» Running: The OS first brings the process into
memory, which puts it into the Ready state.
Blocked — Ready /Suspend: this transition would be done in 2
stages. A blocked process cannot at the same time be made ready
and suspended, because these transitions are triggered by two
different causes.

-17-

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

Blocked — Running: When a process is unblocked, it is put into the
Ready state. The dispatcher will only choose a process from the
Ready state to run

Blocked/Suspend — Ready: same reasoning as Blocked — Ready
/Suspend

Blocked/Suspend — Running: same reasoning as Blocked —
Running

Running — Blocked/Suspend: this transition would be done in 2
stages

Exit - Any State: Can't turn back the clock

3.4 Figure 9.3 in Chapter 9 shows the result for a single blocked queue. The
figure readily generalizes to multiple blocked queues.

3.5 Penalize the Ready, suspend processes by some fixed amount, such as
one or two priority levels, so that a Ready, suspend process is chosen
next only if it has a higher priority than the highest-priority Ready
process by several levels of priority.

3.6 a. A separate queue is associated with each wait state. The
differentiation of waiting processes into queues reduces the work
needed to locate a waiting process when an event occurs that affects
it. For example, when a page fault completes, the scheduler know
that the waiting process can be found on the Page Fault Wait queue.

b. In each case, it would be less efficient to allow the process to be
swapped out while in this state. For example, on a page fault wait, it
makes no sense to swap out a process when we are waiting to bring
in another page so that it can execute.

c. The state transition diagram can be derived from the following state
transition table:

Next State
Variety of Variety of
Current State Curren_tly Comgutable CEIEEEDE wait states wait states
Executing (resident) | (outswapped) (resident) (outswapped)
Curren_tly Rescheduled Wait
Executing
Computable
(resident) Scheduled Outswap
Computable
(outswapped) MRS
Variety of wait
states Event satisfied Outswap
(resident)
Variety of wait
states Event satisfied
(outswapped)
-18-

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

3.7 a. The advantage of four modes is that there is more flexibility to
control access to memory, allowing finer tuning of memory
protection. The disadvantage is complexity and processing overhead.
For example, procedures running at each of the access modes
require separate stacks with appropriate accessibility.

b. In principle, the more modes, the more flexibility, but it seems
difficult to justify going beyond four.

3.8 With j < i, a process running in D, is prevented from accessing objects in
DJ.. Thus, if Dj contains information that is more privileged or is to be
kept more secure than information in D,, this restriction is appropriate.

However, this security policy can be circumvented in the following way.
A process running in D; could read data in D; and then copy that data

into D,. Subsequently, a process running in D, could access the
information.

3.9 a. An application may be processing data received from another process
and storing the results on disk. If there is data waiting to be taken
from the other process, the application may proceed to get that data
and process it. If a previous disk write has completed and there is
processed data to write out, the application may proceed to write to
disk. There may be a point where the process is waiting both for
additional data from the input process and for disk availability.

b. There are several ways that could be handled. A special type of
either/or queue could be used. Or the process could be put in two
separate queues. In either case, the operating system would have to
handle the details of alerting the process to the occurrence of both
events, one after the other.

3.10 This technique is based on the assumption that an interrupted process
A will continue to run after the response to an interrupt. But, in
general, an interrupt may cause the basic monitor to preempt a
process A in favor of another process B. It is now necessary to copy
the execution state of process A from the location associated with the
interrupt to the process description associated with A. The machine
might as well have stored them there in the first place.

3.11 Because there are circumstances under which a process may not be
preempted (i.e., it is executing in kernel mode), it is impossible for the
operating system to respond rapidly to real-time requirements.

-19-

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

3.12 0
<child pid>
or
<child pid>
0

-20-

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

CHAPTER 4 THREADS

ANSWERS TO QUESTIONS

4.1 This will differ from system to system, but in general, resources are
owned by the process and each thread has its own execution state. A
few general comments about each category in Table 3.5:
Identification: the process must be identified but each thread within
the process must have its own ID. Processor State Information:
these are generally process-related. Process control information:
scheduling and state information would mostly be at the thread level;
data structuring could appear at both levels; interprocess
communication and interthread communication may both be supported;
privileges may be at both levels; memory management would generally
be at the process level; and resource info would generally be at the
process level.

4.2 Less state information is involved.
4.3 Resource ownership and scheduling/execution.

4.4 Foreground/background work; asynchronous processing; speedup of
execution by parallel processing of data; modular program structure.

4.5 Address space, file resources, execution privileges are examples.

4.6 1. Thread switching does not require kernel mode privileges because all
of the thread management data structures are within the user address
space of a single process. Therefore, the process does not switch to the
kernel mode to do thread management. This saves the overhead of two
mode switches (user to kernel; kernel back to user). 2. Scheduling can
be application specific. One application may benefit most from a simple
round-robin scheduling algorithm, while another might benefit from a
priority-based scheduling algorithm. The scheduling algorithm can be
tailored to the application without disturbing the underlying OS
scheduler. 3. ULTs can run on any operating system. No changes are
required to the underlying kernel to support ULTs. The threads library is
a set of application-level utilities shared by all applications.

-21-

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

4.7 1. In a typical operating system, many system calls are blocking. Thus,
when a ULT executes a system call, not only is that thread blocked, but
also all of the threads within the process are blocked. 2. In a pure ULT
strategy, a multithreaded application cannot take advantage of
multiprocessing. A kernel assigns one process to only one processor at a
time. Therefore, only a single thread within a process can execute at a
time.

4.8 Jacketing converts a blocking system call into a nonblocking system call
by using an application-level I/0 routine which checks the status of the
I/0 device.

ANSWERS TO PROBLEMS

4.1 Yes, because more state information must be saved to switch from one
process to another.

4.2 Because, with ULTs, the thread structure of a process is not visible to
the operating system, which only schedules on the basis of processes.

4.3 a. The use of sessions is well suited to the needs of an interactive
graphics interface for personal computer and workstation use. It
provides a uniform mechanism for keeping track of where graphics
output and keyboard/mouse input should be directed, easing the task
of the operating system.

b. The split would be the same as any other process/thread scheme,
with address space and files assigned at the process level.

4.4 The issue here is that a machine spends a considerable amount of its
waking hours waiting for I/O to complete. In a multithreaded program,
one KLT can make the blocking system call, while the other KLTs can
continue to run. On uniprocessors, a process that would otherwise have
to block for all these calls can continue to run its other threads.

4.5 No. When a process exits, it takes everything with it—the KLTs, the
process structure, the memory space, everything—including threads.

4.6 As much information as possible about an address space can be
swapped out with the address space, thus conserving main memory.

4.7 a.The function counts the number of positive elements in a list.
b.This should work correctly, because count positives in this specific
case does not update global positives, and hence the two threads
operate on distinct global data and require no locking. Source: Boehn,
H. et al. "Multithreading in C and C++." ;/ogin, February 2007.

-22-

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

4.8 This transformation is clearly consistent with the C language
specification, which addresses only single-threaded execution. In a
single-threaded environment, it is indistinguishable from the original.
The pthread specification also contains no clear prohibition against this
kind of transformation. And since it is a library and not a language
specification, it is not clear that it could. However, in a multithreaded
environment, the transformed version is quite different, in that it
assigns to global positives, even if the list contains only negative
elements. The original program is now broken, because the update of
global positives by thread B may be lost, as a result of thread A
writing back an earlier value of global positives. By pthread rules, a
thread-unaware compiler has turned a perfectly legitimate program into
one with undefined semantics. Source: Boehn, H. et al. "Multithreading
in C and C++." ;/login, February 2007.

4.9 a. This program creates a new thread. Both the main thread and the

new thread then increment the global variable myglobal 20 times.
b. Quite unexpected! Because myglobal starts at zero, and both the

main thread and the new thread each increment it by 20, we should
see myglobal equaling 40 at the end of the program. But myglobal
equals 21, so we know that something fishy is going on here. In
thread_function(), notice that we copy myglobal into a local variable
called j. The program increments j, then sleeps for one second, and
only then copies the new jvalue into myglobal. That's the key.
Imagine what happens if our main thread increments myglobal just
after our new thread copies the value of myglobal into j. When
thread function() writes the value of j back to myglobal, it will
overwrite the modification that the main thread made. Source:
Robbins, D. "POSIX Threads Explained." IBM Developer Works, July
2000. www.ibm.com/developerworks/library/l-posix1.html

4.10 Every call that can possibly change the priority of a thread or make a
higher- priority thread runnable will also call the scheduler, and it in
turn will preempt the lower-priority active thread. So there will never
be a runnable, higher-priority thread.

4.11 a. Some programs have logical parallelism that can be exploited to
simplify and structure the code but do not need hardware
parallelism. For example, an application that employs multiple
windows, only one of which is active at a time, could with
advantage be implemented as a set of ULTs on a single LWP. The
advantage of restricting such applications to ULTs is efficiency. ULTs
may be created, destroyed, blocked, activated, and so on. without
involving the kernel. If each ULT were known to the kernel, the
kernel would have to allocate kernel data structures for each one

-23-

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

and perform thread switching. Kernel-level thread switching is
more expensive than user-level thread switching.

b. The execution of user-level threads is managed by the threads
library whereas the LWP is managed by the kernel.

¢. An unbound thread can be in one of four states: runnable, active,
sleeping, or stopped. These states are managed by the threads
library. A ULT in the active state is currently assigned to a LWP and
executes while the underlying kernel thread executes. We can view
the LWP state diagram as a detailed description of the ULT active
state, because an thread only has an LWP assigned to it when it is
in the Active state. The LWP state diagram is reasonably self-
explanatory. An active thread is only executing when its LWP is in
the Running state. When an active thread executes a blocking
system call, the LWP enters the Blocked state. However, the ULT
remains bound to that LWP and, as far as the threads library is
concerned, that ULT remains active.

4.12 As the text describes, the Uninterruptible state is another blocked
state. The difference between this and the Interruptible state is that in
an uninterruptible state, a process is waiting directly on hardware
conditions and therefore will not handle any signals. This is used in
situations where the process must wait without interruption or when
the event is expected to occur quite quickly. For example, this state
may be used when a process opens a device file and the corresponding
device driver starts probing for a corresponding hardware device. The
device driver must not be interrupted until the probing is complete, or
the hardware device could be left in an unpredictable state.

-24-

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

CHAPTER 5 MUTUAL EXCLUSION AND
SYNCHRONIZATION

ANSWERS TO QUESTIONS

5.1 Communication among processes, sharing of and competing for
resources, synchronization of the activities of multiple processes, and
allocation of processor time to processes.

5.2 Multiple applications, structured applications, operating-system
structure.

5.3 The ability to enforce mutual exclusion.

5.4 Processes unaware of each other: These are independent processes
that are not intended to work together. Processes indirectly aware of
each other: These are processes that are not necessarily aware of each
other by their respective process IDs, but that share access to some
object, such as an I/O buffer. Processes directly aware of each
other: These are processes that are able to communicate with each
other by process ID and which are designed to work jointly on some
activity.

5.5 Competing processes need access to the same resource at the same
time, such as a disk, file, or printer. Cooperating processes cither
share access to a common object, such as a memory buffer or are able
to communicate with each other, and cooperate in the performance of
some application or activity.

5.6 Mutual exclusion: competing processes can only access a resource
that both wish to access one at a time; mutual exclusion mechanisms
must enforce this one-at-a-time policy. Deadlock: if competing
processes need exclusive access to more than one resource then
deadlock can occur if each processes gained control of one resource and
is waiting for the other resource. Starvation: one of a set of competing
processes may be indefinitely denied access to a needed resource
because other members of the set are monopolizing that resource.

-25-

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

5.7 1. Mutual exclusion must be enforced: only one process at a time is
allowed into its critical section, among all processes that have critical
sections for the same resource or shared object. 2. A process that halts
in its non-critical section must do so without interfering with other
processes. 3. It must not be possible for a process requiring access to a
critical section to be delayed indefinitely: no deadlock or starvation. 4.
When no process is in a critical section, any process that requests entry
to its critical section must be permitted to enter without delay. 5. No
assumptions are made about relative process speeds or number of
processors. 6. A process remains inside its critical section for a finite
time only.

5.8 1. A semaphore may be initialized to a nonnegative value. 2. The wait
operation decrements the semaphore value. If the value becomes
negative, then the process executing the wait is blocked. 3. The signal
operation increments the semaphore value. If the value is not positive,
then a process blocked by a wait operation is unblocked.

5.9 A binary semaphore may only take on the values 0 and 1. A general
semaphore may take on any integer value.

5.10 A strong semaphore requires that processes that are blocked on that
semaphore are unblocked using a first-in-first-out policy. A weak
semaphore does not dictate the order in which blocked processes are
unblocked.

5.11 A monitor is a programming language construct providing abstract
data types and mutually exclusive access to a set of procedures

5.12 There are two aspects, the send and receive primitives. When a send
primitive is executed in a process, there are two possibilities: either
the sending process is blocked until the message is received, or it is
not. Similarly, when a process issues a receive primitive, there are two
possibilities: If a message has previously been sent, the message is
received and execution continues. If there is no waiting message, then
either (@) the process is blocked until a message arrives, or (b) the
process continues to execute, abandoning the attempt to receive.

5.13 1. Any number of readers may simultaneously read the file. 2. Only
one writer at a time may write to the file. 3. If a writer is writing to the
file, no reader may read it.

ANSWERS TO PROBLEMS

-26-

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

5.1 a. Process P1 will only enter its critical section if flag[0] = false. Only P1
may modify flag[1], and P1 tests flag[0] only when flag[1] = true. It
follows that when P1 enters its critical section we have:

(flag[1] and (not flag[0])) = true
Similarly, we can show that when PO enters its critical section:
(flag[1] and (not flag[0])) = true

b. Case 1: A single process P(i) is attempting to enter its critical
section. It will find flag[1-i] set to false, and enters the section
without difficulty.

Case 2: Both process are attempting to enter their critical section,

and turn = 0 (a similar reasoning applies to the case of turn = 1).

Note that once both processes enter the while loop, the value of

turn is modified only after one process has exited its critical section.
Subcase 2a: flag[0] = false. P1 finds flag[0] = 0, and can enter
its critical section immediately.
Subcase 2b: flag[0] = true. Since turn = 0, PO will wait in its
external loop for flag[1] to be set to false (without modifying the
value of flag[0]. Meanwhile, P1 sets flag[1] to false (and will wait
in its internal loop because turn = 0). At that point, PO will enter
the critical section.

Thus, if both processes are attempting to enter their critical section,

there is no deadlock.

5.2 It doesn't work. There is no deadlock; mutual exclusion is enforced; but
starvation is possible if turn is set to a non-contending process.

5.3 a. There is no variable that is both read and written by more than one
process (like the variable turn in Dekker's algorithm). Therefore, the
bakery algorithm does not require atomic load and store to the same
global variable.

b. Because of the use of £lag to control the reading of turn, we again
do not require atomic load and store to the same global variable.

5.4 On uniprocessors you can avoid interruption and thus concurrency by
disabling interrupts. Also on multiprocessor machines another problem
arises: memory ordering (multiple processors accessing the memory
unit).

5.5 b. The read coroutine reads the cards and passes characters through a
one-character buffer, rs, to the squash coroutine. The read
coroutine also passes the extra blank at the end of every card image.
The squash coroutine need known nothing about the 80-character

-27-

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

structure of the input; it simply looks for double asterisks and passes
a stream of modified characters to the print coroutine via a one-
character buffer, sp. Finally, print simply accepts an incoming
stream of characters and prints it as a sequence of 125-character
lines.

d. This can be accomplished using three concurrent processes. One of
these, Input, reads the cards and simply passes the characters (with
the additional trailing space) through a finite buffer, say InBuffer, to
a process Squash which simply looks for double asterisks and passes
a stream of modified characters through a second finite buffer, say
OutBuffer, to a process Output, which extracts the characters from
the second buffer and prints them in 15 column lines. A
producer/consumer semaphore approach can be used.

5.6 a. For "x is 10", the interleaving producing the required behavior is easy
to find since it requires only an interleaving at the source language
statement level. The essential fact here is that the test for the value
of x is interleaved with the increment of x by the other process.
Thus, x was not-equal to 10 when the test was performed, but was
equal to 10 by the time the value of x was read from memory for

printing.

M(x)
Pl: x = x - 1; 9
Pl: x = x + 1; 10
P2: x = x - 1; 9
Pl: if(x != 10) 9
P2: x = x + 1; 10
Pl: printf("x is %d", x); 10

"X is 10" is printed.

b. For "x is 8" we need to be more inventive, since we need to use
interleavings of the machine instructions to find a way for the value
of x to be established as 9 so it can then be evaluated as 8 in a later
cycle. Notice how the first two blocks of statements correspond to C
source lines, but how later blocks of machine language statements
interleave portions of a source language statement.

Instruction M(x) P1-RO P2-R0
Pl: LD RO, x 10 10 -
P1l: DECR RO 10 9 -
Pl: STO RO, x 9 9 —
P2: LD RO, x 9 9 9

P2: DECR RO 9 9 8

P2: STO RO, x 8 9 8

-28-

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

Pl: LD RO, x 8 8 8
P1l: INCR RO 8 9 --
P2: LD RO, x 8 9 8
P2: INCR RO 8 9 9
P2: STO RO, x 9 9 9
P2: if(x != 10) printf("x is %d", x);

P2: "x is 9" is printed.

Pl: STO RO, x 9 9 9
Pl: if(x != 10) printf("x is %d", x);

Pl: "x is 9" is printed.

Pl: LD RO, x 9 9 9
P1l: DECR RO 9 8 --
Pl: STO RO, x 8 8 —
P2: LD RO, x 8 8 8
P2: DECR RO 8 8 7
P2: STO RO, x 7 8 7
Pl: LD RO, x 7 7 7
P1l: INCR RO 8 8 7
Pl: STO RO, x 8 8 7

Pl: if(x != 10) printf("x is %d", x);
Pl: "x is 8" is printed.

5.7 a. On casual inspection, it appears that tally will fall in the range 50 <
tally < 100 since from 0 to 50 increments could go unrecorded due
to the lack of mutual exclusion. The basic.argument contends that by
running these two processes concurrently we should not be able to
derive a result lower than the result produced by executing just one
of these processes sequentially. But consider the following
interleaved sequence of the load, increment, and store operations
performed by these two processes when altering the value of the
shared variable:

1. Process A loads the value of tally, increments tally, but then
loses the processor (it has incremented its register to 1, but has
not yet stored this value.

2. Process B loads the value of tally (still zero) and performs forty-
nine complete increment operations, losing the processor after it
has stored the value 49 into the shared variable tally.

3. Process A regains control long enough to perform its first store
operation (replacing the previous tally value of 49 with 1) but is
then immediately forced to relinquish the processor.

-29-

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

4. Process B resumes long enough to load 1 (the current value of
tally) into its register, but then it too is forced to give up the
processor (note that this was B's final load).

5. Process A is rescheduled, but this time it is not interrupted and
runs to completion, performing its remaining 49 load, increment,
and store operations, which results in setting the value of tally
to 50.

6. Process B is reactivated with only one increment and store
operation to perform before it terminates. It increments its
register value to 2 and stores this value as the final value of the
shared variable.

Some thought will reveal that a value lower than 2 cannot occur.
Thus, the proper range of final values is 2 < tally < 100.

b. For the generalized case of N processes, the range of final values is 2
< tally < (N x 50), since it is possible for all other processes to be
initially scheduled and run to completion in step (5) before Process B
would finally destroy their work by finishing last.

5.8 On average, yes, because busy-waiting consumes useless instruction
cycles. However, in a particular case, if a process comes to a point in
the program where it must wait for a condition to be satisfied, and if
that condition is already satisfied, then the busy-wait will find that out
immediately, whereas, the blocking wait will consume OS resources
switching out of and back into the process.

5.9 Consider the case in which turn equals 0 .and P(1) sets blocked[1] toO
true and then finds blocked[0] set to false. P(0) will then set
blocked[0] to true, find turn = 0, and enter its critical section. P(1)
will then assign 1 to turn and will also enter its critical section.

5.10 a. When a process wishes to enter its critical section, it is assigned a
ticket number. The ticket number assigned is calculated by adding
one to the largest of the ticket numbers currently held by the
processes waiting to enter their critical section and the process
already in its critical section. The process with the smallest ticket
number has the highest precedence for entering its critical section.
In case more than one process receives the same ticket number,
the process with the smallest numerical name enters its critical
section. When a process exits its critical section, it resets its ticket
number to zero.

b. If each process is assigned a unique process number, then there is
a unique, strict ordering of processes at all times. Therefore,
deadlock cannot occur.

c. To demonstrate mutual exclusion, we first need to prove the
following lemma: if Pi is in its critical section, and Pk has calculated

-30-

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

its number[k] and is attempting to enter its critical section, then
the following relationship holds:

(numberfi], i) < (number[k], k)
To prove the lemma, define the following times:

T Pi reads choosing[k] for the last time, for j = K, in its first wait,
so we have choosing[k] = false at T ;.

Pi begins its final execution, for j = k, of the second while
loop. We therefore have T,,; < T,.

T, Pk enters the beginning of the repeat loop.

«» Pk finishes calculating number[K].

T.s Pk sets choosing[k] to false. We have T,; < T, < T,5.

wl

T

w2

—

Since at Tw1l, choosing[k] = false, we have either T ; < T,; or T, 5 <
T,1- In the first case, we have number[i] < number[k], since Pi was

assigned its number prior to Pk; this satisfies the condition of the
lemma.
In the second case, we have T\, < T, ; <T, <T,,, and

therefore T,, < T ,. This means that at T ,, Pi has read the current
value of number[k]. Moreover, as T, is the moment at which the

final execution of the second while for j = k takes place, we have
(numberl(i], i) < (number[k], k), which completes the proof of the
lemma.

It is now easy to show the mutual exclusion is enforced. Assume
that Pi is in its critical section and Pk is attempting to enter its critical
section. Pk will be unable to enter its critical section, as it will find
number[i] # 0 and
(numberfi], i) < (number[k], k).

5.11 Suppose we have two processes just beginning; call them p0 and p1.
Both reach line 3 at the same time. Now, we'll assume both read
number[0] and number[1] before either addition takes place. Let p1
complete the line, assigning 1 to number[1], but p0 block before the
assignment. Then p1l gets through the while loop at line 5 and enters
the critical section. While in the critical section, it blocks; pO unblocks,
and assigns 1 to number[0] at line 3. It proceeds to the while loop at
line 5. When it goes through that loop for j = 1, the first condition on
line 5 is true. Further, the second condition on line 5 is false, so p0
enters the critical section. Now p0O and p1 are both in the critical
section, violating mutual exclusion. The reason for choosing is to
prevent the while loop in line 5 from being entered when process j is

-31-

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

setting its number[j]. Note that if the loop is entered and then process
j reaches line 3, one of two situations arises. Either number[j] has the
value 0 when the first test is executed, in which case process i moves
on to the next process, or number[j] has a non-zero value, in which
case at some point number[j] will be greater than number[i] (since
process i finished executing statement 3 before process j began).
Either way, process i will enter the critical section before process j, and
when process j reaches the while loop, it will loop at least until process
i leaves the critical section.

5.12 This is a program that provides mutual exclusion for access to a critical
resource among N processes, which can only use the resource one at a
time. The unique feature of this algorithm is that a process need wait
no more then N - 1 turns for access. The values of control[i] for
process 1 are interpreted as follows: 0 = outside the critical section and
not seeking entry; 1 = wants to access critical section; 2 = has
claimed precedence for entering the critical section. The value of k
reflects whose turn it is to enter the critical section. Entry algorithm:
Process i expresses the intention to enter the critical section by
setting control[i] = 1. If no other process between k and i (in
circular order) has expressed a similar intention then process i claims
its precedence for entering the critical section by setting control[i] =
2. If i is the only process to have made a claim, it enters the critical
section by setting k = 1; if there is contention, i restarts the entry
algorithm. Exit algorithm: Process i examines the array control in
circular fashion beginning with entry i + 1. If process i finds a process
with a nonzero control entry, then k'is set to the identifier of that
process.

The original paper makes the following observations: First observe that
no two processes can be simultaneously processing between their
statements L3 and L6. Secondly, observe that the system cannot be
blocked; for if none of the processes contending for access to its critical
section has yet passed its statement L3, then after a point, the value of
k will be constant, and the first contending process in the cyclic ordering
(k, k+1,...,N, 1, .., k-1) will meet no resistance. Finally, observe
that no single process can be blocked. Before any process having
executed its critical section can exit the area protected from
simultaneous processing, it must designate as its unique successor the
first contending process in the cyclic ordering, assuring the choice of
any individual contending process within N — 1 turns. Original paper:
Eisenberg, A., and McGuire, M. "Other Comments on Dijkstra's
Concurrent Programming Control Problem." Communications of the
ACM, November 1972.

5.13 a. exchange(keyi, bolt)

-32-

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

b. The statement bolt = 0 is preferable. An atomic statement such as
exchange will use more resources.

5.14 var j: 0..n-1;
key: boolean;
while (true) {
waiting[i] = true;
key := true;
while (waiting[i] && key)
key = (compare and swap(lock, 0, 1) == 0);
waiting[i] = false;
< critical section >
j =1+ 1 mod n;
while (j != i && !waiting[j]) J = jJ + 1 mod n;
if (j == i) lock := false
else waiting = false;
< remainder section >

The algorithm uses the common data structures
var waiting: array [0..n - 1] of boolean
lock: boolean

These data structures are initialized to false. When a process leaves its
critical section, it scans the array waiting in the cyclic ordering (i + 1, i
+2,....,n-1,0, ..., i-1). It desighates the first process in this
ordering that is in the entry section (waiting[j] = true) as the next one
to enter the critical section. Any process waiting to enter its critical
section will thus do so within n — 1 turns.

5.15 The two are equivalent. In the definition of Figure 5.3, when the value
of the semaphore is negative, its value tells you how many processes
are waiting. With the definition of this problem, you don't have that
information readily available. However, the two versions function the
same.

5.16 a. There are two problems. First, because unblocked processes must
reenter the mutual exclusion (line 10) there is a chance that newly
arriving processes (at line 5) will beat them into the critical section.
Second, there is a time delay between when the waiting processes
are unblocked and when they resume execution and update the
counters. The waiting processes must be accounted for as soon as
they are unblocked (because they might resume execution at any
time), but it may be some time before the processes actually do
resume and update the counters to reflect this. To illustrate,
consider the case where three processes are blocked at line 9. The
last active process will unblock them (lines 25-28) as it departs. But

-33-

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

there is no way to predict when these processes will resume
executing and update the counters to reflect the fact that they have
become active. If a new process reaches line 6 before the
unblocked ones resume, the new one should be blocked. But the
status variables have not yet been updated so the new process will
gain access to the resource. When the unblocked ones eventually
resume execution, they will also begin accessing the resource. The
solution has failed because it has allowed four processes to access
the resource together.

b. This forces unblocked processes to recheck whether they can begin
using the resource. But this solution is more prone to starvation
because it encourages new arrivals to “cut in line” ahead of those
that were already waiting.

5.17 a. This approach is to eliminate the time delay. If the departing
process updates the waiting and active counters as it unblocks
waiting processes, the counters will accurately reflect the new state
of the system before any new processes can get into the mutual
exclusion. Because the updating is already done, the unblocked
processes need not reenter the critical section at all. Implementing
this pattern is easy. Identify all of the work that would have been
done by an unblocked process and make the unblocking process do
it instead.

b. Suppose three processes arrived when the resource was busy, but
one of them lost its quantum just before blocking itself at line 9
(which is unlikely, but certainly possible). When the last active
process departs, it will do three semSignal operations and set
must_wait to true. If a new process arrives before the older ones
resume, the new one will decide to block itself. However, it will
breeze past the semwait in line 9 without blocking, and when the
process that lost its quantum earlier runs it will block itself instead.
This is not an error—the problem doesn’t dictate which processes
access the resource, only how many are allowed to access it.
Indeed, because the unblocking order of semaphores is
implementation dependent, the only portable way to ensure that
processes proceed in a particular order is to block each on its own
semaphore.

c. The departing process updates the system state on behalf of the
processes it unblocks.

5.18 a. After you unblock a waiting process, you leave the critical section
(or block yourself) without opening the mutual exclusion. The
unblocked process doesn’t reenter the mutual exclusion—it takes
over your ownership of it. The process can therefore safely update
the system state on its own. When it is finished, it reopens the
mutual exclusion. Newly arriving processes can no longer cut in

-34-

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

line because they cannot enter the mutual exclusion until the
unblocked process has finished. Because the unblocked process
takes care of its own updating, the cohesion of this solution is
better. However, once you have unblocked a process, you must
immediately stop accessing the variables protected by the mutual
exclusion. The safest approach is to immediately leave (after line
26, the process leaves without opening the mutex) or block
yourself.

b. Only one waiting process can be unblocked even if several are
waiting—to unblock more would violate the mutual exclusion of
the status variables. This problem is solved by having the newly
unblocked process check whether more processes should be
unblocked (line 14). If so, it passes the baton to one of them (line
15); if not, it opens up the mutual exclusion for new arrivals (line
17).

c. This pattern synchronizes processes like runners in a relay race.
As each runner finishes her laps, she passes the baton to the next
runner. “Having the baton” is like having permission to be on the
track. In the synchronization world, being in the mutual exclusion
is analogous to having the baton—only one person can have it..

5.19 Suppose two processes each call semwWwait(s) when s is initially 0, and
after the first has just done semSignalB(mutex) but not done
semWaitB(delay), the second call to semWait (s) proceeds to the
same point. Because s = -2 and mutex is unlocked, if two other
processes then successively execute their calls to semSignal(s) at
that moment, they will each do semSignalB(delay), but the effect of
the second semSignalB is not defined.

The solution is to move the else line, which appears just before
the end line in semwait to just before the end line in semSignal.
Thus, the last semSignalB(mutex) in semWait becomes unconditional
and the semSignalB(mutex) in semSignal becomes conditional. For a
discussion, see "A Correct Implementation of General Semaphores," by
Hemmendinger, Operating Systems Review, July 1988.

5.20
var a, b, m: semaphore;
na, nm: 0 .. too;
a :=1; b :=1; m := 0; na := 0; nm := 0;
semWait(b); na < na + 1; semSignal(b);
semWait(a); nm < nm + 1;
semWait(b); na < na — 1;
if na = 0 then semSignal(b); semSignal(m)
else semSignal(b); semSignal(a)
endif;
semWait(m); nm < nm — 1;

-35-

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

<critical section>;

if nm = 0 then semSignal(a)
else semSignal(m)

endif;

5.21 The code has a major problem. The v(passenger released) in the
car code can unblock a passenger blocked on
P(passenger released) that is NOT the one riding in the car that did

the v().
5.22
Producer Consumer S n delay
1 1 0 0
2 semWaitB(s) 0 0 0
3 n++ 0 1 0
4 if (n==1) 0 1 1
(semSignalB(dela
y))
5 semSignalB(s) 1 1 1
6 semWaitB(delay) 1 1 0
7 semWaitB(s) 0 1 0
8 n-- 0 0 0
9 if (n==0)
(semWaitB(delay))
10 semWaitB(s)

Both producer and consumer are blocked.

-36-

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

5.23
program producerconsumer;
var n: integer;
s: (*binary*) semaphore (:= 1);
delay: (*binary*) semaphore (:= 0);
procedure producer;
begin
repeat
produce;
semWaitB(s);
append;
n:=n+1;
if n=0 then semSignalB(delay);
semSignalB(s)
forever
end;
procedure consumer;
begin
repeat
semWaitB(s);
take;
n:=n-1;
if n = -1 then
begin
semSignalB(s);
semWaitB(delay);
semWaitB(s)
end;
consume;
semSignalB(s)
forever
end;
begin (*main program¥*)
n:=0;
parbegin
producer; consumer
parend
end.

5.24 Any of the interchanges listed would result in an incorrect program.
The semaphore s controls access to the critical region and you only
want the critical region to include the append or take function.

-37-

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

5.25

Scheduled step of full’s state & Buffer empty’s state &
execution queue queue
Initialization full = 0 000 empty = +3

Ca executes cl full = -1 (Ca) 000 empty = +3
Cb executes c1 full = -2 (Ca, Cb) 000 empty = +3
Pa executes p1 full = -2 (Ca, Cb) 000 empty = +2
Pa executes p2 full = -2 (Ca, Cb) X00 empty = +2
Pa executes p3 full = -1 (Cb) Ca X00 empty = +2
Ca executes c2 full = -1 (Cb) 000 empty = +2
Ca executes c3 full = -1 (Cb) 000 empty = +3
Pb executes p1 full = -1 (Cb) 000 empty = +2
Pa executes p1 full = -1 (Cb) 000 empty = +1
Pa executes p2 full = -1 (Cb) X00 empty = +1
Pb executes p2 full = -1 (Cb) XXO empty = +1
Pb executes p3 full = 0 (Cb) XXO empty = +1
Pc executes p1 full = 0 (Cb) XXO empty =0
Cb executes c2 full = 0 X00 empty = 0
Pc executes p2 full = 0 XXO empty = 0
Cb executes c3 full=10 XXO empty = +1
Pa executes p3 full = +1 XXO empty = +1
Pb executes p1-p3 full = +2 XXX empty =0
Pc executes p3 full =43 XXX empty =0
Pa executes p1 full = +3 XXX empty = -1(Pa)
Pd executes p1 full = +3 XXX Empty = -2(Pa, Pd)
Ca executes c1-c3 full = +2 XXO empty = -1(Pd) Pa
Pa executes p2 full = +2 XXX empty = -1(Pd)
Cc executes cl1-c2 full = +1 XXO empty = -1(Pd)
Pa executes p3 full = +2 XXO empty = -1(Pd)
Cc executes c3 full = +2 XXO empty =0(Pd
Pd executes p2-p3 full = +3 XXX empty =0

Differences from one step to the next are highlighted in red.

5.26

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently

-38-

exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

#define REINDEER 9 /* max # of reindeer
*/

#define ELVES

/* Semaphores */

only_elves = 3, /* 3 go to Santa */
emutex =1, /* update elf_cnt */
rmutex = 1, /* update rein_ct */
rein_semWait =0,

3 /*size of elf group */

/* block early arrivals
back from islands */

/* Elf Process */
for (5;) {
semWait (only_elves)
"in" */
semWait (emutex)
elf_ct++
if (elf_ct == ELVES) {
semSignal (emutex)
semSignal (santa) /* 3rd elf wakes

/* only 3 elves

sleigh =0, /*all reindeer Santa */
semWait }

around the sleigh */ else {
done =0, /* toys all delivered */ semSignal (emutex)
santa_semSignal =0, /* 1st 2 elves semWait semWait (santa _semSignal) /*
on semWait outside

this outside Santa's shop Santa's shop door */

*/ 3
santa =0, /* Santa sleeps on this semWait (problem)

blocked semaphore ask question /* Santa woke elf up */
*/ semWait (elf_done)
problem =0, /* semWait to pose semSignal (only_elves)
the } /* end "forever" loop */

question to Santa */ /* Santa Process */

elf_done = 0; /* receive reply */ for (;;) {

/* Shared Integers */ semWait (santa) /* Santa "rests" */
rein_ct =0; /* # of reindeer back /* mutual exclusion is not needed on rein_ct
*/ because if it is not equal to REINDEER,
elf ct=0; /* # of elves with problem then elves woke up Santa */

*/ if (rein_ct == REINDEER) {

/* Reindeer Process */
for (5;) {
tan on the beaches in the Pacific until
Christmas is close
semWait (rmutex)
rein_ct++
if (rein_ct == REINDEER) {
semSignal (rmutex)
semSignal (santa)
¥
else {
semSignal (rmutex)
semWait (rein_semWait)
¥
/* all reindeer semWaiting to be attached to
sleigh */
semWait (sleigh)
fly off to deliver toys
semWait (done)
head back to the Pacific islands
} /* end "forever" loop */

semWait (rmutex)

rein_ct =0 /* reset while blocked */

semSignal (rmutex)

for (i=0; 1 < REINDEER - 1; i++)
semSignal (rein_semWait)

for (i =0; i < REINDEER; i++)
semSignal (sleigh)

deliver all the toys and return

for (i =0; i < REINDEER; i++)
semSignal (done)

}
else { /* 3 elves have arrive */

for (i=0;1<ELVES - 1; i++)
semSignal (santa_semSignal)

semWait (emutex)
elf_ ct=0

semSignal (emutex)

for (i=0;1<ELVES;i++) {
semSignal (problem)
answer that question
semSignal (elf_done)

-39-

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. Tht'}s material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

N e o aANCo T e

5.27 a. There is an array of message slots that constitutes the buffer. Each
process maintains a linked list of slots in the buffer that constitute
the mailbox for that process. The message operations can
implemented as:

send (message, dest)

semWait (mbuf) semWait for message buffer available
semWait (mutex) mutual exclusion on message queue
acquire free buffer slog

copy message to slot

link slot to other messages

semSignal (dest.sem) wake destination process

semSignal (mutex) release mutual exclusion

receive (message)

semWait (own.sem) semWait for message to arrive
semWait (mutex) mutual exclusion on message queue
unlink slot from own.queue

copy buffer slot to message

add buffer slot to freelist

semSignal (mbuf) indicate message slot freed
semSignal (mutex) release mutual exclusion

where mbuf is initialized to the total number of message slots
available; own and dest refer to the queue of messages for each
process, and are initially zero.

b. This solution is taken from [TANES7]. The synchronization process
maintains a counter and a linked list of waiting processes for each
semaphore. To do a WAIT or SIGNAL, a process calls the
corresponding library procedure, wait or signal, which sends a
message to the synchronization process specifying both the operation
desired and the semaphore to be used. The library procedure then
does a RECEIVE to get the reply from the synchronization process.

When the message arrives, the synchronization process checks
the counter to see if the required operation can be completed.
SIGNALs can always complete, but WAITs will block if the value of
the semaphore is 0. If the operation is allowed, the synchronization
process sends back an empty message, thus unblocking the caller. If,
however, the operation is a WAIT and the semaphore is 0, the
synchronization process enters the caller onto the queue and does
not send a reply. The result is that the process doing the WAIT is
blocked, just as it should be. Later, when a SIGNAL is done, the
synchronization process picks one of the processes blocked on the
semaphore, either in FIFO order, priority order, or some other order,

-40-

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

and sends a reply. Race conditions are avoided here because the
synchronization process handles only one request at a time.

5.28 The code for the one-writer many readers is fine if we assume that
the readers have always priority. The problem is that the readers can
starve the writer(s) since they may never all leave the critical region,
i.e., there is always at least one reader in the critical region, hence
the ‘wrt’ semaphore may never be signaled to writers and the writer
process does not get access to ‘wrt’ semaphore and writes into the
critical region.

-41-

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

CHAPTER 6 DEADLOCK AND STARVATION

ANSWERS TO QUESTIONS

6.1 Examples of reusable resources are processors, I/O channels, main and
secondary memory, devices, and data structures such as files,
databases, and semaphores. Examples of consumable resources are
interrupts, signals, messages, and information in I/O buffers.

6.2 Mutual exclusion. Only one process may use a resource at a time.
Hold and wait. A process may hold allocated resources while awaiting
assignment of others. No preemption. No resource can be forcibly
removed from a process holding it.

6.3 The above three conditions, plus: Circular wait. A closed chain of
processes exists, such that each process holds at least one resource
needed by the next process in the chain.

6.4 The hold-and-wait condition can be prevented by requiring that a
process request all of its required resources at one time, and blocking
the process until all requests can be granted simultaneously.

6.5 First, if a process holding certain resources is denied a further request,
that process must release its original resources and, if necessary,
request them again together with the additional resource. Alternatively,
if @ process requests a resource that is currently held by another
process, the operating system may preempt the second process and
require it to release its resources.

6.6 The circular-wait condition can be prevented by defining a linear
ordering of resource types. If a process has been allocated resources of
type R, then it may subsequently request only those resources of types
following R in the ordering.

6.7 Deadlock prevention constrains resource requests to prevent at least
one of the four conditions of deadlock; this is either done indirectly, by
preventing one of the three necessary policy conditions (mutual
exclusion, hold and wait, no preemption), or directly, by preventing
circular wait. Deadlock avoidance allows the three necessary
conditions, but makes judicious choices to assure that the deadlock

-42-

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

point is never reached. With deadlock detection, requested resources
are granted to processes whenever possible.; periodically, the operating
system performs an algorithm that allows it to detect the circular wait
condition.

ANSWERS TO PROBLEMS

6.1 Mutual exclusion: Only one car can occupy a given quadrant of the
intersection at a time. Hold and wait: No car ever backs up; each car
in the intersection waits until the quadrant in front of it is available. No
preemption: No car is allowed to force another car out of its way.
Circular wait: Each car is waiting for a quadrant of the intersection
occupied by another car.

6.2 Prevention: Hold-and-wait approach: Require that a car request both
quadrants that it needs and blocking the car until both quadrants can be
granted. No preemption approach: releasing an assigned quadrant is
problematic, because this means backing up, which may not be possible
if there is another car behind this car. Circular-wait approach: assign a
linear ordering to the quadrants.

Avoidance: The algorithms discussed in the chapter apply to this
problem. Essentially, deadlock is avoided by not granting requests that
might lead to deadlock.

Detection: The problem here again is one of backup.

6.3 1. Q acquires B and A, and then releases B and A. When P resumes
execution, it will be able to acquire both resources.

2. Q acquires B and A. P executes and blocks on a request for A. Q
releases B and A. When P resumes execution, it will be able to
acquire both resources.

3. Q acquires B and then P acquires and releases A. Q acquires A and
then releases B and A. When P resumes execution, it will be able to
acquire B.

4. P acquires A and then Q acquires B. P releases A. Q acquires A and
then releases B. P acquires B and then releases B.

5. P acquires and then releases A. P acquires B. Q executes and blocks
on request for B. P releases B. When Q resumes execution, it will be
able to acquire both resources.

6. P acquires A and releases A and then acquires and releases B. When
Q resumes execution, it will be able to acquire both resources.

6.4 If Q acquires B and A before P requests A, then Q can use these two
resources and then release them, allowing A to proceed. If P acquires A
before Q requests A, then at most Q can proceed to the point of

-43-

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

requesting A and then is blocked. However, once P releases A, Q can
proceed. Once Q releases B, A can proceed.

6.5 a. 15 - (2+0+4+1+1+1) =6
6 -(0+1+1+0+14+0) =3
9 -(2+1+0+0+0+1) =5
10 - (1+1+2+1+0+1) =4
b. Need Matrix = Max Matrix — Allocation Matrix

(]
]

winvw|av|wlo S

process A
PO 7

P1 2

P2 3
2

4

3

P3
P4
P5

WL [(NNIA™CO

c. The following matrix shows the order in which the processes finish
and shows what is available once each process finishes

available
process A B C D
P5 7 3 6 5
P4 8 4 6 5
P3 9 4 6 6
P2 13| 5 6 8
P1 13| 6 7 9
PO 15| 6 9 | 10

d. ANSWER is NO for the following reasons: If this request were
granted, then the new allocation matrix would be:

allocation
process A B C D
PO 2 0 2 1
P1 0 1 1 1
P2 4 1 0 2
P3 1 0 0 1
P4 1 1 0 0
P5 4 2 4 4

Then the new need matrix would be

-44-

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

allocation

process A B C D
PO 7 5 3 4
P1 2 1 2 2
P2 3 4 4 2
P3 2 3 3 1
P4 4 1 2 1
P5 0 2 0 0

And Available is then:
Available
A B C D
L3 | 1+ | 2 | 1 |

Which means we could NOT satisfy ANY process’ need.

6.6 a.

Resrce Resrce
® o
request held by

Ne
°<\-. T

There is a deadlock if the scheduler goes, for example: PO-P1-P2-P0O-
P1-P2 (line by line): Each of the 6 resources will then be held by one
process, so all 3 processes are now blocked at their third line inside
the loop, waiting for a resource that another process holds. This is
illustrated by the circular wait (thick arrows) in the RAG above:
PO—-C—P2—-D—P1—-B—PO.

b. Any change in the order of the get() calls that alphabetizes the
resources inside each process code will avoid deadlocks. More
generally, it can be a direct or reverse alphabet order, or any

-45-

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

arbitrary but predefined ordered list of the resources that should be
respected inside each process.

Explanation: if resources are uniquely ordered, cycles are not
possible any more because a process cannot hold a resource that
comes after another resource it is holding in the ordered list. See this
remark in Section 6.2 about Circular Wait Prevention. For example:

A B C
B D D
C E F

With this code, and starting with the same worst-case scheduling
scenario PO-P1-P2, we can only continue with either P1-P1-CR1... or
P2-P2-CR2.... For example, in the case P1-P1, we get the following
RAG without circular wait:

A B C D E F
h{ A L2 Yad °

After entering CR1, P1 then releases all its resources and PO and P2
are free to go. Generally the same thing would happen with any fixed

ordering of the resources: one of the 3 processes will always be able
to enter its critical area and, upon exit, let the other two progress.

6.7 A deadlock occurs when process I has filled the disk with input (i =
max) and process i is waiting to transfer more input to the disk, while
process P is waiting to transfer more output to the disk and process O is
waiting to transfer more output from the disk.

6.8 Reserve a minimum number of blocks (called reso) permanently for
output buffering, but permit the number of output blocks to exceed this
limit when disk space is available. The resource constraints now
become:

i + 0 <max
i < max - reso
where
0 < reso < max

-46-

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

If process P is waiting to deliver output to the disk, process O will
eventually consume all previous output and make at least reso pages
available for further output, thus enabling P to continue. So P cannot be
delayed indefinitely by O. Process I can be delayed if the disk is full of
I/0; but sooner or later, all previous input will be consumed by P and
the corresponding output will be consumed by O, thus enabling I to
continue.

6.9 i+o0+p <max
i+ 0 <max-resp
i+ p < max - reso
i <max - (reso + resp)

6.10 a. 1. i—i+1
2. i—i-1;, p«p+1
3. p«<p-1;, o«<o0+1
4. 0« o0-1
5. p—p+1
6. p«—p-=1

b. By examining the resource constraints listed in the solution to
problem 6.7, we can conclude the following:

6. Procedure returns can take place immediately because they
only release resources.

5. Procedure calls may exhaust the disk (p = max - reso) and
lead to deadlock.

4. Output consumption can take place immediately after output
becomes available.

3. Output production can be delayed temporarily until all
previous output has been consumed and made at least reso
pages available for further output.

2. Input consumption can take place immediately after input
becomes available.

1. Input production can be delayed until all previous input and
the corresponding output has been consumed. At this point,
when i = 0 = 0, input can be produced provided the user
processes have not exhausted the disk (p < max - reso).

Conclusion: the uncontrolled amount of storage assigned to the user
processes is the only possible source of a storage deadlock.

-47-

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

6.11

a. Creating the process would result in the state:

Process Max Hold Claim Free
1 70 45 25 25
2 60 40 20
3 60 15 45
4 60 25 35

There is sufficient free memory to guarantee the termination of
either P1 or P2. After that, the remaining three jobs can be
completed in any order.

b. Creating the process would result in the trivially unsafe state:

Process Max Hold Claim Free
1 70 45 25 15
2 60 40 20
3 60 15 45
4 60 35 25

6.12 It is unrealistic: don't know max demands in advance, number of
processes can change over time, number of resources can change over
time (something can break). Most OS's ignore deadlock. But Solaris
only lets the superuser use the last process table slot.

-48-

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

6.13 a. The buffer is declared to be an array of shared elements of type T.
Another array defines the number of input elements available to
each process. Each process keeps track of the index j of the buffer
element it is referring to at the moment.

var buffer: array 0..max-1 of shared T;
available: shared array 0..n-1 of 0..max;

"Initialization"
var K: 1..n-1;
region available do
begin
available(0) := max;
for every k do available (k) := 0;
end

"Process i"
var j: 0..max-1; succ: 0..n-1;
begin
j := 0; succ := (i+1) mod n;
repeat
region available do
await available (i) > 0;
region buffer(j) do consume element;
region available do
begin
available (i) := available(i)-1;
available (succ) := available (succ) + 1;
end
j := (j+1) mod max;
forever
end

In the above program, the construct region defines a critical region
using some appropriate mutual-exclusion mechanism. The notation

region vdo S

means that at most one process at a time can enter the critical
region associated with variable v to perform statement S.

-49-

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

b. A deadlock is a situation in which:

P, waits for P_; AND
P, waits for Po AND

P, waits for P,
because

(available (0) = 0) AND
(available (1) = 0) AND

(available (n-1) = 0)

But if max > 0, this condition cannot hold because the critical regions
satisfy the following invariant:

N n—1
ZClaim(i) <N Zavailable(i) = max

i=1 i=0

6.14 a. Yes. If foo() executes semWait(S) and then bar() executes
semWait(R) both processes will then block when each executes its
next instruction. Since each will then be waiting for a semSignal()
call from the other, neither will ever resume execution.

b. No. If either process blocks on a semWait() call then either the
other process will also block as described in (a) or the other process
is executing in its critical section. In the latter case, when the
running process leaves its critical section, it will execute a
semSignal() call, which will awaken the blocked process.

6.15 The number of available units required for the state to be safe is 3,
making a total of 10 units in the system. In the state shown in the
problem, if one additional unit is available, P2 can run to completion,
releasing its resources, making 2 units available. This would allow P1
to run to completion making 3 units available. But at this point P3
needs 6 units and P4 needs 5 units. If to begin with, there had been 3
units available instead of 1 unit, there would now be 5 units available.
This would allow P4 to run to completion, making 7 units available,
which would allow P3 to run to completion.

6.16 a. In order from most-concurrent to least, there is a rough partial
order on the deadlock-handling algorithms:
1. detect deadlock and kill thread, releasing its resources
detect deadlock and roll back thread's actions
restart thread and release all resources if thread needs to wait

-50-

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

None of these algorithms limit concurrency before deadlock occurs,
because they rely on runtime checks rather than static restrictions.
Their effects after deadlock is detected are harder to characterize:
they still allow lots of concurrency (in some cases they enhance it),
but the computation may no longer be sensible or efficient. The
third algorithm is the strangest, since so much of its concurrency
will be useless repetition; because threads compete for execution
time, this algorithm also prevents useful computation from
advancing. Hence it is listed twice in this ordering, at both
extremes.
2. banker's algorithm

resource ordering
These algorithms cause more unnecessary waiting than the
previous two by restricting the range of allowable computations.
The banker's algorithm prevents unsafe allocations (a proper
superset of deadlock-producing allocations) and resource ordering
restricts allocation sequences so that threads have fewer options as
to whether they must wait or not.
3. reserve all resources in advance
This algorithm allows less concurrency than the previous two, but is
less pathological than the worst one. By reserving all resources in
advance, threads have to wait longer and are more likely to block
other threads while they work, so the system-wide execution is in
effect more linear.
4. restart thread and release all resources if thread needs to wait
As noted above, this algorithm has the dubious distinction of
allowing both the most and the least amount of concurrency,
depending on the definition of concurrency.

b. In order from most-efficient to least, there is a rough partial order

on the deadlock-handling algorithms:
1. reserve all resources in advance

resource ordering
These algorithms are most efficient because they involve no
runtime overhead. Notice that this is a result of the same static
restrictions that made these rank poorly in concurrency.
2. banker's algorithm

detect deadlock and kill thread, releasing its resources
These algorithms involve runtime checks on allocations which are
roughly equivalent; the banker's algorithm performs a search to
verify safety which is O(n m) in the number of threads and
allocations, and deadlock detection performs a cycle-detection
search which is O(n) in the length of resource-dependency chains.
Resource-dependency chains are bounded by the number of
threads, the number of resources, and the number of allocations.
3. detect deadlock and roll back thread's actions

-51-

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

This algorithm performs the same runtime check discussed
previously but also entails a logging cost which is O(n) in the total
number of memory writes performed.

4. restart thread and release all resources if thread needs to wait
This algorithm is grossly inefficient for two reasons. First, because
threads run the risk of restarting, they have a low probability of
completing. Second, they are competing with other restarting
threads for finite execution time, so the entire system advances
towards completion slowly if at all.

This ordering does not change when deadlock is more likely. The
algorithms in the first group incur no additional runtime penalty
because they statically disallow deadlock-producing execution. The
second group incurs a minimal, bounded penalty when deadlock
occurs. The algorithm in the third tier incurs the unrolling cost,
which is O(n) in the number of memory writes performed between
checkpoints. The status of the final algorithm is questionable
because the algorithm does not allow deadlock to occur; it might be
the case that unrolling becomes more expensive, but the behavior
of this restart algorithm is so variable that accurate comparative
analysis is nearly impossible.

6.17 The philosophers can starve while repeatedly picking up and putting
down their left forks in perfect unison.

6.18 a. Assume that the table is in'deadlock, i.e., there is a nhonempty set D
of philosophers such that each Pi in D holds one fork and waits for a
fork held by neighbor. Without loss of generality, assume that Pj e
D is a lefty. Since Pj clutches his left fork and cannot have his right
fork, his right neighbor Pk never completes his dinner and is also a
lefty. Therefore, Pk (E D. Continuing the argument rightward
around the table shows that all philosophers in D are lefties. This
contradicts the existence of at least one righty. Therefore deadlock
is not possible.

b. Assume that lefty Pj starves, i.e., there is a stable pattern of dining
in which Pj never eats. Suppose Pj holds no fork. Then Pj's left
neighbor Pi must continually hold his right fork and never finishes
eating. Thus Pi is a righty holding his right fork, but never getting
his left fork to complete a meal, i.e., Pi also starves. Now Pi's left
neighbor must be a righty who continually holds his right fork.
Proceeding leftward around the table with this argument shows that
all philosophers are (starving) righties. But Pj is a lefty: a
contradiction. Thus Pj must hold one fork.

As Pj continually holds one fork and waits for his right fork, Pj's
right neighbor Pk never sets his left fork down and never completes
a meal, i.e., Pk is also a lefty who starves. If Pk did not continually
hold his left fork, Pj could eat; therefore Pk holds his left fork.

-52-

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

Carrying the argument rightward around the table shows that all
philosophers are (starving) lefties: a contradiction. Starvation is
thus precluded.

6.19 One solution (6.14) waits on available forks; the other solution (6.17)
waits for the neighboring philosophers to be free. The logic is
essentially the same. The solution of Figure 6.17 is slightly more
compact.

6.20 Atomic operations operate on atomic data types, which have their own
internal format. Therefore, a simple read operation cannot be used,
but a special read operation for the atomic data type is needed.

6.21 This code causes a deadlock, because the writer lock will spin, waiting
for all readers to release the lock, including this thread.

6.22 Without using the memory barriers, on some processors it is possible
that c receives the new value of b, while d receives the o/d value of a.
For example, c could equal 4 (what we expect), yet d could equal 1
(not what we expect). Using the mb() insures a and b are written in
the intended order, while the rmb () insures c and d are read in the
intended order.

-53-

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

CHAPTER 7 MEMORY MANAGEMENT

ANSWERS TO QUESTIONS

7.1 Relocation, protection, sharing, logical organization, physical
organization.

7.2 Typically, it is not possible for the programmer to know in advance
which other programs will be resident in main memory at the time of
execution of his or her program. In addition, we would like to be able to
swap active processes in and out of main memory to maximize
processor utilization by providing a large pool of ready processes to
execute. In both these cases, the specific location of the process in main
memory is unpredictable.

7.3 Because the location of a program in main memory is unpredictable, it is
impossible to check absolute addresses at compile time to assure
protection. Furthermore, most programming languages allow the
dynamic calculation of addresses at run time, for example by computing
an array subscript or a pointer into a data structure. Hence all memory
references generated by a process must be checked at run time to
ensure that they refer only to the memory space allocated to that
process.

7.4 If a number of processes are executing the same program, it is
advantageous to allow each process to access the same copy of the
program rather than have its own separate copy. Also, processes that
are cooperating on some task may need to share access to the same
data structure.

7.5 By using unequal-size fixed partitions: 1. It is possible to provide one or
two quite large partitions and still have a large number of partitions.
The large partitions can allow the entire loading of large programs. 2.
Internal fragmentation is reduced because a small program can be put
into a small partition.

7.6 Internal fragmentation refers to the wasted space internal to a partition
due to the fact that the block of data loaded is smaller than the
partition. External fragmentation is a phenomenon associated with

-54-

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

dynamic partitioning, and refers to the fact that a large number of small
areas of main memory external to any partition accumulates.

7.7 A logical address is a reference to a memory location independent of
the current assignment of data to memory; a translation must be made
to a physical address before the memory access can be achieved. A
relative address is a particular example of logical address, in which
the address is expressed as a location relative to some known point,
usually the beginning of the program. A physical address, or absolute
address, is an actual location in main memory.

7.8 In a paging system, programs and data stored on disk or divided into
equal, fixed-sized blocks called pages, and main memory is divided into
blocks of the same size called frames. Exactly one page can fit in one
frame.

7.9 An alternative way in which the user program can be subdivided is
segmentation. In this case, the program and its associated data are
divided into a number of segments. It is not required that all segments
of all programs be of the same length, although there is a maximum
segment length.

ANSWERS TO. PROBLEMS

7.1 Here is a rough equivalence:

Relocation ~ support modular programming
Protection =~ process isolation; protection and access control
Sharing ~ protection and access control

Logical Organization
Physical Organization

support of modular programming
long-term storage; automatic allocation and
management

U

U

7.2 The number of partitions equals the number of bytes of main memory
divided by the number of bytes in each partition: 224/216 = 28, Eight
bits are needed to identify one of the 28 partitions.

7.3 Let s and h denote the average number of segments and holes,
respectively. The probability that a given segment is followed by a hole
in memory (and not by another segment) is 0.5, because deletions and
creations are equally probable in equilibrium. so with s segments in
memory, the average number of holes must be s/2. It is intuitively
reasonable that the number of holes must be less than the number of
segments because neighboring segments can be combined into a single
hole on deletion.

-55-

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

7.4 Let N be the length of list of free blocks.
Best-fit: Average length of search = N, as each free block in the list is
considered, to find the best fit.
First-fit: The probability of each free block in the list to be large enough
or not large enough, for a memory request is equally likely. Thus the
probability of first free block in the list to be first fit is 1/2. For the
second free block to be first fit, the first free block should be smaller,
and the second free block should be large enough, for the memory
request. Thus the probability of second free block to be first fit is 1/2 X
1/2 = 1/4. Proceeding in the same way, probability of ith free block in
the list to be first fit is 1/2/. Thus the average length of search = 1/2 +
2/22 + 3/23 + + N/2N + N/2N
(the last term corresponds to the case, when no free block fits the
request). Above length of search has a value between 1 and 2.
Next-fit: Same as first-fit, except for the fact that search starts where
the previous first-fit search ended.

7.5 a. A criticism of the best-fit algorithm is that the space remaining after
allocating a block of the required size is so small that in general it is
of no real use. The worst fit algorithm maximizes the chance that the
free space left after a placement will be large enough to satisfy
another request, thus minimizing the frequency of compaction. The
disadvantage of this approach is that the largest blocks are allocated
first; therefore a request fora large area is more likely to fail.

b. Same as best fit.

7.6 a. When the 2-MB process is placed, it fills the leftmost portion of the
free block selected for placement. Because the diagram shows an
empty block to the left of X, the process swapped out after X was
placed must have created that empty block. Therefore, the maximum
size of the swapped out process is 1M.

b. The free block consisted of the 5M still empty plus the space occupied
by X, for a total of 7M.
c. The answers are indicated in the following figure:

4M 1 % SM SM 2M 4M M
FF | MX| NF WF BF
56

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

7.7 a.

Request 70 A 128 256 512
Request 35 A B | 64 256 512
Request 80 A B | 64 C 128 512

Return A| 128 B | 64 C 128 512
Request 60| 128 B|D C 128 512

Return B| 128 (64| D C 128 512

Return D 256 C 128 512

Return C 1024

b.
v
123 |od | D [123 512

7.8 a. 011011110100
b. 011011100000

if x mod 2" =0

if x mod 2! = 2*

x+2F

7.9 buddy,(x)=

x=2F
7.10 a. Yes, the block sizes could satisfy F, = F__; + F__,.

b. This scheme offers more block sizes than a binary buddy system,

and so has the potential for less internal fragmentation, but can
57

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

cause additional external fragmentation because many uselessly
small blocks are created.

7.11 The use of absolute addresses reduces the number of times that
dynamic address translation has to be done. However, we wish the
program to be relocatable. Therefore, it might be preferable to use
relative addresses in the instruction register. Alternatively, the address
in the instruction register can be converted to relative when a process
is swapped out of memory.

7.12 a. The number of bytes in the logical address space is (21° pages) x
(219 bytes/page) = 226 bytes. Therefore, 26 bits are required for
the logical address.

b. A frame is the same size as a page, 210 bytes.

c. The number of frames in main memory is (232 bytes of main
memory)/(219 bytes/frame) = 222 frames. So 22 bits is needed to
specify the frame.

d. There is one entry for each page in the logical address space.
Therefore there are 216 entries.

e. In addition to the valid/invalid bit, 22 bits are needed to specify the
frame location in main memory, for a total of 23 bits.

7.13 a. The page number is in the higher 8 bits: 00010100. We chop it off
from the address and replace it with the frame number, which is 4
times less, that is, shifted 2 bits to the right: 00000101. Therefore
the result is this frame number concatenated with the offset
10111010:
binary physical address = 0000010110111010

b. The segment number is in the higher 6 bits: 000101. We chop it off
from the address and add the remaining offset 0010111010 to the
base of the segment. The base is 22 = 10110 added to the segment
number times 4,096, that is, shifted 12 bits to the left: 10110 +
0101000000000000 = 0101000000010110. So adding up the 2 two
underlined numbers gives:
binary physical address = 0101000011010000

7.14 a. Segment O starts at location 660. With the offset, we have a
physical address of 660 + 198 = 858

222 + 156 = 378

Segment 1 has a length of 422 bytes, so this address triggers a
segment fault.

. 996 + 444 = 1440

660 + 222 = 882

[elN~-2

-

-58-

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

7.15 a. Observe that a reference occurs to some segment in memory each
time unit, and that one segment is deleted every t references.
Because the system is in equilibrium, a new segment must be
inserted every t references; therefore, the rate of the boundary's
movement is s/t words per unit time. The system's operation time
t, is then the time required for the boundary to cross the hole, i.e.,

t, = fmr/s, where m = size of memory. The compaction operation

requires two memory references—a fetch and a store—plus
overhead for each of the (1 -f)m words to be moved, i.e., the
compaction time t_is at least 2(1 - f)m. The fraction F of the time

spent compacting is F = 1 -t,/(t, + t.), which reduces to the

expression given.
b. k= (t/2s)-1=9; F>(1-0.2)/(1 + 1.8) =0.29

-59-

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

CHAPTER 8 VIRTUAL MEMORY

ANSWERS TO QUESTIONS

8.1 Simple paging: all the pages of a process must be in main memory for
process to run, unless overlays are used. Virtual memory paging: not
all pages of a process need be in main memory frames for the process
to run.; pages may be read in as needed

8.2 Thrashing is a phenomenon in virtual memory schemes, in which the
processor spends most of its time swapping pieces rather than
executing instructions.

8.3 Algorithms can be designed to exploit the principle of locality to avoid
thrashing. In general, the principle of locality allows the algorithm to
predict which resident pages are least likely to be referenced in the near
future and are therefore good candidates for being swapped out.

8.4 Frame number: the sequential number that identifies a page in main
memory; present bit: indicates whether this page is currently in main
memory; modify bit: indicates whether this page has been modified
since being brought into main memory.

8.5 The TLB is a cache that contains those page table entries that have
been most recently used. Its purpose is to avoid, most of the time,
having to go to disk to retrieve a page table entry.

8.6 With demand paging, a page is brought into main memory only when
a reference is made to a location on that page. With prepaging, pages
other than the one demanded by a page fault are brought in.

8.7 Resident set management deals with the following two issues: (1)
how many page frames are to be allocated to each active process; and
(2) whether the set of pages to be considered for replacement should be
limited to those of the process that caused the page fault or encompass
all the page frames in main memory. Page replacement policy deals
with the following issue: among the set of pages considered, which
particular page should be selected for replacement.

8.8 The clock policy is similar to FIFO, except that in the clock policy, any
frame with a use bit of 1 is passed over by the algorithm.
60

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

8.9 (1) If a page is taken out of a resident set but is soon needed, it is still
in main memory, saving a disk read. (2) Modified page can be written
out in clusters rather than one at a time, significantly reducing the
number of I/O operations and therefore the amount of disk access time.

8.10 Because a fixed allocation policy requires that the number of frames
allocated to a process is fixed, when it comes time to bring in a new
page for a process, one of the resident pages for that process must be
swapped out (to maintain the number of frames allocated at the same
amount), which is a local replacement policy.

8.11 The resident set of a process is the current number of pages of that
process in main memory. The working set of a process is the number
of pages of that process that have been referenced recently.

8.12 With demand cleaning, a page is written out to secondary memory
only when it has been selected for replacement. A precleaning policy
writes modified pages before their page frames are needed so that
pages can be written out in batches.

ANSWERS TO PROBLEMS

8.1 a. Split binary address into virtual page number and offset; use VPN as
index into page table; extract page frame number; concatenate
offset to get physical memory address

b. (i) 1052 = 1024 + 28 maps to VPN 1 in PFN 7, (7 x 1024428 =
7196)
(ii) 2221 = 2 x 1024 + 173 maps to VPN 2, page fault
(iii) 5499 = 5 x 1024 + 379 maps to VPN 5in PFN 0, (0 x 1024+379
= 379)

8.2 a. 3 page faults for every 4 executions of C[i, j] = A[i, j] +BIi, j].
b. Yes. The page fault frequency can be minimized by switching the
inner and outer loops.
c. After modification, there are 3 page faults for every 256 executions.

8.3 a.4 MByte
b.Number of rows: 26 x 2=128 entries. Each entry consist of: 20 (page
number) + 20 (frame number) + 8 bits (chain index) = 48 bits = 6
bytes.
Total: 128 x 6= 768 bytes

-61-

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

8.4 a. FIFO:

7 0 1 2 0 3 0 4 2 3 0 3 2
7 7 7 2 2 2 2 4 4 4 0 0 0
0 0 0 0 3 3 3 2 2 2 2 2
1 1 1 1 0 0 0 3 3 3 3
F F F F F F F
b. LRU:
7 0 1 2 0 3 0 4 2 3 0 3 2
7 7 7 2 2 2 2 4 4 4 0 0 0
0 0 0 0 0 0 0 0 3 3 3 3
1 1 1 3 3 3 2 2 2 2 2
F F F F F F
c. Clock:
7 0 1 2 0 3 0
7% 7* | = [7% 2% 2*¥ | 5 | 2% | = | 2*
o* o*| s [0 | —>|0%* 0 o*
N 1% | 1 3* 3*
F
4 2 3 0 3 2
4% 4% 4* [5 | 4 3* 3%
-1 0 2% 2% 2 -2 | =|2*
3 || 3| —>|3* o* o* o*
F F F F
d. OPT:
7 0 1 2 0 3 0 4 2 3 0 3 2
7 7 7 2 2 2 2 2 2 2 2 2 2
0 0 0 0 0 0 4 4 4 0 0 0
1 1 3 3 3 3 3 3 3 3 3
F F F

e. FIFO: page faults = 7 miss rate = 70%
LRU: page faults = 6 miss rate = 60%
Clock: page faults = 6 miss rate = 60%
OPT: page faults = 3 miss rate = 30%

-62-

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

8.5 9 and 10 page transfers, respectively. This is referred to as "Belady's
anomaly," and was reported in "An Anomaly in Space-Time
Characteristics of Certain Programs Running in a Paging Machine," by
Belady et al, Communications of the ACM, June 1969.

8.6 a. LRU: Hit ratio = 16/33

10221

~

67012030

'S
(5]
=
(5]
N
'S
(]
)]
~
<))
~
N
'S
N
~
w
w
N
w

H 9N
NN oY=
HJ oo~
No o
H oM
No N -
H wWwoN R
w o N
H w o N D
H wo u
H R~ o Ul
= o U
H o= N O
=N O
=N O
H oy N U
H oy O
[JES IS, BN
o~ U
H oS 1N
H oS N
OB N
OB N
H w8 N
W BN
W N
W BN

b. FIFO: Hit ratio = 16/33

102217670120304515245617671724273323

1111116266686 666 444444466206 E686°%6°6¢6©6°6 22
-000O0OO0OO0OO0OO0OI111L112»25555555777777777717]7
- 222222222000001111111111441441414 14
————— 777777 7333333222222222223333
FFF F F F F F F F'F F F F F F F

c. These two policies are equally effective for this particular page trace.

8.7 The principal advantage is a savings in physical memory space. This
occurs for two reasons: (1) a user page table can be paged in to
memory only when it is needed. (2) The operating system can allocate
user page tables dynamically, creating one only when the process is
created.

Of course, there is a disadvantage: address translation requires extra
work.

-63-

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

8.8 The machine language version of this program, loaded in main memory
starting at address 4000, might appear as:

4000 (R1l) ¢ ONE Establish index register for i

4001 (R1) ¢ n Establish n in R2

4002 compare R1l, R2 Test i > n

4003 branch greater 4009

4004 (R3) ¢« B(R1) Access B[i] using index register R1
4005 (R3) ¢« (R3) + C(R1) Add C[i] using index register R1
4006 A(R1l) < (R3) Store sum in A[i] using index register R1
4007 (R1) < (R1) + ONE Increment i

4008 branch 4002

6000-6999 storage for A

7000-7999 storage for B

8000-8999 storage for C

9000 storage for ONE

9001 storage for n

The reference string generated by this loop is
494944(47484649444)1000

consisting of over 11,000 references, but involving only five distinct
pages.

8.9 The S/370 segments are fixed in size and not visible to the
programmer. Thus, none of the benefits listed for segmentation are
realized on the S/370, with the exception of protection. The P bit in each
segment table entry provides protection for the entire segment.

8.10 Since each page table entry is 4 bytes and each page contains 4
Kbytes, then a one-page page table would point to 1024 = 210 pages,
addressing a total of 210 x 212 = 222 pytes. The address space however
is 264 bytes. Adding a second layer of page tables, the top page table
would point to 219 page tables, addressing a total of 232 bytes.
Continuing this process,

Depth Address Space
1 222 pytes
232 pytes
242 pytes
252 pytes
262 pytes
272 bytes (> 254 bytes)

A nih~hWN

-64-

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

we can see that 5 levels do not address the full 64-bit address space,
so a 6th level is required. But only 2 bits of the 6th level are required,
not the entire 10 bits. So instead of requiring your virtual addresses
be 72 bits long, you could mask out and ignore all but the 2 lowest
order bits of the 6th level. This would give you a 64-bit address. Your
top-level page table then would have only 4 entries. Yet another
option is to revise the criteria that the top-level page table fit into a
single physical page and instead make it fit into 4 pages. This would
save a physical page, which is not much.

8.11 a. 400 nanoseconds. 200 to get the page table entry, and 200 to
access the memory location.
b. This is a familiar effective time calculation:

(220 x 0.85) + (420 x 0.15) = 250

Two cases: First, when the TLB contains the entry required. In that
case we pay the 20 ns overhead on top of the 200 ns memory
access time. Second, when the TLB does not contain the item. Then
we pay an additional 200 ns to get the required entry into the TLB.

c. The higher the TLB hit rate is, the smaller the EMAT is, because the
additional 200 ns penalty to get the entry into the TLB contributes
less to the EMAT.

8.12 a. N
b. P

8.13 a. This is a good analogy to the CLOCK algorithm. Snow falling on the
track is analogous to page hits on the circular clock buffer. The
movement of the CLOCK pointer is analogous to the movement of
the plow.

b. Note that the density of replaceable pages is highest immediately in
front of the clock pointer, just as the density of snow is highest
immediately in front of the plow. Thus, we can expect the CLOCK
algorithm to be quite efficient in finding pages to replace. In fact, it
can be shown that the depth of the snow in front of the plow is
twice the average depth on the track as a whole. By this analogy,
the number of pages replaced by the CLOCK policy on a single
circuit should be twice the number that are replaceable at a random
time. The analogy is imperfect because the CLOCK pointer does not
move at a constant rate, but the intuitive idea remains.

The snowplow analogy to the CLOCK algorithm comes from
[CARR84]; the depth analysis comes from Knuth, D. The Art of
Computer Programming, Volume 2: Sorting and Searching.
Reading, MA: Addison-Wesley, 1997 (page 256).

-65-

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

8.14 The processor hardware sets the reference bit to 0 when a new page is
loaded into the frame, and to 1 when a location within the frame is
referenced. The operating system can maintain a number of queues of
page-frame tables. A page-frame table entry moves from one queue to
another according to how long the reference bit from that page frame
stays set to zero. When pages must be replaced, the pages to be
replaced are chosen from the queue of the longest-life nonreferenced

frames.
8.15a.
Seq of Window Size, A
page
refs
1 2 3 4 5 6

1 1 1 1 1 1 1

2 2 12 12 12 12 12

3 3 23 123 123 123 123

4 4 34 234 1234 | 1234 | 1234

5 5 45 345 2345 [12345|12345

2 2 52 452 3452 | 3452 13452

1 1 21 521 4521 |[34521[34521

3 3 13 213 5213 |45213|45213

3 3 3 13 213 5213 |45213

2 2 32 32 132 132 5132

3 3 23 23 23 123 123

4 4 34 234 234 234 1234

5 5 45 345 2345 | 2345 | 2345

4 4 54 54 354 2354 | 2354

5 5 45 45 45 345 2345

1 1 51 451 451 451 3451

1 1 1 51 451 451 451

3 3 13 13 513 4513 | 4513

2 2 32 132 132 5132 |45132

5 5 25 325 1325 1325 1325

b., c.

A 1 2 3 4 5 6
S,0(A) 1 1.85 2.5 3.1 3.55 3.9
m,,(4) 0.9 0.75 0.75 0.65 0.55 0.5

66

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

S,0(4) is an increasing function of A. m,,(A) is a nonincreasing
function of A.

8.16 Consider this strategy. Use a mechanism that adjusts the value of Q at

each window time as a function of the actual page fault rate
experienced during the window. The page fault rate is computed and
compared with a system-wide value for "desirable" page fault rate for
a job. The value of Q is adjusted upward (downward) whenever the
actual page fault rate of a job is higher (lower) than the desirable
value. Experimentation using this adjustment mechanism showed that
execution of the test jobs with dynamic adjustment of Q consistently
produced a lower humber of page faults per execution and a decreased
average resident set size than the execution with a constant value of Q
(within a very broad range). The memory time product (MT) versus Q
using the adjustment mechanism also produced a consistent and
considerable improvement over the previous test results using a
constant value of Q.

232
8.17 w =271 page frames
2" page size
Segment: 0 0
1 —
1\
3 —_
7 00021ABC
Page descriptor
table
232
znrnﬂ: 221 page frames
page size Main memory
(232 bytes)
a. 8 x 2K = 16K

b. 16K x 4 = 64K
c. 232 = 4 GBytes

-67-

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

(2) 3) (11)

Logical Address: Seg- Page Offset
ment

X Y 2BC

00021ABC

&

|00000000000001000001101010111100|

21-bit page frame reference offset (11 bits)
(in this case, page frame = 67)

8.18 a.

page number (5) offset (11)

b. 32 entries, each entry is 9 bits wide.
c. If total number of entries stays at 32 and the page size does not
change, then each entry becomes 8 bits wide.

8.19 It is possible to shrink a process's stack by deallocating the unused
pages. By convention, the contents of memory beyond the current top
of the stack are undefined. On almost all architectures, the current top
of stack pointer is kept in a well-defined register. Therefore, the kernel
can read its contents and deallocate any unused pages as needed. The
reason that this is not done is that little is gained by the effort. If the
user program will repeatedly call subroutines that need additional space
for local variables (a very likely case), then much time will be wasted
deallocating stack space in between calls and then reallocating it later
on. If the subroutine called is only used once during the life of the
program and no other subroutine will ever be called that needs the
stack space, then eventually the kernel will page out the unused portion
of the space if it needs the memory for other purposes. In either case,
the extra logic needed to recognize the case where a stack could be
shrunk is unwarranted.

-68-

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

CHAPTER 9 UNIPROCESSOR SCHEDULING

ANSWERS TO QUESTIONS

9.1 Long-term scheduling: The decision to add to the pool of processes to
be executed. Medium-term scheduling: The decision to add to the
number of processes that are partially or fully in main memory. Short-
term scheduling: The decision as to which available process will be
executed by the processor

9.2 Response time.

9.3 Turnaround time is the total time that a request spends in the system
(waiting time plus service time. Response time is the elapsed time
between the submission of a request until the response begins to
appear as output.

9.4 In UNIX and many other systems, larger priority values represent lower
priority processes. Some systems, such as Windows, use the opposite
convention: a higher number means a higher priority

9.5 Nonpreemptive: If a process is in the Running state, it continues to
execute until (a) it terminates or (b) blocks itself to wait for I/O or to
request some operating system service. Preemptive: The currently
running process may be interrupted and moved to the Ready state by
the operating system. The decision to preempt may be performed when
a new process arrives, when an interrupt occurs that places a blocked
process in the Ready state, or periodically based on a clock interrupt.

9.6 As each process becomes ready, it joins the ready queue. When the
currently-running process ceases to execute, the process that has been
in the ready queue the longest is selected for running.

9.7 A clock interrupt is generated at periodic intervals. When the interrupt
occurs, the currently running process is placed in the ready queue, and
the next ready job is selected on a FCFS basis.

9.8 This is a nonpreemptive policy in which the process with the shortest
expected processing time is selected next.

-69-

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

9.9 This is a preemptive version of SPN. In this case, the scheduler always
chooses the process that has the shortest expected remaining
processing time. When a new process joins the ready queue, it may in
fact have a shorter remaining time than the currently running process.
Accordingly, the scheduler may preempt whenever a new process
becomes ready.

9.10 When the current process completes or is blocked, choose the ready
process with the greatest value of R, where R = (w + s)/s, with w =
time spent waiting for the processor and s = expected service time.

9.11 Scheduling is done on a preemptive (at time quantum) basis, and a
dynamic priority mechanism is used. When a process first enters the
system, it is placed in RQO (see Figure 9.4). After its first execution,
when it returns to the Ready state, it is placed in RQ1. Each
subsequent time that it is preempted, it is demoted to the next lower-
priority queue. A shorter process will complete quickly, without
migrating very far down the hierarchy of ready queues. A longer
process will gradually drift downward. Thus, newer, shorter processes
are favored over older, longer processes. Within each queue, except
the lowest-priority queue, a simple FCFS mechanism is used. Once in
the lowest-priority queue, a process cannot go lower, but is returned
to this queue repeatedly until it completes execution.

ANSWERS TO PROBLEMS

9.1 a. Shortest Remaining Time:

[P1 [P [P2|P2|P1[P1 [Pl |P4]|P4][P4|Psa|P3][P3[P3|P3|P3][P3[P3]|P3]|P3]P3]
01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Explanation: P1 starts but is preempted after 20ms when P2 arrives
and has shorter burst time (20ms) than the remaining burst time of
P1 (30 ms) . So, P1 is preempted. P2 runs to completion. At 40ms P3
arrives, but it has a longer burst time than P1, so P1 will run. At
60ms P4 arrives. At this point P1 has a remaining burst time of 10
ms, which is the shortest time, so it continues to run. Once P1
finishes, P4 starts to run since it has shorter burst time than P3.

Non-preemptive Priority:

[P1|P1[PL|PL|PL[P2[P2|P4]|P4][P4|Pa|P3][P3[P3|P3|P3][P3[P3]|P3]|P3][P3]
01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Explanation: P1 starts, but as the scheduler is non-preemptive, it
continues executing even though it has lower priority than P2. When
70

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

P1 finishes, P2 and P3 have arrived. Among these two, P2 has higher
priority, so P2 will be scheduled, and it keeps the processor until it
finishes. Now we have P3 and P4 in the ready queue. Among these
two, P4 has higher priority, so it will be scheduled. After P4 finishes,
P3 is scheduled to run.

Round Robin with quantum of 30 ms:

[P1|P1L[PL[P2[P2[P1 [Pl |[P3][P3[P3|[P4|P4]|P4[P3|P3|P3][P4][P3|P3]|P3][P3]
o1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Explanation: P1 arrives first, so it will get the 30ms quantum. After
that, P2 is in the ready queue, so P1 will be preempted and P2 is
scheduled for 20ms. While P2 is running, P3 arrives. Note that P3 will
be queued after P1 in the FIFO ready queue. So when P2 is done, P1
will be scheduled for the next quantum. It runs for 20ms. In the
mean time, P4 arrives and is queued after P3. So after P1 is done, P3
runs for one 30 ms quantum. Once it is done, P4 runs for a 30ms
quantum. Then again P3 runs for 30 ms, and after that P4 runs for
10 ms, and after that P3 runs for 30+10ms since there is nobody left
to compete with.

b. Shortest Remaining Time: (20+0+70+10)/4 = 25 ms.
Explanation: P2 does not wait, but P1 waits 20ms, P3 waits 70ms
and P4 waits 10ms.

Non-preemptive Priority: (0+30+10+70)/4 = 27.5ms
Explanation: P1 does not wait, P2 waits 30ms until P1 finishes, P4
waits only 10ms since it arrived at 60ms and it is scheduled at 70ms.
P3 waits 70ms.

Round-Robin: (20+10+70+70)/4 = 42.5ms

Explanation: P1 waits only for P2 (for 20ms). P2 waits only 10ms
until P1 finishes the quantum (it arrives at 20ms and the quantum is
30ms). P3 waits 30ms to start, then 40ms for P4 to finish. P4 waits
40ms to start and one quantum slice for P3 to finish.

9.2 Each square represents one time unit; the number in the square refers
to the currently-running process.

FCFS A[A[A[B][B[B[B[B]C[C[D]|D][D[D[D[E[E[E]E]E
RR, q=1 AlB[A[B|c|A|B|c|B|D|B|D|E|D[E[D[E|[D|E|E
RR, q = 4 AlA[A[B[B|B|B|[C|Cc|B|D|D|D|D[E[E[E|E|D|E
SPN AlA[A[c|c|B|B[B|[B|B|D|D|D|D|D|[E[E|E|E|E
SRT AlA[A[c|c|B|B[B|[B|B|D|D|D|D|D|[E[E|E|E|E
HRRN AlA[A[B[B|B|B[B|[C|Cc|D|D|D|D|D|[E[E|E|E|E
Feedback, q =1 [A[B|A|Cc|B|[Cc|[A[B|[B|D|B|D|E[D|E|[D|E|D|E]E
Feedback, q = 2/ |A|B|A[A[C|B|B|Cc[B|B|[D|D|E|[D|D[E[E[D|E|E
71

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

A B C D E
T, 0 1 3 9 12
T, 3 5 2 5 5
FCFS T; 3 8 10 15 20
T, 3.00 7.00 7.00 6.00 8.00 6.20
T/T, 100 1.40 3.50 1.20 1.60 174
RRg=1 T, 6.00 11.00 8.00 18.00 20.00
T, 6.00 10.00 5.00 9.00 8.00 7.60
T/T, 200 2.00 2.50 1.80 1.60 1.98
RRg=4 T, 3.00 10.00 9.00 19.00 20.00
T, 3.00 9.00 6.00 10.00 8.00 7.20
T/T, 100 1.80 3.00 2.00 1.60 1.88
SPN T, 3.00 10.00 5.00 15.00 20.00
T, 3.00 9.00 2.00 6.00 8.00 5.60
T/T, 100 1.80 1.00 1.20 1.60 132
SRT T, 3.00 10.00 5.00 15.00 20.00
T, 3.00 9.00 2.00 6.00 8.00 5.60
T/T, 100 1.80 100 1.20 1.60 132
HRRN T, 3.00 8.00 10.00 15.00 20.00
T, 3.00 7.00 7.00 6.00 8.00 6.20
T/T, 100 1.40 3.50 1.20 1.60 174
FBq=1 T, 7.00 11.00 6.00 18.00 20.00
T, 7.00 10.00 3.00 9.00 8.00 7.40
T/T, 233 2.00 1.50 1.80 1.60 1.85
FB T, 4.00 10.00 8.00 18.00 20.00
g=2 T, 4.00 9.00 5.00 9.00 8.00 7.00
T/T, 133 1.80 2.50 1.80 1.60 181

9.3 We will prove the assertion for the case in which a batch of n jobs arrive
at the same time, and ignoring further arrivals. The proof can be
extended to cover later arrivals.

Let the service times of the jobs be

-72-

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

Then, n users must wait for the execution of job 1; n - 1 users must
wait for the execution of job 2, and so on. Therefore, the average
response time is

nxt +(n—1) Xty+---+t,
n

If we make any changes in this schedule, for example by exchanging jobs j and k
(where j < k), the average response time is increased by the amount

(k—j)x(tk—tj) “0

n

In other words, the average response time can only increase if the SPN
algorithm is not used.

9.4 The data points for the plot:

Age of Observed Simple
Observation Value Average alpha = 0.8 alpha = 0.5
1 6 0.00 0.00 0.00
2 4 3.00 4.80 3.00
3 6 3.33 4.16 3.50
4 4 4.00 5.63 4.75
5 13 4.00 4.33 4.38
6 13 5.50 11.27 8.69
7 13 6.57 12.65 10.84

9.5 The first equation is identical to Equation 9.3, so the parameter a
provides an exponential smoothing effect. The parameterfis a delay
variance factor (e.g., 1.3 to 2.0). A smaller value of B will result in
faster adaptation to changes in the observed times, but also more
fluctuation in the estimates.

A sophisticated analysis of this type of estimation procedure is
contained in Applied Optimal Estimation, edited by Gelb, M.I.T. Press,
1974.

9.6 It depends on whether you put job A in a queue after the first time unit
or not. If you do, then it is entitled to 2 additional time units before it
can be preempted.

9.7 First, the scheduler computes the response ratios at timet + r; +r, +
r;, when all three jobs will have been finished (see figure). At that time,
job 3 will have the smallest response ratio of the three: so the scheduler
decides to execute this job last and proceeds to examine jobs 1 and 2 at

73

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

Eesponse R atio

timet + r; + r,, when they will both be finished. Here the response

ratio of job 1 is the smaller, and consequently job 2 is selected for
service at time t. This algorithm is repeated each time a job is
completed to take new arrivals into account. Note that this algorithm is
not quite the same as highest response ratio next. The latter would
schedule job 1 at time t. Intuitively, it is clear that the present algorithm
attempts to minimize the maximum response ratio by consistently
postponing jobs that will suffer the least increase of their response
ratios.

I /

1
/ 4
1
I L] _
tl t2 t3 t >[1D1E
|]
|]
rp It I3

9.8 Consider the queue at time t immediately after a departure and ignore

further arrivals. The waiting jobs are numbered 1 to n in the order in
which they will be scheduled:

job: 1 2 ... i ... n
arrival time: t t, s o o« t; Co t,
service time: ry ry Co r; Co r

Among these we assume that job i will reach the highest response ratio
before its departure. When the jobs 1 to i have been executed, time
becomes

Ti=t+r1+r2+...+ri

-74-

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

and job i has the response ratio

The reason for executing job i last in the sequence 1 to i is that its
response ratio will be the lowest one among these jobs at time T;:

R(T,) = min [R((T)), Ry(T)), . .., R(T)]

Consider now the consequences of scheduling the same n jobs in any
other sequence:

job: a b .o j .. z
arrival time: t, ty ... tj .. t,
service time: r, My ... 5 ... r,

In the new sequence, we select the smallest subsequence of jobs, a to j,
that contains all the jobs, 1 to i, of the original subsequence (This
implies that job j is itself one of the jobs 1 to i). When the jobs a to j
have been served, time becomes

Ti=t+rtr+...+1

and job j reaches the response ratio

Since the jobs 1 to i are a subset of the jobs a to j, the sum of their
service times T,-t must be less than or equal to the sum of service time

Tj—t. And since response ratios increase with time, T, < TJ. implies
RJ.(TJ.) > RJ.(Ti)

It is also known that job j is one of the jobs 1 to i, of which job j has the
smallest response ratio at time T,. The above inequality can therefore be

extended as follows:

RJ.(TJ.) > RJ.(Ti) > Ri(T;)
In other words, when the scheduling algorithm is changed, there will
always be a job j that reaches response ratio RJ.(TJ.), which is greater

-75-

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

than or equal to the highest response ratio Ri(T;) obtained with the

original algorithm.

Notice that this proof is valid in general for priorities that are non-
decreasing functions of time. For example, in a FIFO system, priorities
increase linearly with waiting time at the same rate for all jobs.
Therefore, the present proof shows that the FIFO algorithm minimizes
the maximum waiting time for a given batch of jobs.

9.9 Before we begin, there is one result that is needed, as follows. Assume
that an item with service time T, has been in service for a time h. Then,

the expected remaining service time E [T/T > h] = T.. That is, no

matter how long an item has been in service, the expected remaining
service time is just the average service time for the item. This result,
though counter to intuition, is correct, as we now show.

Consider the exponential probability distribution function:

F(x) = Pr[X<x] =1 - e ¥

Then, we have Pr[X > x] = e Hx. Now let us look at the conditional
probability that X is greater than x + h given that X is greater than x:

Pr[(X>x+h),(X>x)] Pr[X>x+h]
Pr[X > x] ~ Pr[X>x]

Pr[X > x +hX >x]=

o (1)
Pr[X > x +h|X > x]|=—
e

- h
=€

X

So,
PriIX<x + h/X > x] = 1-e #h = Pr[X < h]

Thus the probability distribution for service time given that there has
been service of duration x is the same as the probability distribution of
total service time. Therefore the expected value of the remaining

service time is the same as the original expected value of service time.

With this result, we can now proceed to the original problem. When an item
arrives for service, the total response time for that item will consist of its own
service time plus the service time of all items ahead of it in the queue. The total
expected response time has three components.

*Expected service time of arriving process = T,

eExpected service time of all processes currently waiting to be
served. This value is simply w x T,, where w is the mean number of

items waiting to be served.

-76-

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

eRemaining service time for the item currently in service, if there is
an item currently in service. This value can be expressed as p x T,

where p is the utilization and therefore the probability that an item
is currently in service and T, as we have demonstrated, is the

expected remaining service time.

Thus, we have

2
szyx(1+W+p):Tsx(1+1P +pj:1Ts
—p

9.10 Let us denote the time slice, or quantum, used in round robin
scheduling as 6. In this problem, 6 is assumed to be very small
compared to the service time of a process. Now, consider a newly
arrived process, which is placed at the end of the ready queue for
service. We are assuming that this particular process has a service
time of x, which is some multiple of &:

X = md

To begin, let us ask the question, how much time does the process
spend in the queue before it receives its first quantum of service. It
must wait until all q processes waiting in line ahead of it have been
serviced. Thus the initial wait time = gé, where g is the average
number of items in the system (waiting and being served). We can
now calculate the total time this process will spend waiting before it
has received x seconds of service. Since it must pass through the
active queue m times, and each time it waits gé seconds, the total wait
time is as follows:

Wait time

m (gs)
(x/8)(q9d)
=qX

Then, the response time is the sum of the wait time and the total
service time

R, wait time + service time

= gx+x =(q+1)x

Referring to the queuing formulas in Chapter 20 or Appendix H, the
mean number of items in the system, g, can be expressed as

qg=rp/(1-p)
77

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

Thus,
R, =1[p/(1-p)+ 1]x =x/(1-p)

9.11 a. Because the ready queue has multiple pointers to the same
process, the system is giving that process preferential treatment
That is, this process will get double the processor time than a
process with only one pointer.

b. The advantage is that more important jobs could be given more
processor time by just adding an additional pointer (i.e., very little
extra overhead to implement).

c. Want longer time slice to processes deserving higher priority.

- add bit in PCB that says whether a process is allowed to execute
two time slices

- add integer in PCB that indicates the number of time slices a
process is allowed to execute

- have two ready queues, one of which has a longer time slice for
higher priority jobs

9.12 First, we need to clarify the significance of the parameter A'. The rate
at which items arrive at the first box (the "queue" box) is A. Two
adjacent arrivals to the second box (the "service" box) will arrive at a
slightly slower rate, since the second item is delayed in its chase of the
first item. We may calculate the vertical offset y in the figure in two
different ways, based on the geometry of the diagram:

y = B/N
y = [(1/N) - (1/X)]a

which therefore gives

A= A1 = (B/a)]

The total number of jobs g waiting or in service when the given job
arrives is given by:

qg=rp/(1-p)

independent of the scheduling algorithm. Using Little's formula (see
Appendix H):

R = q/\ =s/(1-p)

-78-

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

Now let W and V, denote the mean times spent in the queue box and

in the service box by a job of service time x. Since priorities are
initially based only on elapsed waiting times, W is clearly independent
of the service time x. Evidently we have

R, =W+ V,
From problem 9.10, we have
V =t/(1-p') wherep'=1A's

By taking the expected values of R and S , we have R = W + V. We

have already developed the formula for R. For V, observe that the
arrival rate to the service box is A", and therefore the utilization is p'.
Accordingly, from our basic M/M/1 formulas, we have

V =s/(1-p")

Thus,
W=R=-V=5s/[1/(1-p) - 1/(1-p")]

which yields the desired result for R, .

9.13 Only as long as there are comparatively few users in the system.
When the quantum is decreased to satisfy more users rapidly two
things happen: (1) processor utilization decreases, and (2) at a certain
point, the quantum becomes too small to satisfy most trivial requests.
Users will then experience a sudden increase of response times
because their requests must pass through the round-robin queue
several times.

9.14 If a process uses too much processor time, it will be moved to a lower-
priority queue. This leaves I/O-bound processes in the higher-priority
queues.

9.15 Dekker's algorithm relies on the fairness of the hardware and the OS.
The use of " priorities risks starvation as follows. It may happen if PO is
a very fast repetitive process which, as it constantly finds flag [1] =
false, keeps entering its critical section, while P1, leaving the internal
loop in which it was waiting for its turn, cannot set flag [1] to true,
being prevented from doing so by PO's reading of the variable
(remember that access to the variable takes place under mutual
exclusion).

9.16 a. Sequence with which processes will get 1 min of processor time:

-79-

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

[
N
W
o
Ul

Elapsed
time
5

10
15
19
23
27
30
33
36
38
40
42
43
44
45

>r>r>r>r>r>r>>>>>>>>r
WWWmWWwwwww

ONQN®!

OO0 OUUO
MMMMMMMmMMMmmMmmM

The turnaround time for each process:
A =45 min, B = 35 min, C =13 min, D = 26 min, E = 42 min
The average turnaround time is = (45+35+13+26+42) / 5 = 32.2 min

b.
Priority Job Turnaround Time
3 B 9
4 E 9 + 12=2%
6 A 21 + 15 =36
7 C 36 + 3 = 39
9 D 39 + 6 =45

The average turnaround time is: (9+21+36+39+45) /5 = 30 min

C.
Job Turnaround Time
A 15
B 15+9=24
C 24 + 3 =27
D 27 + 6 = 33
E 33 + 12 =45

The average turnaround time is: (154+24+27+33+45) /5 = 28.8 min

-80-

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

Running Job Turnaround Time
Time

3 C 3

6 D 3+6=9

9 B 9+9 =18

12 E 18 + 12 = 30

15 A 30 + 15 =45

The average turnaround time is: (3+9+18+30+45) /5 = 21 min

-81-

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

