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Chapter 0 

Preliminaries 

0.1 Polynomials and Rational 

Fuctions 

1. 3x + 2 < 8 

 3x < 8 − 2 

 3x < 6 

 x < 2 

2. 3 − 2x < 7 

 −2x < 4 

 x > −2 

3. 1 ≤ 2 − 3x < 6 

 1 − 2 ≤ −3x < 6 − 2 

 −1 ≤ −3x < 4 

 
1 4

3 3
x    

4. −2 < 2x − 3 ≤ 5 

 1 < 2x ≤ 8 

 
1

4
2

x   

5. 0
4

2x

x





 

 x + 2 ≥ 0, x − 4 > 0 or x + 2 ≤ 0, x − 4 < 0 

 x ≥ −2, x > 4 or x ≤ −2, x < 4 

 x > 4 or x ≤ −2 

6. 
2

0
2

1

x

x




  

 2x + 1 < 0, x + 2 > 0 or 2x + 1 > 0, x + 2 < 0 

 1
2

x   , x > −2 or 1
2

x   , x < −2 

 
1

2
2

x     (Since 1
2

x   , x < −2 is not possible). 

7. x2 + 2x − 3 ≥ 0 

 (x + 3) (x − 1) ≥ 0 

 x ≥ 1 or x ≤ −3 

8. x2 − 5x − 6 < 0 

 (x − 6) (x + 1) < 0 

 −1 < x < 6 

9. |x + 5| < 2 − 2 < x + 5 < 2 

 −2 − 5 < x < 2 − 5 

 −7 < x < −3. 

10. |2x + 1| < 4 

 −4 < 2x + 1 < 4 

 −4 − 1 < 2x < 4 − 1 

 −5 < 2x < 3 

 
5 3

2 2
x    

11. Yes. The slope of the line joining the points (2, 1) 

and (0, 2) is 
1

2
 , which is also the slope of the line 

joining the Points (0,2) and (4, 0). 

12. No. The slope of the line joining the points (3, 1) 

and (4, 4) is 3, while the slope of the line joining the 

points (4, 4) and (5, 8) is 4. 

13. No. The slope of the line joining the points (4, 1) 

and (3, 2) is −1, while the slope of the line joining 

the points (3, 2) and (1, 3) is 
1

2
 . 

14. No. The slope of the line joining the points (1, 2) 

and (2, 5) is 3, but the slope of line joining the points 

(2, 5) and (4, 8) is 
3

2
. 
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15. (a) d{(1, 2), (3, 6)} 

  
2 2(3 1) (6 2)

4 16 20

   

  
 

 (b) 2 1

2 1

6 2
2

3 1

y y
m

x x

 
  

 
 

 (c) The equation of line is 

  y = m(x − x0) + y0 

  y = 2(x − 1) + 2 

  y = 2x 

16. (a) d{(1, −2), (−1, −3)} 

  
2 2( 1 1) ( 3 2)

4 1 5

     

  
 

 (b) 2 1

2 1

3 2 1

1 1 2

y y
m

x x

  
  

  
 

 (c) The equation of line is 

  y = m(x − x0) + y0 

  

1
( 1) ( 1)

2

3

2

y x

x
y

   




 

17. (a) d{(0.3, −1.4), (−1.1, −0.4)} 

  

2 2

2

( 1.1 0.3) ( 0.4 1.4)

( 1.4) 1 2.96

     

   

 

 (b) 2 1

2 1

0.4 1.4 1

1.1 0.3 1.4

y y
m

x x

  
   

  
 

 (c) The equation of line is 

  y = m(x − x0) + y0 

  
1

( 0.3) 1.4
1.4

y x     

  1.4y = −x − 1.66 

  x + 1.4y = −1.66 

18. (a) d{(1.2, 2.1), (3.1, 2.4)} 

  

2 2

2 2

(3.1 1.2) (2.4 2.1)

(1.9) (0.3)

3.61 0.09 3.7

   

 

  

 

 (b) 2 1

2 1

2.4 2.1 0.3
0.16

3.1 1.2 1.9

y y
m

x x

 
   

 
 

 (c) The equation of line is 

  y = m(x − x0) + y0 

  y = (0.16)(x − 1.2) − 2.1 

  y = 0.16x − 2.292 

19. y = 2(x − 1) + 3 = 2x + 1 

 

20. y = 1 

 

21. y = 1.2(x − 2.3) + 1.1 = 1.2x − 1.66 
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22. 
1 1 1

( 2) 1
4 4 2

y x x        

 

23. Parallel. Both have slope 3. 

24. Neither. Slopes are 2 and 4. 

25. Perpendicular. Slopes are −2 and 
1

2
. 

26. Neither. Slopes are 2 and −2. 

27. Perpendicular. Slopes are 3 and 
1

3
 . 

28. Parallel. Both have slope 
1

2
 . 

29. (a) y = 2(x − 2) + 1 

 (b) 
1

( 2) 1
2

y x     

30. (a) y = 3x + 3 

 (b) 
1

3
3

y x    

31. (a) y = 2(x − 3) + 1 

 (b) 
1

( 3) 1
2

y x     

32. (a) y = − 1 

 (b) x = 0 

33. Slope 
3 1 2

2
2 1 1

m


  


 

 Equation of line is y = 2(x − 1) + 1 = 2x − 1. When  

x = 4, y = 7. 

34. Slope 
1

2
m   

 Equation of line is 
1

( 2) 1
2

y x   . 

 When x = 4, y = 4. 

35. Yes, passes vertical line test. 

36. Yes, passes vertical line test. 

37. No. The vertical line x = 0 meets the curve twice; 

nearby vertical lines meet it three times. 

38. No, does not pass vertical line test. 

39. Both: This is clearly a cubic polynomial, and also a 

rational function because it can be written as 

3 4 1
( ) .

1

x x
f x

 
  

 This shows that all polynomials are rational. 

40. Rational. 

41. Rational. 

42. Neither: Contains square root. 

43. We need the function under the square root to be 

non-negative. x + 2 ≥ 0 when x ≥ − 2. The domain is 

{ | 2} [ 2, )x x      . 

44. Negatives are permitted inside the cube root. There 

are no restrictions, so the domain is (−∞, ∞) or all 

real numbers. 

45. The function is defined only if 

 x2 − x − 6 ≥ 0 and x ≠ 5 

 (x − 3)(x + 2) ≥ 0 and x ≠ 5 

 x ≤ −2 or x ≥ 3 and x ≠ 5 

 (−∞, −2]∪[3, 5)∪(5, ∞) 

46. We need the numerator function under square root 

be non-negative. x2 − 4 ≥ 2, when |x| ≥ 2 Also the 

denominator cannot be zero. 9 − x2 > 0, when |x| < 3 

The domain is (−3, −2] ∪ [2, 3). 
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47. The denominator cannot be zero. x2 − 1 = 0 when  

x = ±1. The domain is 

 { | 1}x x    

 = (−∞, −1) ∪ (−1, 1) ∪ (1, ∞) 

48. The denominator cannot be zero. 

 x2 + 2x − 6 = 0 when 1 7x    . 

 The domain is  | 1 7x x     

    , 1 7 1 7, 1 7          

  1 7,     

49. f(0) = 02 − 0 − 1 = −1 

 f(2) = 22 − 2 − 1 = 1 

 f(−3) = (−3)2 − (−3) − 1 = 11 

 

2
1 1 1 5

1
2 2 2 4

f
   

       
   

 

50. 
3

(1) 1
1

f    

 

1
3

3
(10) 0.3

10

3
(100) 0.03

100

1 3
9

3

f

f

f

 

 

 
  

 

 

51. Again, the only constraint we know for sure is that x 

should not be negative, i.e., a reasonable domain 

would be {x|x ≥ 0}. 

52. Width can be anywhere from 0 to 70 meters. A 

reasonable domain is {x|0 ≤ x ≤ 70}. 

53. Answers vary. There may well be a positive 

correlation (more study hours = better grade), but 

not necessarily a functional relation. 

54. Answers vary. Evidence supports a relationship. 

55. Answers vary. While not denying a negative 

correlation (more exercise = less weight), there are 

too many other factors (metabolic rate, diet) to be 

able to quantify a person’s weight as a function just 

of the amount of exercise. 

56. Answers vary. Objects of all weights fall at the same 

speed unless friction affects them differently. 

57. A flat interval corresponds to an interval of constant 

speed; going up means that the speed is increasing 

while the graph going down means that the speed is 

decreasing. It is likely that the bicyclist is going 

uphill when the graph is going down and going 

downhill when the graph is going up. 

58. Influxes of immigrants occur where graph rises. War 

and plague occur where graph falls. 

59. The x–intercept occurs where 0 = x2 − 2x − 8 = (x − 

4) (x + 2), so x = 4 or 

 x = −2; y–intercept at y = 02 − 2(0) − 8 = −8 

60. The x– intercept occurs where 0 = x2 + 4x + 4 = (x + 

2)2, so x = −2; y–intercept at y = 02 + 4(0) + 4 = 4. 

61. The x–intercept occurs where 0 = x3 − 8 = (x − 2) (x2 

+ 2x + 4), so x = 2 (using the quadratic formula on 

the quadratic factor gives the solutions 

1 3x     , neither of which is real so neither 

contributes a solution); y–intercept at y = 03 − 8 =  

− 8. 

62. The x–intercept occurs where 0 = x3 − 3x2 + 3x − 1 = 

(x − 1)3, so x = 1 y–intercept at y = (0)3 − 3(0)2 + 

3(0) − 1 = − 1. 

63. The x–intercept occurs where the numerator is zero, 

at 0 = x4 − 4 = (x − 2)(x + 2), so x = ± 2; y–intercept 

at 
2(0) 4

4
0 1

y


  


. 

64. The x-intercept occurs where the numerat or is zero, 

at 
1

2
x  ; y–intercept at 

2

2(0) 1 1
.

4(0) 4
y


 


 

65. x2 − 4x + 3 = (x − 3)(x − 1), so the zeros are x = 1 

and x = 3. 

66. x2 + x − 12 = (x + 4)(x − 3), so the zeros are x = −4 

and x = 3. 

67. Quadratic formula gives 

 

4 16 8

2

2 2

x
 



 
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68. Quadratic formula gives 

 

24 4 4(2)( 1)

2(2)

2 6

2

x
   



 


 

69. x3 − 3x2 + 2x = x(x − 2)(x − 1). 

 So, the zeros are x = 0, 1 and 2. 

70. x3 − 2x2 − x + 2 = (x − 2)(x − 1)(x + 1). So, the zeros 

are x = − 1, 1 and 2. 

71. With t = x3, x6 + x3 − 2 becomes t2 + t − 2 and factors 

as (t + 2)(t − 1). The expression is zero only if one 

of the factors is zero, i.e., if t = 1 or t = −2. With  

x = t1/3, the first occurs only if x = (1)1/3 = 1. The 

latter occurs only if x = (−2)1/3, about −1.2599. 

72. x3 + x2 − 4x − 4 = (x − 2) (x + 1) (x + 2). 

 So, the zeros are x = −2, −1 and 2. 

73. Substitute y = x2 + 2x + 3 into y = x + 5 

 x2 + 2x + 3 = x + 5 

 x2 + x − 2 = 0 

 (x + 2)(x − 1) = 0 

 x = − 2 or x = 1 

 When x = −2, y = 3 

 When x = 1, y = 6 

 The points of intersection are (−2, 3) and (1, 6). 

74. Substitute y = x2 + 4x − 2 into y = 2x2 + x − 6 

 x2 + 4x − 2 = 2x2 + x − 6 

 x2 − 3x − 4 = 0 

 (x − 4)(x + 1) = 0 

 x = 4 or x = −1 

 When x = 4, y = 30 

 When x = −1, y = −5 

 The points of intersection are (4, 30) and (−1, −5). 

Applications 

1. If B(h) = −0.0034h + 100, then we can solve B(h) = 

73.6 for h as follows: 

 73.6 = −0.0034h + 100 

 0.0034h = 26.4 

 
26.4

7765
0.0034

h m   

2. Let x represent compression and L(x) represent spin 

rate. Given the points (120, 9100) and (60, 10, 000), 

the linear function is y = −15(x − 60) + 10,000. 

 The spin rate of a 90-compression ball is 9550, and 

the spin rate of a 100-compression ball is 9400. 

3. This is a two-point line-fitting problem. If a point is 

interpreted as (x, y) = (temperature, chirp rate), then 

the two given points are (20, 110) and (28, 166). The 

slope being 
166 110

7
28 20





, we could write  

 110 7 20y x    or 7 30y x  . 

4. From problem 3 we know the temperature is a 

function of chirping rate, where r is measured in 

chirps per minute. The number of chirps in 15 

seconds will then be 
1

4
r . In this case, the 

temperature may not be found conveniently. 

5. Her winning percentage is calculated by the formula 

100w
P

t
 , where P is the winning percentage, w is 

the number of games won and t is the total number 

of games. Plugging in w = 415 and t = 415 + 120 = 

535, we find her winning percentage is 

approximately P ≈ 77.57, so we see that the 

percentage displayed is rounded up from the actual 

percentage. Let x be the number of games won in a 

row. If she doesn’t lose any games, her new winning 

percentage will be given by the formula 

100(415 )

535

x
P

x





. In order to have her winning 

percentage displayed as 80%, she only needs a 

winning percentage of 79.5 or greater. Thus, we 

must solve the inequality 

 

100(415 )
79.5

535

100(415 )
79.5

535

x

x

x

x











 

 79.5(535 + x) ≤ 41500 + 100x 

 42532.5 + 79.5x ≤ 41500 + 100x 
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 1032.5 ≤ 20.5x 

 50.4 ≤ x 

 (In the above, we are allowed to multiply both sides 

of the inequality by 535 + x because we assume x 

(the number of wins in a row) is positive.) Thus she 

must win at least 50.4 times in a row to get her 

winning percentage to display as 80% Since she 

can’t win a fraction of a game, she must win at least 

51 games in a row. 

0.2 Graphing Calculators and 

Computer Algebra Systems 

1. (a) Intercepts: x = ±1, y = −1. Minimum occur at 

(0, −1). No asymptotes. 

  

 (b) Intercepts: y = 8 (No x-intercepts). Minimum 

at (−1, 7). No asymptotes. 

  

2. (a) Intercepts: 3 1.73x    , y = 3. Maximum 

at (0, 3). No asymptotes. 

  

 (b) Intercepts: x ≈ 0.566, 19.434, y = −11. 

Maximum at (10, 89). No asymptotes. 

  

3. (a) Intercepts: x = − 1, y = 1. No extrema or 

asymptotes. 

 

   

 (b) Intercepts: 

  x ≈ −4.066, −0.72 and 4.788, y = −14. Local 

minimum: Approximately at (2.58, −48.427).  

Local maximum: Approximately at (−2.58, 

20.4225). No asymptotes. 
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4. (a) Intercepts:  3 10 2.1544x   , y = 10. No 

extrema or asymptotes. 

  

 (b) Intercepts: x ≈ 0.0334, −5.494 and 5.46,  

y = −1. Local minimum: Approximately at 

(−3.16, −64.24). Local maximum: 

Approximately at (3.16, 62.245). No 

asymptotes. 

  

5. (a) Intercepts: x = ±1, y = −1. Minimum at (0, 

−1). No asymptotes. 

  

 (b) Intercepts: x ≈ 0.475, −1.395, y = −1. 

Minimum at (approximately) ( 31/ 2 , 

−2.191). No asymptotes. 

  

6. (a) Intercepts: 4 2x   , y = 2. Maximum at  

(0, 2). No asymptotes. 

  

 (b) Intercepts: x ≈ ±2.33, and ±0.74, y = 3. Local 

maximum at (0, 3). Minima at ( 3 , −6). 

No asymptotes. 
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7. (a) Intercepts: x ≈ −1.149, y = 2. No extrema or 

asymptotes 

  

 (b) Intercepts: x ≈ 0.050, y = −1. The two local 

maxima occur at 
24 176

10
x


  and 

24 176

10
x


  , while the two local 

minima occur at 
24 176

10
x


  and 

24 176

10
x


  . No asymptotes.  

  

8. (a) Intercepts: 5 12x  , y = 12. No extrema or 

asymptotes 

  

 (b) Intercepts: x ≈ −4.56, y = 1. Local maximum 

at approximately (−3.67, 143.42). Local 

Minimum at approximately (−0.33, 0.98), No 

asymptotes. 

  

  Close up of the behavior near the origin: 

  

9. (a) Intercepts: y = −3 (no x-intercepts). No 

extrema. Horizontal asymptote y = 0. Vertical 

asymptote x = 1. 
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 (b) Intercepts y = 0 (and x = 0). No extrema. 

Horizontal asymptote y = 3. Vertical 

asymptote x = 1. 

  

 (c) Intercepts y = 0 (and x = 0). Local maximum 

at (0, 0). Local minimum at (2, 12).Vertical 

asymptote x = 1. Slant asymptote y = 3x + 3. 

  

10. (a) No x-intercept. y-intercept at y = 2. No 

extrema. Horizontal asymptote y = 0. Vertical 

asymptote x = −2. 

  

 (b) Intercepts x = 0, y = 0. No extrema. 

Horizontal asymptote y = 4. Vertical 

asymptote x = −2. 

  

 (c) Intercepts x = 0, y = 0. Local maximum at 

(−4, −32). Local minimum at (0, 0). Vertical 

asymptote x = −2. Slant asymptote y = 4x − 

8. 

  

11. (a) Intercepts are 1
2

y    (No x-intercepts). 

Local maximum: At (0, 1
2

 ). Horizontal 

asymptote: y = 0. Vertical asymptotes: x = ±2 

  

 (b) Intercepts: x = 0, y = 0. No extrema. Vertical 

asymptotes:x = ±2. No horizontal 

asymptotes. 
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 (c) Intercepts: x = 0, y = 0. Local maximum: At 

(0, 0). Vertical asymptotes: x = ±2. 

Horizontal asymptotes: y = 2 

  

12. (a)  No intercepts. 

  Local maximum: At (0, 
2

3
 ). Vertical 

asymptotes: At x = ±3. Horizontal asymptote: 

y = 0 

  

 (b) Intercepts: x = 0, y = 0. No extrema. Vertical 

asymptotes: x = ±3. No horizontal 

asymptotes. 

  

 (c) Intercepts: x = 0, y = 0. Local maximum: At 

(0, 0). Vertical asymptotes: x = ±3. 

Horizontal asymptote: y = 6 

  

13. (a) Intercepts: 
3

4
y  (no x-intercepts). 

Maximum at (0, 
3

4
). Horizontal asymptote y 

= 0. 

  

 (b) No x-intercept. y-intercept at 
2

3
y  . 

Maximum at (0, 
2

3
). Horizontal asymptote y 

= 0. 
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14. (a) Intercepts: x = −2, 
1

3
y   . No extrema. 

Horizontal asymptotes at y = 0. Vertical 

asymptotes at x = −3 and x = 2. 

  

 (b) Intercepts at x = 1, 1
3

y   . Local maximum 

at approximately (3.83, 0.09). Local 

minimum at approximately (−1.83, 2.91). 

Horizontal asymptote y = 0. Vertical 

asymptotes x = −3 and x = −1. 

  

15. (a) Intercepts: x = 0, y = 0. No extrema. 

Horizontal asymptotes: x = ±3. No vertical 

asymptotes. 

  

 (b) No extrema or intercepts. Vertical 

asymptotes: x = ±2. Horizontal asymptotes:  

y = ±3  

   

16. (a) Intercepts: x = 0, y = 0. No extrema. 

Horizontal asymptotes: y = ±2. No vertical 

asymptotes. 

  

 (b) No intercepts or extrema. Vertical 

asymptotes: x = ±1. Horizontal asymptotes: y 

= ±2 
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17. Vertical asymptotes where 

 x2 − 4 = 0 ⇒ x = ±2. 

18. Vertical asymptotes where 

 x2 − 9 = 0 ⇒ x = ±3. 

19. Vertical asymptotes where 

 x2 + 3x − 10 = 0 

 ⇒ (x + 5)(x − 2) = 0 

 ⇒ x = −5 or x = 2 

20. Vertical asymptotes where 

 x2 − 2x − 15 = (x − 5)(x + 3) = 0 

 ⇒ x = −3 or x = 5 

21. Vertical asymptotes where 

 x3 + 3x2 + 2x = 0 

 ⇒ x(x2 + 3x + 2) = 0 

 ⇒ x(x + 2)(x + 1) = 0 

 ⇒ x = 0, −2 or x = −1 

 Since none of these x values make the numerator 

zero, they are all vertical asymptotes. 

22. Vertical asymptotes where 

 x2 − 9 = 0 ⇒ x = ±3. 

23. A window with −0.1 ≤ x ≤ 0.1 and −0.0001 ≤ y ≤ 

0.0001 shows all details. 

 

24. A window with −4 ≤ x ≤ 12 and −1600 ≤ y ≤ 2000 

shows all details. 

 

25. A window with −15 ≤ x ≤ 15 and −80 ≤ y ≤ 80 

shows all details. 

 

26. A window with −3 ≤ x ≤ 4 and −80 ≤ y ≤ 30 shows 

all details. 
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27. A window with −10 ≤ x ≤ 10 and −5 ≤ y ≤ 2 shows 

all details. 

 

28. A window with −10 ≤ x ≤ 10 and −11 ≤ y ≤ 2 shows 

all details. 

 

29. Graph of 2( 1) ( 1)y x x    : 

 

 The blow-up makes it appear that there are two 

intersection points. Solving algebraically, 
21 1x x    (for x ≥ 1) when 

 x − 1 = (x2 − 1)2 = ((x − 1)(x + 1))2 

  = (x − 1)2(x + 1)2 

 We see that x = 1 is one solution (obvious from the 

start), while for any other, we can cancel one factor 

of x − 1 and find 

 1 = (x − 1)(x + 1)2 = (x2 − 1)(x + 1) 

  = x3 + x2 − x − 1 

 Hence x3 + x2 − x − 2 = 0. By solver or spreadsheet, 

this equation has only the one solution x ≈ 1.206. 

30. Graph of 2 2( 4) ( 2)y x x    : 

 

 Graph shows one intersection at x = 0. 

31. Graph of y = (x3 − 3x2) − (1 − 3x) : 

 

 The graph shows the only intersection near x = 1. 

Solving algebraically, 

 x3 − 3x2 = 1 − 3x 

 ⇒ x3 − 3x2 + 3x − 1 = 0 

 ⇒ (x − 1)3 = 0 

 ⇒ x = 1 

 So there is only one solution: x = 1. 

32. Graph of y = (x3 + 1) − (−3x2 − 3x) : 

 

 Graph shows only intersection near x = −1. 

Algebraically, x3 + 1 = −3x2 − 3x when x3 + 3x2 + 3x 

+ 1 = (x + 1)3 = 0 and the only solution is x = −1. 
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33. Graph of y = (x2 − 1)2 − (2x + 1)3 : 

 

 After zooming out, the graph shows that there are 

two solutions: one near zero, and one around ten. 

Algebraically, 

 (x2 − 1)2/3 = 2x + 1 

 ⇒ (x2 − 1)2 = (2x + 1)3 

 ⇒ x4 − 2x2 + 1 = 8x3 + 12x2 + 6x + 1 

 ⇒ x4 − 8x3 − 14x2 − 6x = 0 

 ⇒ x (x3 − 8x2 − 14x − 6) = 0 

 We thus confirm the obvious solution x = 0, and by 

solver or spreadsheet, find the second solution x ≈ 

9.534. 

34. Graph of y = (x + 1)2 − (2 − x)3 : 

 

 Graph shows one solution at approximately x = 0.62. 

35. Graph of y = cos x − (x2 − 1) : 

 

 The graph shows that there are two solutions: x ≈ 

±1.177 by calculator or spreadsheet 

36. Graph of y = sin x − (x2 + 1) : 

 

 Graph shows no intersections. 

37. Calculator shows zeros at approximately −1.879, 

0.347 and 1.532. 

38. Calculator shows zeros at approximately 3.87, 0.79 

and −0.66. 

39. Calculator shows zeros at approximately .5637 and 

3.0715. 

40. Calculator shows zeros at approximately 1 and 0.54. 

41. Calculator shows zeros at approximately −5.248 and 

10.006. 

42. Calculator shows zeros at approximately 2.02, − 

0.26, − 1.10 and −2.04. 

43. The graph of y = x2 on the window −10 ≤ x ≤ 10, 

−10 ≤ y ≤ 10 appears identical (except for labels) to 

the graph of y = 2(x − 1)2 + 3 if the latter is drawn on 

a graphing window centered at the point (1, 3) with 

1 5 2 1 5 2x    , −7 ≤ y ≤ 13. 

44. The graph of y = x4 is below the graph of y = x2 

when −1 ≤ x ≤ 1, and above it when x > 1. Both 

graphs have roughly the same upward parabola 

shape, but y = x4 is flatter at the bottom. 

45. 
2y  is the distance from (x, y) to the x-axis 

2 2( 2)x y   is the distance from (x, y) to the 

point (0, 2). If we require that these be the same, and 

we square both quantities, we have 

 y2 = x2 + (y − 2)2 

 y2 = x2 + y2 − 4y + 4 
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 4y = x2 + 4 

 21
1

4
y x   

 In this relation, we see that y is a quadratic function 

of x. The graph is commonly known as a parabola. 

46. The distance between (x, y) and the x-axis is 2y . 

The distance between (x, y)and (1,4) is 

2 2( 1) ( 4)x y   . Setting these equal and 

squaring both sides yields y2 = (x − 1)2 + (y − 4)2 

which simplifies to 21
8

( 1) 16y x    (a parabola). 

0.3 Inverse Fuctions 

1.  f(x) = x5 and g(x) = x1/5 

 f(g(x)) = f(x1/5) = (x1/5)5 = x 

 g(f(x)) = g(x5) = (x5)1/5 = x(5/5) = x 

2. f(x) = 4x3 and 

1/3
1

( )
4

g x x
 

  
 

 

 

3
1/3

1/3
3

1 1
( ( )) 4 4

4 4

1
( ( )) 4

4

f g x x x x

g f x x x

    
           

 
  
 

 

3. f(x) = 2x3 + 1 and 3
1

( )
2

x
g x


  

 

3

3

3

3
3 33

1
( ( )) 2 1

2

1
2 1

2

( ) 1
( ( ))

2

2 1 1

2

x
f g x

x
x

f x
g f x

x
x x

 
   

 

 
   

 




 
  

 

4.  
1

( )
2

f x
x




 and 
1 2

( )
x

g x
x


  

 
1 2 1 2 2

1 1
( ( ))

2x x x
x x x

f g x x
 

  
 

 

 
1

2

1
2

1 2( )
( ( )) x

x

g f x 




  

  
1

1 2 ( 2)
2

x
x

  
    

  
 

  = (x + 2) − 2 = x 

5. The function is one-to-one since f(x) = x3 is one-to-

one. To find the inverse function, write y = x3 − 2 

 y + 2 = x3 

 3 2y x   

 So 1 3( ) 2f x x    

 

6. The function is one-to-one with inverse 
1 3( ) 4f x x    

 

7. The graph of y = x5 is one-to-one and hence so is f(x) 

= x5 − 1. To find a formula for the inverse, write 

 y = x5 −1 

 y + 1 = x5 

 5 1y x   

 So 1 5( ) 1f x x    
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8. The function is one-to-one with inverse 
1 5( ) 4f x x   . 

  

9. The function is not one-to-one since it is an even 

function (f(−x) = f(x)). In particular, f(2) = 18 = 

f(−2). 

10. Not one-to-one. Fails horizontal line test. 

11. Here, the natural domain requires that the radicand 

(the object inside the radical) be nonnegative. Hence 

x ≥ −1 is required, while all function values are non 

negative. Therefore the inverse, if defined at all, will 

be defined only for nonnegative numbers. 

Sometimes one can determine the existence of an 

inverse in the process of trying to find its formula. 

This is an example: Write 

 3 1y x   

 y2 = x3 + 1 

 y2 − 1 = x3 

 
23 1y x   

 The left side is a formula for f−1(y), good for y ≥ 0. 

Therefore, 
31 2( ) 1f x x    whenever x ≥ 0. 

 

12. Not one-to-one. Fails horizontal line test. 

13. (a) Since f(0) = −1, we know f−1(−1) = 0 

 (b) Since f(1) = 4, we know f−1(4) = 1 

14. (a) Since f(0) = 1, we know f−1(1) = 0. 

 (b) Since f(2) = 13, we know f−1(13) = 2. 

15. (a) Since f(−1) = −5, we know f−1(−5) = −1. 

 (b) Since f(1) = 5, we know f−1(5) = 1. 

16. (a) Since f(2) = 38, we know f−1(38) = 2 

 (b) Since f(1) = 3, we know f−1(3) = 1. 

17. (a) Since f(2) = 4, we know f−1(4) = 2. 

 (b) Since f(0) = 2, we know f−1(2) = 0. 

18. (a) Since f(1) = 3, we know f−1(3) = 1 

 (b) Since f(0) = 1, we know f−1(1) = 0. 

19. Reflect the graph across the line y = x. 
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20. Reflect the graph across the line y = x. 

 

21. Reflect the graph across the line y = x. 

 

22. Reflect the graph across the line y = x. 

 

23. The range of function f is the domain of its inverse. 

Therefore, if the range of f is all y > 0, then the 

domain of the f−1 is x > 0. 

24. If the graph of f includes (a, b), then b = f(a), which 

implies f−1(b) = a. Therefore, the graph of f−1 

includes (b, a). 

25. If the line y = 3 does not intersect the graph of f, 

there is no x such that f(x) = 3. Hence f−1 is not 

defined at x = 3. 

26. The range of function f−1 is the domain of the 

function f. Therefore, if the domain of f is all real 

numbers, the range of f−1 is all real numbers. 

27. If f(x) = x3 − 5, then the horizontal line test is passed, 

so f(x) is one-to-one. 

 

28. Not one-to-one. Fails horizontal line test. 

29. The function f(x) = x3 + 2x − 1 easily passes the 

horizontal line test and is invertible. 

 

30. Not one-to-one. Fails horizontal line test. 

31. Not one-to-one. Fails horizontal line test. 

32. The function f(x) = x5 + 4x3 − 2 is one-to-one. The 

graph of the inverse is 
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33. If 
1

( )
1

f x
x




, then the horizontal line test is 

passed, so f(x) is one-to-one. 

 

34. Not one-to-one. Fails horizontal line test. 

35. If ( )
4

x
f x

x



, then the horizontal line test is 

passed, so f(x) is one-to-one. 

 

36. The function 
2

( )
4

x
f x

x



 is one-to-one. The 

graph of the inverse is 

 

37. 2 2( ( )) ( ( )) ( )f g x g x x x    

 2( ( )) ( ) | |g f x f x x x    

 Because x ≥ 0, the absolute value is the same as x. 

Thus these functions (both defined only when x ≥ 0) 

are inverses. 

 

38. f(x) = x2 − 1(x ≥ 0) and ( ) 1( 1)g x x x    . 

2( ( )) ( 1) 1f g x x x     and 

2( ( )) ( 1) 1g f x x x     (because x ≥ 0), 

therefore f and g are inverse functions. 

 

39. With f(x) = x2 defined only for x ≤ 0, (shown below 

as the upper left graph) the horizontal line test is 

easily passed. The formula for the inverse function g 

is ( ) g x x   shown below as the lower right 

graph and defined only for x ≥ 0. 
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40. The inverse function is 1( ) 2f x x    . 

 

41. The graph of y = (x − 2)2 is a simple parabola with 

vertex at (2, 0). If we take only the right half {x ≥ 2} 

(shown below as the lower right graph) the 

horizontal line test is easily passed, and the formula 

for the inverse function g is ( )  2 g x x   

defined only for x ≥ 0 and shown below as the upper 

left graph. 

 

42. f(x) = (x + 1)4 is one-to-one for x ≥ −1. The inverse 

is f−1(x) = x1/4 − 1 for x ≥ 0. 

 

43. In the first place, for f(x) to be defined, the radicand 

must be nonnegative, i.e., 0 ≤ x2 − 2x = x(x − 2) 

which entails either x ≤ 0 or x ≥ 2. One can restrict 

the domain to either of these intervals and have an 

invertible function. Taking the latter for 

convenience, the inverse will be found as follows: 

 2 2y x x   

 y2 = x2 − 2x = (x − 1)2 − 1 

 y2 + 1 = (x − 1)2 

 2 1 ( 1)y x     

 With x ≥ 2 and the left side nonnegative, we must 

choose the plus sign. We can then write 

21 1x y   . The right side is now a formula for 

f−1(y) seemingly good for any y, but we recall from 

the original formula (as a radical) that y must be 

nonnegative. We summarize the conclusion: 

1 2( ) 1 1, ( 0)f x x x      

 This is the upper graph below. The lower graph is 

the original 2( ) 2f x x x  . Had we chosen {x ≤ 

0}, the “other half of the domain”, and called the 

new function h, (same formula as f but a different 

domain, not shown) we would have come by 

choosing the minus sign, to the formula 

  1 2( ) 1 1, ( 0).h x x x      

 The two inverse formulae, if graphed together, fill 

out the right half of the hyperbola −x2 + (y − 1)2 = 1 

 

44. 
2 4

x
y

x



 is one-to-one for x > 2. To solve for x, 

clear the denominator and use the quadratic formula 

yx2 − x − 4y = 0 so 

21 1 16

2

y
x

y

 
 . Since x > 2, 

we use the plus sign. Switch x and y to get 

1
21 1 16

( )
2

f
x

x
x

  
  for x > 0. 
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45. The function sin(x) (solid below) is increasing and 

one-to-one on the interval 
2 2

x    . One does 

not “find” the inverse in the sense of solving the 

equation y = sin(x) and obtaining a formula. It is 

done only in theory or as a graph. The name of the 

inverse is the “arcsin” function (y = arcsin(x) shown 

dotted), and some of its properties are developed in 

the next section. 

 

46. f(x) = cos x(solid graph) is one-to-one for 0 ≤ x ≤ π. 

The inverse is cos−1x(dotted graph) for −1 ≤ x ≤ 1 

 

47. A company’s income is not in fact a function of 

time, but a function of a time interval (income is 

defined as the change in net worth). When income is 

viewed as a function of time, it is usually after 

picking a fixed time interval (week, month, quarter, 

or year) and assigning the income for the period in a 

consistent manner to either the beginning or the 

ending date as in “...income for the quarter 

beginning...”. This much said, income more often 

than not rises and falls over time, so the function is 

unlikely to be one-to-one. In short, income functions 

usually do not have inverses. 

48. Height of a person over time is not one-to-one since 

it stays fairly constant. 

49. During an interval of free fall following a drop, the 

height is decreasing with time and (barring a 

powerful updraft, as with hail) an inverse exists. 

After impact, if there is a bounce then some of the 

heights are repeated and the function is no longer 

one-to-one on the expanded time interval. 

50. Height of a ball thrown upward will be one-to-one 

until it reaches its apex, so on this domain it has an 

inverse. 

51. Two three-dimensional shapes with congruent 

profiles will cast identical shadows if the congruent 

profiles face the light source. Such objects need not 

be fully identical in shape. (For an example, think of 

a sphere and a hemisphere with the flat side of the 

latter facing the light). The shadow as a function of 

shape is not one-to-one and does not have an 

inverse. 

52. The number of calories burned increases as running 

speed increases. This is likely one-to-one and will 

have an inverse. 

53. The usual meaning of a “ten percent cut in salary” is 

that the new salary is 90% of the old. Thus after a 

ten percent raise the salary is 1.1 times the original, 

and after a subsequent ten percent cut, the salary is 

90% of the raised salary, or.9 times 1.1 times the 

original salary. The combined effect is 99% of the 

original, and therefore the ten percent raise and the 

ten percent cut are not inverse operations. The 10%-

raise function is y = f(x) = (1.1) x, and the inverse 

relation is x = y/1.1 = (0.90909...) y. Thus f−1(x) = 

(0.90909) x and in the language of cuts, this is a pay 

cut of fractional value 1 − 0.90909... = 0.090909... 

or 9.0909...percent. 

54. (a) If x is the original salary of the employee, 

then the new salary is y = f(x) = 1.06x + 500. 

The inverse relation is 
500

1.06

y
x


 . 

Therefore, 1 500
( )

1.06

x
f x 

 . 



0.4. TRIGONOMETRIC AND INVERSE TRIGONOMETRIC FUNCTIONS 21 

 (b) If x is the original salary of the employee, 

then the new salary is y = f(x) = 1.06(x + 

500). The inverse relation is 
530

1.06

y
x


 . 

Therefore, 1 530
( )

1.06

x
f x 

 . 

0.4 Trigonometric and Inverse 

Trigonometric Functions 

1. (a) 
o

o180
45

4





  
     

 

 (b) 
o

o180
60

3





  
     

 

 (c) 
o

o180
30

6





  
     

 

 (d) 
o

o4 180
240

3





  
     

 

2. (a) 
o

o3 180
108

5





  
     

 

 (b) 
o

o180
25.71

7





  
     

 

 (c) 
o180

2 114.59



 

  
 

 

 (d) 
o

o180
3 171.89



 
  

 
 

3. (a) 
o

o
(180 )

180




 
 

 
 

 (b) 
o

o

3
(270 )

2180

  
 

 
 

 (c) 
o

o

2
(120 )

3180

  
 

 
 

 (d) 
o

o
(30 )

6180

  
 

 
 

4. (a) o

o

2
40

9180

 
  

 (b) o

o

4
80

9180

 
  

 (c) 0

o

5
450

2180

 
  

 (d) 0

o

13
390

6180

 
  

5. 2 cos(x) − 1 = 0 when cos(x) = 1/2. This occurs 

whenever 
3

2x k    or 
3

2x k     for any 

integer k. 

6. 2 sin x + 1 = 0 when 1
2

sin x   . This occurs 

whenever 
6

2x k     or 5
6

2x k     for any 

integer k. 

7. 2 cos( ) 1 0x    when cos( ) 1/ 2x  . This occurs 

whenever 
4

2x k    or 
4

2x k     for any 

integer k. 

8. 2sin 3 0x   when 3

2
sin x  . This occurs 

whenever 
3

2x k    or 2
3

2x k    for any 

integer k. 

9. sin2 x − 4 sin x + 3 = (sin x − 1)(sin x − 3) when sin x 

= 1(sin x ≠ 3 for any x). This occurs whenever 

2
2x k    for any integer k. 

10. sin2 x − 2 sin x − 3 = (sin x − 3)(sin x + 1) when sin x 

= −1(sin x ≠ 3 for any x). sin x = −1 whenever 
3
2

2x k    for any integer k. 

11. sin2x + cos x − 1 = (1 − cos2x) + cosx − 1 

  = (cos x) (cos x − 1) = 0 

 when cos x = 0 or cos x = 1. This occurs whenever 

2
x k    or x = 2kπ for any integer k. 

12. Use the sine double angle formula to get 2 sin x cos 

x − cos x = (2 sin x − 1) cos x = 0 then (2 sin x − 1) = 

0 whenever 
6

2x k    or 5
6

2x k    and cos x 

= 0 whenever 
2

x k    for any integer k. 

13. cos2 x + cos x = (cos x)(cos x + 1) = 0 when cos x = 0 

or cos x = −1 this occurs whenever 
2

x k    or x 

= π + 2kπ for any integer k. 
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14. sin2 x − sin x = sin x(sin x − 1) = 0 whenever x = kπ 

or 
2

2x k    for any integer k. 

15. The graph of f(x) = sin 2x. 

 

16. The graph of f(x) = cos 3x. 

 

17. The graph of f(x) = tan 2x. 

 

18. The graph of f(x) = sec 3x. 

 

19. The graph of f(x) = 3 cos(x − π/2). 

 

20. The graph of f(x) = 4 cos(x + π). 

 

21. The graph of f(x) = sin 2x − 2 cos 2x. 

 

22. The graph of f(x) = cos 3x − sin 3x. 
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23. The graph of f(x) = sin x sin 12x. 

 

24. The graph of f(x) = sin x cos 12x. 

 

25. Amplitude is 3, period is 2
2
  , frequency is 1


. 

26. Amplitude is 2, period is 2
3
 , frequency is 3

2
. 

27. Amplitude is 5, period is 2
3
 , frequency is 3

2
. 

28. Amplitude is 3, period is 2
5
 , frequency is 5

2
. 

29. Amplitude is 3, period is 2
2
  , frequency is 1


. 

We are completely ignoring the presence of −π/2. 

This has an influence on the so-called “phase shift” 

which will be studied in Chapter 6. 

30. Amplitude is 4, period is 2
3
 , frequency is 3

2
. 

31. Amplitude is 4 (the graph oscillates between −4 and 

4, so we may ignore the minus sign), period is 2π, 

frequency is 1
2

. 

32. Amplitude is 2, period is 2
3
 , frequency is 3

2
. 

33. sin(α − β) = sin(α + (−β)) 

  = sin α cos(−β) + sin(−β) cos α 

  = sin α cos β − sin β cos α 

34. cos(α − β) = cos(α + (−β)) 

  = cos α cos(−β) − sin α sin(−β) 

  = cos α cos β + sin α sin β 

35. (a) cos(2θ) = cos(θ + θ) 

  = cos(θ) cos(θ) − sin(θ) sin(θ) 

  = cos2θ − sin2θ 

  = cos2θ − (1 − cos2θ) 

  = 2cos2θ − 1 

 (b) Just continue on, writing 

  cos(2θ) = 2cos2θ − 1 

  = 2(1 − sin2θ) − 1 

  = 1 − 2sin2θ 

36. (a) Divide sin2θ + cos2θ = 1 by cos2θ to get 
2

2 2

sin 1
1

cos cos



 
   or tan2θ + 1 = sec2θ. 

 (b) Dividing sin2θ + cos2θ = 1 by sin2θ yields 

cot2θ + 1 = csc2θ 

37. 
1cos (0)

2 2

 
     

 Any arbitrary point on the unit circle is (cos θ, sin 

θ), therefore the ordered pair on the circle is (0, 1). 

38. tan−1(0) = 0 ⇒ θ = 0 

 The ordered pair on the circle is (1, 0). 

39. 1

2 2
sin ( 1)          

 The ordered pair on the circle is (0, −1). 

40. cos−1(1) = 0 ⇒ θ = 0 

 The ordered pair on the circle is (1, 0). 

41. sec−1(1) = 0 ⇒ θ = 0 

 The ordered pair on the circle is (1, 0). 

42. 
1

4 4
tan ( 1)          

 The ordered pair on the circle is  1 1

2 2
, . 

43. 1sec (2)
3 3

 
     

 The ordered pair on the circle is  31
2 2

, . 
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44. 1csc (2)
6 6

 
     

 The ordered pair on the circle is  3 1
2 2

, . 

45. 1cot (1)
4 4

 
     

 The ordered pair on the circle is  1 1

2 2
, . 

46. 1tan ( 3)
3 3

 
     

 The ordered pair on the circle is  31
2 2

, . 

47. Use the formula 

 cos(x + β) = cos x cos β − sin β sin x. Now we see 

that cos β must equal 4/5 and sin β must equal 3/5. 

Since (4/5)2 + (3/5)2 = 1, this is possible. We see that 

β = sin−1(3/5) ≈ 0.6435 radians, or 36.87°. 

48. Use the formula 

 sin(x + β) = sin x cos β + sin β cos x. Now we see 

that cos β must equal 2 / 5  and sin β must equal 

1/ 5 . Since 2 2(2 / 5) (1/ 5) 1  , this is 

possible. We see that 1sin (2 / 5) 0.4636    

radians, or 26.57°. 

49. cos(2x) has period 
2

2


  and sin(πx) has period 

2
2




 . There are no common integer multiples of 

the periods, so the function f(x) = cos(2x) + 3 sin(πx) 

is not periodic. 

50. sin x has period 2π and cos 2x  has period 2 . 

There are no common integer multiples of the 

periods, so the function ( ) sin cos 2f x x x   is 

not periodic. 

51. sin(2x) has period 
2

2


  and cos(5x) has period 

2

5


. The smallest integer multiple of both of these 

is the fundamental period, and it is 2π. 

52. cos 3x has period 
2

3


 and sin 7x has period 

2

7


. 

The smallest integer multiple of both of these is the 

fundamental period, and it is 2π. 

53. 

2
2 2 1 1 8

cos 1 sin 1 1
3 9 9

 
 

       
 

 Because θ 

s in the first quadrant, its cosine is non-negative. 

Hence 
8 2 2

cos 0.9428
9 3

    . 

54. First quadrant, 3-4-5 right triangle, so 
3

sin
5

  . 

55. Second quadrant, 1- 3-2  right triangle, so 

3
cos

2
   . 

56. Second quadrant, 1- 3-2  right triangle, so 

1
tan

3
   . 

57. Assume 0 < x < 1 and give the temporary name θ to 

sin−1(x). In a right triangle with hypotenuse 1 and 

one leg of length x, the angle θ will show up 

opposite the x-side, and the adjacent side will have 

length 21 x  Write cos(sin−1(x)) = cos(θ) 

 

2
21

1
1

x
x


    

 The formula is numerically correct it he cases x = 0 

and x = 1, and both sides are even functions of x, i.e. 

f(−x) = f(x) so the formula is good for −1 ≤ x ≤ 1. 

58. tan−1x relates to a triangle in the first or fourth 

quadrant with opposite side x, adjacent side 1, and 

hypotenuse 2 1x  . Therefore, 

1

2

1
cos (tan )

1
x

x

 


. This is valid for all x. 

59. Assume 1 < x and give the temporary name θ to 

sec−1(x). In a right triangle with hypotenuse x and 

one leg of length 1, the angle θ will show up 

adjacent to the side of length 1, and the opposite side 

will have length 2 1x  . Write 

 tan(sec−1(x)) = tan(θ) 
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2

21
1

1

x
x


    

 The formula is numerically correct in the case x ≥ 1. 

Dealing with negative x is trickier: assume x > 1 for 

the moment. The key identity is sec−1(−x) = π − 

sec−1(x). Taking tangents on both sides and applying 

the identity 

 
tan ( ) tan ( )

tan ( )
1 tan ( ) tan ( )

a b
a b

a b


 


 

 with a = π, tan(a) = 0, b = sec−1x, we find 

 

1
1

2 2

0 tan (sec )
tan (sec )

1 0

1 ( ) 1

x
x

x x


 




     

 

 In this identity, −x (on both sides) plays the role of 

an arbitrary number < −1. Consequently, the final 

formula is 1 2tan (sec ) 1x x     whenever x ≤ 

−1. 

60. cos−1x relates to a triangle in the first or second 

quadrant with adjacent side x, hypotenuse 1, and 

opposite side 21 x . Therefore 

1

2
cot (cos )

1

x
x

x

 


 is valid for −1 ≤ x ≤ 1. 

61. One can use the formula 1 2sin(cos ) 1x x    

derived in the text: 

 

2
1 1 1 3

sin cos 1
2 2 2

    
      

    
 

62. 
1 1

sin
2 6

  
 

 
 and 

3
cos

6 2

 
 

 
. 

63. 
1 3

5
cos ( )  relates to a triangle in the first quadrant 

with adjacent side 3 and hypotenuse 5, so the 

opposite side must be 4 and then 

1 3 4
tan cos

5 3

  
  

  
. 

64. 
1 2

sin
3

  
 
 

 relates to a triangle in the first quadrant 

with opposite side 2 and hypotenuse 3, so 

1 2 3
csc sin

3 2

  
  

  
. 

65. From graph the three solutions are 0, 1.109, and 

3.698. 

66. From graph the three solutions are 0 and ±2.28 

67. From graph the two solutions are ±1.455 

68. From graph the two solutions are 0 and 0.88 

Applications 

1. Let h be the height of the rocket. Then 

 tan 20 2 tan 20 0.73(kilometers)
2

h
h      

2. The person and the shadow form a right triangle 

similar to the triangle formed by the light-pole and 

the distance from the base of the pole to the tip of 

the shadow. If x represents the height of the pole, we 

have that 

 
6

4 2 2

x



 and therefore x = 18. 

3. Let h be the height of the steeple. Then 

 tan 50
80 20

h
 


 

 ⇒ h = 100 tan 50° ≈ 119.2 (meters). 

4. If the steeple is 20cm inside the building, the height 

is 100 tan 50° ≈ 119.18 meters. If the steeple is 

21cm inside the building, the height is 101 tan 50° ≈ 

120.37 meters. The difference is 1.19 meters. 

5. Using meters as the measuring standard, we find 

 
160 /100 3 3

tan tan
5 5

A A
x x x

  
     

 
 

 The graph of y = A(x) (of course, one has to choose 

an appropriate range to make this a function): 

6. From the center of the hole to the left (or right) edge 

is 54 millimeters. Consider the right triangle formed 

by the golfer, the center of the hole and the left edge. 

The angle at the golfer is 
1 54

tan
x

  
 
 

. The margin of 

error is then twice that, or 
1 54

2 tanA
x

  
  

 
. 

7. Presumably, the given amplitude (170) is the same 

as the “peak voltage” (vp). Recalling an earlier 

discussion (#25 this section): the role of ω there is 
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played by 2πf here, the frequency in cycles per 

second (Hz) was ω/2π, which is now the f-parameter 

(2πf/2π). The period was 2π/ω (which is now 1/f), 

given in this case to be π/30 (seconds). So, 

apparently, the frequency is f = 30/π (cycles per 

second) and the meter voltage is 
170

120.2
2
  

8. Revolutions per minute measures frequency. The 

period is the reciprocal. The period of a 
1

33
3

 rpm 

record is 
3

100
 minutes per revolution. Similarly, the 

period of a 45 rpm record is 
1

45
 minutes per 

revolution. 

9. There seems to be a certain slowly increasing base 

for sales (110 + 2t), and given that the sine function 

has period 
2

12
/ 6




  months, the sine term 

apparently represents some sort of seasonally cyclic 

pattern. If we assume that travel peaks at 

Thanksgiving, the effect is that time zero would 

correspond to a time one quarter period (3 months) 

prior to Thanksgiving, or very late August. 

 The annual increase for the year beginning at time t 

is given by s(t + 12) − s(t) and automatically ignores 

both the seasonal factor and the basic 110, and 

indeed it is the constant 2 × 12 = 24 (in thousands of 

dollars per year and independent of the reference 

point t). 

10. The graph of sin 8t + sin 8t looks like 

 

 The graph of sin 8t + sin 8.1t looks like 

 

 The difference in frequency produces clearly audible 

beats (to the trained ear). 

0.5 Exponential and 

Logarithmic Functions 

1. 3

3

1 1
2

82

    

2. 2

2

1 1
4

164

    

3. 1/23 3  

4. 
52/5 2 56 6 36   

5. 
32/3 2 35 5 25   

6. 
2/3

33 33 2

1 1 1 1
4

16 8 2 2 24

    


 

7. 2

2

1
x

x

  

8. 
3 2 2/3x x  

9. 3

3

2
2x

x

  

10. 2

2

4
4x

x

  

11. 
1/2

1/2

1 1 1

22 2
x

x x

   

12. 3/2

3/23

3 3 3

222
x

xx

   
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13. 3/2 3 34 ( 4) 2 8    

14. 2/3 2 238 ( 8) 2 4    

15. 
1/2

8 8
4 2

2 2
    

16. 
2

2 2
18

(1/ 9)(1/ 3)
   

17. 2e−1/2 ≈ 1.213 

18. 4e−2/3 ≈ 2.05 

19. 
12

4.415
e
  

20. 
14

8.49
e
  

21. Both the graphs have same y-intercept. 

 

 Graph of f(x): Dotted line. 

 Graph of g(x): Solid line. 

22. For the graph f(x), y-intercept is 2 and for the graph 

g(x), y-intercept is 4. 

 

 Graph of f(x): Dotted line. 

 Graph of g(x): Solid line. 

23. For the graph  f(x), y-intercept is 3 and for the graph 

g(x), y-intercept is 2. 

 

 Graph of f(x): Dotted line. 

  Graph of g(x): Solid line. 

24. For both the graphs, y-intercept is 1. The graph of 
2xe approaches the x-axis faster than the graph of 
2

4

x

e


. 

 

 Graph of f(x): Dotted line. 

 Graph of g(x): Solid line. 

25. The graph f(x) is defined for positive values of x 

only and the graph g(x) is defined for all nonzero 

value of x. 

 

 Graph of f(x): Dotted line. 

 Graph of g(x): Solid line. 
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26. Both the graphs f(x) and g(x) are same. 

 

 Graph of f(x) : Dotted line. 

 Graph of g(x) : Solid line. 

27. e2x = 2 

 ⇒ ln e2x = ln 2 

 ⇒ 2x = ln 2 

 
ln 2

0.3466
2

x    

28. e4x = 3 

 ⇒ 4x = ln 3 

 
ln3

0.2747
4

x    

29. ex (x2 − 1) = 0 ⇒ x2 − 1 = 0(Since ex ≠ 0). Hence x = 

1 or x = −1. 

30. 2 2

2

2
2 0 0 2x x

x

x
xe e x

e

  
        

31. 4 ln x = −8 

 ⇒ ln x = −2 

 2

2

1
0.13533x e

e

     

32. x2 ln x − 9 ln x = 0 

 ⇒ (x2 − 9) ln x = 0 

 So either ln x = 0 or x2 − 9 = 0 

 ⇒ x = 1, x = ±3 

33. e2 ln x = 4 

 ⇒ 2 ln x = ln 4 

 ⇒ ln x2 = ln 4 

 ⇒ x2 = 4 

 ⇒ x = ±2 

 But in the original equation we had the expression e2 

ln x so x ≠ −2 and thus the only solution is x = 2. 

34. ln (e2x) = 6 ⇒ 2x = 6 ⇒ x = 3 

35. ex = 1 + 6e−x 

 ⇒ e2x − ex − 6 = 0 

 ⇒ (ex − 3) (ex + 2) = 0 

 ⇒ ex − 3 = 0 (Since ex + 2 ≠ 0) 

 ⇒ x = ln 3 

36. ln x + ln(x − 1) = ln 2 

 Taking the exponential of both sides we get 

 ⇒ x(x − 1) = 2 

 ⇒ x2 − x − 2 = 0 

 ⇒ (x − 2)(x + 1) = 0 

 ⇒ x = −1 or x = 2 

 But ln x is not defined for x = −1. Hence x = 2 is the 

only solution. 

37. (a) log39 = log3 (32) = 2 

 (b) log464 = log4 (43) = 3 

 (c) 3
3 3

1
log log (3 ) 3

27

    

38. (a) 2
4 4 42

1 1
log log log 4 2

16 4

     

 (b) 
1/2

4 4

1
log 2 log 4

2
   

 (c) 
1/2

9 9

1
log 3 log 9

2
   

39. (a) 3

ln 7
log 1.771

l
7

n 3
   

 (b) 4

ln 60
log 60 2.953

ln 4
   

 (c) 3

1 ln(1/ 24)
log 2.893

24 ln3
    

40. (a) 3

1 ln10
log 1.66

10 ln3
     

 (b) 4

ln3
log 3 0.79

ln 4
   
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 (c) 9

ln8
log 8 0.95

ln9
   

41. 3
4

ln3 ln 4 ln   

42. 
24 16

2ln 4 ln3 ln ln
3 3

    

43. 1 1
2 2

ln 4 ln 2 2ln 2 ln 2 0      

44. 
31 2

2 1/2
3ln 2 ln ln ln16    

45.  2 2

4 43 3 3
4 2 2

ln 4ln 2 ln ln 2 ln 2       

2ln(3 2 ) ln(12)   

46. 
2

9

3
ln9 2ln3 ln ln1 0     

47. f(0) = 2 ⇒ a ⇒ 2. 

 Then f(2) = 6 gives 2e2b = 6, so 2b = ln 3 and 

1
ln3

2
b  . So 

 1
2

/ 2ln 3 ln(3) / 2( ) 2 2 2 3
xx xf x e e    

 
 

48. f(0) = 3 ⇒ a = 3. 

 Then f(3) = 4 gives 3e3b = 4, so 4
3

3 lnb   and 

1 4
3 3

lnb  . So 
 1 1

2 2
ln

( ) 4
x

f x e . 

49. f(0) = 4 ⇒ a = 4. 

 Then f(2) = 2 gives 4e2b = 2, so 1
2

2 lnb   and 

1 1
2 2

lnb  . So 
 1 1

2 2
ln

( ) 4
x

f x e . 

50. f(0) = 5 ⇒ a = 5. 

 Then f(1) = 2 gives 5eb = 2, so and 2
5

lnb  . 

 So 
 2

5
ln

( ) 5
x

f x e . 

51. We know that cosh
2

x xe e
x


 . To show that cosh 

x ≥ 1 for all x is the same as showing that cosh x − 1 

≥ 0 for all x. So we ask when is the expression 

cosh 1 1
2

x xe e
x


    greater than or equal to 0? 

 We have: 

 1 0
2

x xe e
   if and only if 

 
2

0
2

x xe e 
  if and only if 

 ex + e−x − 2 ≥ 0 if and only if 

 ex + 1 − 2e−x ≥ 0 if and only if* 

 ex − 2e−x + 1 ≥ 0 if and only if 

 (ex − 1)2 ≥ 0 

 But (ex − 1)2 is always greater than or equal to 0 

since it is squared. It is actually equal to 0 at x = 

0(i.e., cosh 0 = 1), so the range of y = cosh x is y ≥ 1. 

 * In the * step (above), we have multiplied on both 

sides by ex, which we are allowed to do since ex > 0 

for all x. To show that the range of the hyperbolic 

sine is all real numbers, let a be any real number and 

solve the equation sinh(x) = a. Let u = ex. Then 

 

1

2

u
u

a


  if and only if 

 u2 − 1 = 2au if and only if 

 u2 − 2au − 1 = 0 if and only if 

 
2

22 4 4
1

2

a a
u a a

 
    . 

 We simplified and chose the positive square root 

because u > 0. Because we found a unique solution 

no matter what a we had started with, we have 

shown that the range of y = sinh x is the whole real 

line. 

52. cosh2x − sinh2x 

 

2 2

2 2 2 2

2 2

2 2 4
1

4 4 4

x x x x

x x x x

e e e e

e e e e

 

 

    
       
   

   
   

 

53. Since sinh−1(0) = 0, the equation is solved only by x2 

− 1 = 0, hence x = 1 or x = −1. 

54. cosh(3x + 2) = 0 has no solutions because cosh x ≥ 1 

for all x. 

Applications 

1. 

10
9

1 0.651
10

 
  
 

 

2. The percentage decreases by almost 1% 
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3. We take on faith, whatever it may mean, that 

 
1

lim 1

n

n
e

n

 
  

 
 

 Just to take a sample starting with n = 25, the 

numbers are 

 

25
26

25

 
 
 

, 

26
27

26

 
 
 

, 

27
28

27

 
 
 

 and so on. If we were to 

try taking a similar look at the numbers in 

1
lim 1

n

n n

 
 

 
, the numbers starting at n = 26 would 

be 

25
26

25

 
 
 

, 

26
27

26

 
 
 

, 

27
28

27

 
 
 

 and so on. 

 We could rewrite these as 

 

26 27 28
25 26 2725 26 2725 26 27

, ,
26 27 28

          
          
               

 

 Here, the numbers inside the square brackets are the 

reciprocals of the numbers in the original list, which 

were all pretty close to e. Therefore these must all be 

pretty close to 1/e. As to the external powers, they 

are all close to 1 and getting closer. This limit must 

be 1/e. The expression in question must approach 

1
1 0.632

e
  . 

4. If y = axm then ln y = ln(axm) = ln a + ln xm = ln a+m 

ln x. Direct substitutions show that v = mu + b, and 

this is the equation of a line. 

5.  

u = ln x .78846 .87547 .95551 

v = ln y 2.6755 2.8495 3.0096 

 

u = ln x 1.0296 1.0986 1.1632 

v = ln y 3.1579 3.2958 3.4249 

 

 

 
3.4249 2.6775

2
1.1632 .78846

m


 


. 

 Then we solve 2.6755 = 2 · (.78846) + b to find b ≈ 

1.099. Now b = ln a, so a = eb ≈ 3.001, and the 

function is y = 3.001x2. 

6.  

u = ln x 1.0296 1.0986 1.1632 

v = ln y 2.2375 2.3408 2.4380 

  

u = ln x 1.2238 1.2809 1.3350 

v = ln y 2.5289 2.6145 2.6953 

 

 

 
2.6953 2.2375 3

1.4990
1.3350 1.0296 2

m


  


. 

 Then we solve 3
2

2.6953 (1.3350) b   to find b = 

.6928. Now b = ln a, so  a = eb ≈ 1.9993 ≈ 2, and the 

function is y = 2x3/2. 

7. We compute u = ln x and v = ln y for x values in 

number of decades since 1960 and y values in 

millions. 

u = ln x 0 0.693 1.099 1.386 

v = ln y 3.29 3.54 3.76 4.03 

  

u = ln x 1.609 1.792 

v = ln y 4.22 4.40 

  

 This plot does not look linear, which makes it clear 

that the population is not modeled by a power of x. 

The discussion in the Chapter has already strongly 

indicated that an exponential model is fairly good. 
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8.  

x 2.2 2.4 2.6 

ln y 2.6755 2.8495 3.0096 

 

x 2.8 3.0 3.2 

ln y 3.1579 3.2958 3.4249 

 

 This plot is slightly bowed concave down. The log-

log plot looks more linear, and the function is 

modeled better by a power function. 

9. (a) 7 = − log[H+] ⇒ [H+] = 10−7 

 (b) [H+] = 10−8 

 (c) [H+] = 10−9 

  For each increase in pH of one, [H+] is 

reduced to one tenth of its previous value. 

10. If the pH = 2.5 = −log[H+], then [H+] = 10−2.5 ≈ 3.16 

× 10−3. If the pH = 7.5 = −log[H+], then [H+] = 10−7.5 

≈ 3.16 × 10−8. The concentration of hydrogen ions in 

blood is smaller by a factor of 105. 

11. (a) log E = 4.4 + 1.5(4) = 10.4 ⇒ E = 1010.4 

 (b) log E = 4.4 + 1.5(5) = 11.9 ⇒ E = 1011.9 

 (c) log E = 4.4 + 1.5(6) = 13.4 ⇒ E = 1013.4 

  For each increase in M of one, E is increased 

by a factor of 101.5 ≈ 31.6. 

12. (a) 
12

80 10log
10

I


 
  

 
 

  
12

8 log
10

I


 
   

 
 

  
8

12
10

10

I


 
   

 
 

   ⇒ I = 10810−12 = 10−4 

 (b) I = 10−3 

 (c) I = 10−2 

  For each increase in dB of ten, I increases by 

a factor of 10. 

13. From the graph, we see that it’s pretty close, and 

these numbers would be considered equal according 

to the level of accuracy reported in the original 

measurements. 

14. If y = −c(x − 96)(x + 96), the x intercepts are at x = 

±96 and are 192 meters apart as desired. The y 

intercept will be 192 provided that 
1

48
c  . The 

parabola is narrower than the hyperbolic cosine. 

15. f = f(x) = 220ex ln(2) 

  ln(2 )220 220 2
x xe    

16. From problem 15, the frequency as a function of the 

number of octaves above the A below middle C is 

f(x) = 220 · 2x. We have then 

1/41
( ) 220 2 261.6 Hz
4

f    . 

0.6 Transformations of 

Functions 

1. ( )( ) ( ( )) ( ) 1 3 1f g x f g x g x x       with 

domain {x|x ≥ 3}. 

 (g ○ f )(x) = g(f(x)) 

  
( ) 1

( 1) 3 2

f x

x x

 

    
 

 with domain {x|x ≥ 2}. 

2. ( ( )) 1 2f g x x    

 with doma {x|x ≥ −1}. 

 ( ( )) ( 2) 1 1g f x x x      

 with domain {x|x ≥ 1}. 

3. (f ○ g)(x) = f(ln x) = eln x = x 

 with domain {x|x > 0}. 

 (g ○ f )(x) = g(ex) = ln ex = x 

 with domain (−∞, ∞) or all real numbers. 
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4. ( ( )) 1 lnf g x x  . For the domain, we need (1 − 

ln x) ≥ 0, so 0 ≤ x ≤ e, but also the domain of ln x is 

x > 0 so the domain of f(g(x)) is {x | 0 < x ≤ e}. 

 ( ( )) ln 1g f x x   on {x|x < 1}. 

5. (f ○ g)(x) = f(sin x) = sin2 x + 1 with domain (−∞, ∞) 

or all real numbers. 

 (g ○ f )(x) = g(x2 + 1) = sin(x2 + 1) with domain (−∞, 

∞) or all real numbers. 

6. 
2 2

1
( ( ))

( 2) 1
f g x

x


 
 

  
4 2

2 2

1

4 3

1

( 3)( 1)

x x

x x


 


 

 

 This is valid if 3x    and x ≠ ±1. 

 

2

2

1
( ( )) 2

1
g f x

x

 
  

 
. This is valid if x ≠ ±1. 

7. 4 1 ( ( ))x f g x   when ( )f x x  and g(x) = x4 + 

1, for example. 

8. 3 3 ( ( ))x f g x   when 3( )f x x  and g(x)= x + 3, 

for example. 

9. 
2

1
( ( ))

1
f g x

x



 when f(x) = 1/x and g(x) = x2 + 1, 

for example. 

10. 
2

1
1 ( ( ))f g x

x
   when f(x) = x + 1 and g(x) = 1/x2, 

for example. 

11. (4x + 1)2 + 3 = f(g(x)) when f(x) = x2 + 3 and g(x) = 

4x + 1, for example. 

12. 4(x + 1)2 + 3 = f(g(x)) when f(x) = 4x2 + 3 and g(x) = 

x + 1, for example. 

13. sin3 x = f(g(x)) when f(x) = x3 and g(x) = sin x, for 

example. 

14. sin(x3) = f(g(x)) when f(x) = sin x and g(x) = x3, for 

example. 

15. 
2 1 ( ( ))xe f g x   when f(x) = ex and g(x) = x2 + 1, for 

example. 

16. e4x−2 = f(g(x)) when f(x) = ex and g(x) = 4x − 2, for 

example. 

17. 
3

( ( ( ))
sin 2

f g h x
x




 when f(x) = 3/x, 

( )g x x , and h(x) = sin x + 2, for example. 

18. 4 1 ( ( ( )))xe f g h x   when ( )f x x , g(x) = x + 

1, and h(x) = e4x, for example. 

19. cos3(4x − 2) = f(g(h(x))) when f(x) = x3, g(x) = cos x, 

and h(x) = 4x − 2, for example. 

20. 2ln 1 ( ( ( )))x f g h x   when f(x) = ln x, 

   g x x , and h(x) = x2 + 1, for example. 

21. 
2

4 5 ( ( ( )))xe f g h x   when f(x) = 4x − 5, g(x) = ex, 

and h(x) = x2, for example. 

22. [tan−1(3x + 1)]2 = f(g(h(x))) when f(x) = x2, g(x) = 

tan−1 x, and h(x) = 3x + 1, for example. 

23. Graph of f(x) − 3: 

 

24. Graph of f(x + 2): 
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25. Graph of f(x − 3): 

 

26. Graph of f(x) + 2: 

  

27. Graph of f(2x): 

 

28. Graph of 3f(x): 

 

29. Graph of −3f(x) + 2: 

 

30. Graph of 3f(x + 2): 

 

31. Graph of f(x − 4): 
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32. Graph of f(x + 3): 

 

33. Graph of f(2x): 

 

34. Graph of f(2x − 4): 

 

35. Graph of f(3x + 3): 

 

36. Graph of 3f(x): 

 

37. Graph of 2f(x) − 4: 

 

38. Graph of 3f(x) + 3: 

  

39. f(x) = x2 + 2x + 1 = (x + 1)2. 

 Shift y = x2 to the left 1 unit. 

40. f(x) = x2 − 4x + 4 = (x − 2)2. 

 This is the graph of x2 shifted 2 to the right. 

41. f(x) = x2 + 2x + 4 = (x2 + 2x + 1) + 4 − 1 

  = (x + 1)2 + 3 

 Shift y = x2 to the left 1 unit and up 3 units. 

42. f(x) = x2 − 4x + 2 = x2 − 4x + 4 − 2 

  = (x − 2)2 − 2 

 This is the graph of x2 shifted 2 to the right and 2 

down. 
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43. f(x) = 2x2 + 4x + 4 

  = 2(x2 + 2x + 1) + 4 − 2 

  = 2(x + 1)2 + 2 

 Shift y = x2 to the left 1 unit, then multiply the scale 

on the y-axis by 2, then shift up 2 units. 

44. f(x) = 3x2 − 6x + 2 = 3(x − 1)2 − 1. 

 This is the graph of x2 with the y-scale multiplied by 

3, shifted 1 to the right and 1 down. 

45. Graph is reflected across the x-axis and the scale on 

the y-axis is multiplied by 2. 

46. Graph is reflected across the x-axis, vertical scale 

tripled. 

47. Graph is reflected across the x-axis, the scale on the 

y-axis is multiplied by 3, and the graph is shifted up 

2 units. 

48. Graph is reflected across the x-axis, vertical scale 

doubled, and shifted down 1 unit. 

49. Graph is reflected across the y-axis. 

50. Graph is reflected across the y-axis and then 

reflected across the x-axis, i.e. graph is rotated by an 

angle 2π about the origin. 

51. (−x + 1)2 + 2(−x + 1) = (x − 1)2 − 2(x − 1). Therefore 

graph is shifted 1 unit to the right. 

52. Graph is reflected across the y-axis, horizontal scale 

tripled, and shifted down 3 units. 

53. The graph is reflected across the x-axis and the scale 

on the y-axis is multiplied by |c|. 

54. For c < 0, the graph of f(cx) is the mirror image 

across the y-axis of f(x) with the horizontal scale 

multiplied by 1/|c|. 

55. The graph of y = |x|3 is identical to that of y = x3 to 

the right of the y-axis because for x > 0 we have |x|3 

= x3. For y = |x|3 the graph to the left of the y-axis is 

the reflection through the y-axis of the graph to the 

right of the y-axis. In general to graph y = f(|x|) 

based on the graph of y = f(x), the procedure is to 

discard the part of the graph to the left of the y-axis, 

and replace it by a reflection in the y-axis of the part 

to the right of the y-axis. 

56. If f(x) = x3, then 

 f(−x) = (−x)3 = −x3 = −f(x). 

 If in general you have the right half of a graph 

satisfying f(−x) = −f(x), you can rotate 180° about 

the origin to see the left half. 

57. The rest of the first 10 iterates of f(x) = cos x with x0 

= 1 are: 

 x4 = cos .65 ≈ .796 

 x5 = cos .796 ≈ .70 

 x6 = cos .70 ≈ .765 

 x7 = cos .765 ≈ .721 

 x8 = cos .721 ≈ .751 

 x9 = cos .751 ≈ .731 

 x10 = cos .731 ≈ .744 

 Continuing in this fashion and retaining more 

decimal places, one finds that x36 through x40 are all 

0.739085. The same process is used with a different 

x0. 

58. We have x1 = f(x0) so x2 = f(x1) = f(f(x0)) and x3 = 

f(x2) = f(f(f(x0))) and so on. The graphs of cos x, cos 

cos x, cos cos cos x, and cos cos cos cos x: 

 

 The limiting line is y = 0.739085. 

59. They converge to 0. One of the problems in Chapter 

2 asks the student to prove that |sin(x)| < |x| for all 

but x = 0. This would show that 0 is the only 

solution to the equation sin(x) = x and offers a 

partial explanation (see the comments for #61) of the 

phenomena which the student observes.. 

60. If you start with a number x with |x| < 1, the 

iterations converge to 0. If you start with a number x 

with |x| > 1, the iterations diverge quickly. If you 

start with x = ±1, the iterations all equal 1. 

61. If the iterates of a function f (starting from some 

point x0) are going to go toward (and remain 

arbitrarily close to) a certain number L, this number 
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L must be a solution of the equation f(x) = x. For the 

list of iterates x0, x1, x2, x3,… is, apart from the first 

term, the same list as the list of numbers f(x0), f(x1), 

f(x2), f(x3),…. (Remember that xn+1 is f(xn).) If any of 

the numbers in the first list are close to L, then the f-

values (in the second list) are close to f(L). But since 

the lists are identical (apart from the first term x0 

which is not in the second list), it must be true that L 

and f(L) are the same number. 

 If conditions are right (and they are in the two cases 

f(x) = cos(x) (#57) and f(x) = sin(x) (#59), this 

“convergence” will indeed occur, and since there is 

in these cases only one solution x about 0.739085 in 

(#57) and x = 0 in (#59) it won’t matter where you 

started. 

62. The only fixed point is x = 0, since this is the only 

solution to sin x = x. One can see that this is the only 

solution by graphing y = sin x and y = x on the same 

axes and looking for intersection points. 

Ch. 0 Review Exercises 

1. 
7 3 4

2
0 2 2

m


   
 

 

2. 
4 1 3

1 3 2
m


  


 

3. These lines both have slope 3. They are parallel 

unless they are coincident. But the first line includes 

the point (0, 1) which does not satisfy the equation 

of the second line. The lines are not coincident. 

4. m1 = −1/m2, so the lines are perpendicular. 

5. Let P = (1, 2), Q = (2, 4), R = (0, 6). 

 Then PQ has slope 
4 2

2
2 1





 

 QR has slope 
6 4

1
0 2


 


 

 RP has slope 
2 6

4
1 0


 


 

 Since no two of these slopes are negative 

reciprocals, none of the angles are right angles. The 

triangle is not a right triangle. 

6. The slopes between points seem to be alternating 

between 950 and 1050. If the pattern continues, the 

next points will be (4, 6100), (5, 7050), and (6, 

8100). 

 

7. The line apparently goes through (1, 1) and (3, 2). If 

so the slope would be 2 1 1
3 1 2

m 


  . The equation 

would be 

 1
2

( 1) 1y x    or 1 1
2 2

y x  . 

 Using the equation with x = 4, we find 
51 1

2 2 2
(4)y    . 

8. f(0) = −4, f(2) = −6, and f(4) = 0. 

9. Using the point-slope method, we find 
1
3

( 1) 1y x     

10. 1 1
4 4

( 0) 2 2y x x      

11. The graph passes the vertical line test, so it is a 

function. 

12. Fails vertical line test: not a function. 

13. The radicand cannot be negative, hence we require 4 

− x2 ≥ 0 ⇒ 4 ≥ x2. Therefore the natural domain is 

{x| − 2 ≤ x ≤ 2} or, in “interval-language”: [−2, 2]. 

14. The function is not defined where the denominator is 

zero, so the domain for f(x) is { | 2}x x   . 

15. Intercepts at x = −4 and 2, and y = −8. Local 

minimum at x = −1. No asymptotes. 
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16. Intercepts at x ≈ 2.36, 0.17 and −2.53, and y = 1. 

Local maximum at 2x   . Local minimum at 

2x  . No asymptotes. 

 

17. Intercepts at x = −1 and 1, and y = 1. Local 

minimum at x = 1 and at x = −1. Local maximum at 

x = 0. No asymptotes. 

 

18. Intercepts at x ≈ 1.97, −0.82, and −1.89, and y = −1. 

Local maximums at x ≈ −1.52 and 0.29. Local 

minimums at x ≈ −0.29 and 1.52. No asymptotes. 

 

19. Intercept at y = 0 and at x = 0. No extrema. 

Horizontal asymptote y = 4. Vertical asymptote x = 

−2. 

 

20. Intercept at y = 1. No x-intercept since the function 

is undefined at x = 2. No extrema. Horizontal 

asymptote y = 0. Vertical asymptote x = −1. 

 

21. Intercept at y = 0 and 
3

kx   for integers k. 

Extrema: y takes maximum 1 and minimum −1 with 

great predictability and regularity. No asymptotes. 

 

22. Intercept at y = 0 and 
4

kx   for integers k. No 

extrema. Vertical asymptotes at 
(2 1)

8

k
x


  for 

integers k 

 

23. Intercept at y = 2 and from the amplitude/phase shift 

form 1( ) 5 sin ( sin (2/ 5))f x x   , we could 

write down all the intercepts only at considerable 

inconvenience. Extrema: y takes maximum 5  and 

minimum 5  with great predictability and 

regularity. No asymptotes. 
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24. Intercept y = 1. Local maximums at 
(2 1)

2

k
x


  for 

integers k. Local minimums at x = kπ for integers k. 

Vertical asymptotes at 
(2 1)

4

k
x


  for integers k. 

 

25. Intercept y = 4 (no x-intercepts). No extrema. Left 

horizontal asymptote y = 0. 

 

26. Intercept y = 3 (no x-intercepts). No extrema. 

Horizontal asymptote y = 0. 

 

27. Intercept x = 1/3 (no y-intercepts). No extrema. 

Vertical asymptote x = 0. 

 

28. No intercepts, extrema, or asymptotes. Function 

only defined for x > 0. 

 

29. Intercepts at x = −4 and 2, and y = −8. 

30. Intercepts y = 1, and x = ±1. 

31. Vertical asymptote x = −2. 

32. Vertical asymptote at x = −1. This is where the 

denominator is zero (and the numerator is not zero). 

Note that the function is not defined at x = 2. 

33. x2 − 3x − 10 = (x − 5)(x + 2). The zeros are when x = 

5 and x = −2. 

34. x3 + 4x2 + 3x = x(x + 3)(x + 1). Zeros are x = 0, −1 

and −3. 

35. Guess a root: x = 1. Factor the left side: (x − 1)(x2 − 

2x − 2). Solve the quadratic by formula: 

 

22 2 4(1)( 2)
1 3

2
x

  
   . 

 Complete list of three roots: x = 1, 

1 3 .732, 1 3 2.732x      . 

36. Zeros are at x ≈ 1.618, and −0.618. Exact values are 

(1 5) / 2x   . 
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37. There are 3 solutions, one at x = 0 and the other two 

negatives of one another. The value in question 

is.928632…, found using the function “Goal Seek” 

in Excel. The result can be checked, and a graphing 

calculator can find them by graphing y = x3 and y = 

sin x on the same axes and finding the intersection 

points. 

38. The graph shows two zeros. Squaring both sides 

gives x2 + 1 = x4 − 2x2 + 1, or 0 = x4 − 3x2. The 

solutions are 3x   . (x = 0 is an extraneous 

solution.) 

39. Let h be the height of the telephone pole. Then 
o o

50
tan34 50tan34 33.7 metersh h    . 

40. The triangle in the first quadrant with adjacent side 1 

and hypotenuse 5 has opposite side 24 , so 

24

5
sin  . 

41. (a) 1/2

1/2

1 1 5
5

55 5

     

 (b) 2

2

1 1
3

93

    

42. (a) 1/2

1/2

2 2
2x

x x

   

 (b) 2

2

3
3x

x

  

43. ln 8 − 2 ln 2 = ln 8 − ln 22 

 = ln 8 − ln 4 = 8
4

ln ( )  = ln 2 

44. eln 4x = 8 ⇒ 4x = 8 and x = 2. 

45. 3e2x = 8 ⇒ e2x = 8
3

 

 ⇒ ln e2x = 8
3

ln ( )  

 ⇒ 2x = 8
3

ln ( )  

 81
2 3

lnx   

46. 2 ln 3x = 5 ⇒ ln 3x = 5
2

 

 ⇒ e5/2 = 3x, so 
5/21

3
x e . 

47. The natural domain for f is the full real line. The 

natural domain for g is {x|1 ≤ x}. Because f has a 

universal domain, the natural domain for f ○ g is the 

same as the domain for g, namely {x|1 ≤ x}. Because 

g requires its inputs be not less than 1, the domain 

for g ○ f is the set of x for which 1 ≤ f(x), i.e., {x|1 ≤ 

x2} = {x|1 ≤ |x|}, or in interval language (−∞, −1] ∪ 

[1, ∞). 

 The formulae are easier: 

 ( )( ) ( 1)f g x f x   

  2( 1) 1x x     

 2 2( )( ) ( ) 1g f x g x x    

 Caution: the formula for f ○ g is defined for any x, 

but the domain for f ○ g is restricted as stated earlier. 

The formula must be viewed as irrelevant outside 

the domain. 

48.  2

2
1

1
( )( )

x
f g x


  and 

 
4

1

1
( )( )

x
g f x


  

 are both valid for x ≠ ±1. 

49. 
23 2 ( ( ))xe f g x   for f(x) = ex and g(x) = 3x2 + 2. 

50. sin 2 ( ( ))x f g x   for ( )f x x  and g(x) = sin 

x + 2. 

51. x2 − 4x + 1 = x2 − 4x + 4 − 4 + 1, so f(x) = (x − 2)2 − 

3. The graph of f(x) is the graph of x2 shifted two 

units to the right and three units down. 

52. x2 + 4x + 6 = (x2 + 4x + 4) + 2, so f(x) = (x + 2)2 + 2. 

The graph of f(x) is the graph of x2 shifted two units 

to the left and two units up. 

53. Like x3, the function f(x) = x3 − 1 passes the 

horizontal line test and is one-to-one. To find a 

formula for the inverse, solve for x to find (y + 1)1/3 

= x then switch x and y to get f−1(x) = (x + 1)1/3 for 

all x. 

54. e−4x is one-to-one, and its inverse is 1
4

ln x . 

55. The function is even (f(−x) = f(x)). Every horizontal 

line (except y = 0) which meets the curve at all 

automatically meets it at least twice. The function is 

not one-to-one. There is no inverse. 
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56. x3 − 2x + 1 is not one-to-one as it fails the horizontal 

line test. 

57. The inverse of x5 + 2x3 − 1: 

 

58. The inverse of x3 + 5x + 2: 

 

59. The inverse of 3 4x x : 

 

60. The inverse of 
3 2x xe 

: 

 

61. On the unit circle, y = sin θ = 1 when 
2
  . Hence, 

1

2
sin 1   . 

62. On the unit circle, x = cos θ = −1/2 when 

sin 3 / 2y     in the second or third quadrant. 

This coincides with a 30°-60°-90° or 
6 3 2

- -    

triangle, so 1 1
2

cos ( ) 2 / 3    or 

1 1
2

cos ( ) 4 / 3   . 

63. Since sin
cos

tan 


   we want y = cos θ to be equal to 

− x = −sin θ on the unit circle. This happens when θ 

= −π/4 and θ = 3π/4. Hence, 1

4
tan ( 1)      or 

1 3
4

tan ( 1)    . 

64. We have that 1 1 1
2

csc ( 2) sin ( )    . On the unit 

circle, y = sin θ = −1/2 when cos 3 / 2x     in 

the third or fourth quadrant. This coincides with a 

30°-60°-90° or 
6 3 2

- -    triangle, so 

1 1 1
2

csc ( 2) sin ( ) / 6       or csc−1(−2) = 7π/6. 

65. If an angle θ has sec(θ) = 2, then it has cos(θ) = 1/2. 

Its sine could be 3

2
 . But if θ = sec−1(2), then in 

addition to all that has been stated, it is in the first 

quadrant, and the choice of sign (for its sine) is 

positive. In summary, 1 3

2
sin(sec 2) sin   . 
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66. cos−1(4/5) relates to a triangle in quadrant 1 with 

adjacent side 4 and hypotenuse 5, so the opposite 

side must be 3, and the tangent of this angle is 3
4

. 

67.     1 1 23
4 2 4

sin sin sin     

68.   2

4 2
sin    .  1 2

2
cos   relates to a triangle in 

the second quadrant with angle 3
4
 . 

69. sin 2x = 1 ⇒ 

 
2

2 2x k    for any integer k so 

 
4

x k   for any integer k. 

70. 1
2

cos3x   whenever 

 
3

3 2x k     for any integer k, or 

 2
9 3

kx      for any integer k. 

 


