
1.1: PROBLEM DEFINITION

No solution provided because student answers will vary.

1.2: PROBLEM DEFINITION

No solution provided because student answers will vary..

1.3: PROBLEM DEFINITION

No solution provided because student answers will vary.

1.4: PROBLEM DEFINITION

Essay question. No solution provided; answers will vary.
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1.5: PROBLEM DEFINITION

Situation:
Many engineering students believe that fixing a washing machine is an example of
engineering because it involves solving a problem. Write a brief essay in which you
address the following questions: Is fixing a washing machine an example of engineer-
ing? Why or why not? How do your ideas align or misalign with the definition of
engineering given in §1.1?

SOLUTION

Answers will vary. A possible argument is that simply fixing a washing machine
is doing the work of a mechanic or electrician. Such work is engineering if new
innovation is applied to make the washing machine better for humankind than as
originally constructed.
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1.6: PROBLEM DEFINITION

No solution provided; answers will vary. Possible answers could be determined by
googling "material properties", which would yield answers such as thermal conduc-
tivity, electrical conductivity, tensile strength, etc. The next step would be to discuss
how each new material property was different for solids, liquids, and gases.
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1.7: PROBLEM DEFINITION

Situation:
Based on molecular mechanisms, explain why aluminum melts at 660 ◦C whereas ice
will melt at 0 ◦C.

SOLUTION

When a solid melts, sufficient energy must be added to overcome the strong intermole-
cular forces. The intermolecular forces within solid aluminum require more energy
to be overcome (to cause melting), than do the intermolecular forces in ice.
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1.8: PROBLEM DEFINITION

Situation:
The continuum assumption (select all that apply)
a. applies in a vacuum such as in outer space
b. assumes that fluids are infinitely divisible into smaller and smaller parts
c. is a bad assumption when the length scale of the problem or design is similar to
the spacing of the molecules
d. means that density can idealized as a continuous function of position
e. only applies to gases

SOLUTION

The correct answers are b, c, and d.

5



1.9: PROBLEM DEFINITION

Situation:
A fluid particle
a. is defined as one molecule
b. is small given the scale of the problem being considered
c. is so small that the continuum assumption does not apply

SOLUTION

The correct answer is b.
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1.10: PROBLEM DEFINITION

Find: List three common units for each variable:
a. Volume flow rate (Q), mass flow rate (ṁ), and pressure (p).
b. Force, energy, power.
c. Viscosity, surface tension.

PLAN

Use Table F.1 to find common units

SOLUTION

a. Volume flow rate, mass flow rate, and pressure.

• Volume flow rate, m3/ s, ft3/ s or cfs, cfm or ft3/m.

• Mass flow rate, kg/s, lbm/s, slug/s.

• Pressure, Pa, bar, psi or lbf/ in2.

b. Force, energy, power.

• Force, lbf, N, dyne.

• Energy, J, ft·lbf, Btu.

• Power, W, Btu/s, ft·lbf/s.

c. Viscosity.

• Viscosity, Pa·s, kg/(m·s), poise.
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1.11: PROBLEM DEFINITION

Situation: The hydrostatic equation has three common forms:

p1
γ
+ z1 =

p2
γ
+ z2 = constant

pz = p1 + γz1 = p2 + γz2 = constant

∆p = −γ∆z

Find: For each variable in these equations, list the name, symbol, and primary di-
mensions of each variable.

PLAN

Look up variables in Table A.6. Organize results using a table.

SOLUTION
Name Symbol Primary dimensions
pressure p M/LT 2

specific weight γ M/L2T 2

elevation z L
piezometric pressure pz M/LT 2

change in pressure ∆p M/LT 2

change in elevation ∆z L
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1.12: PROBLEM DEFINITION

Situation:
Five units are specified.

Find:
Primary dimensions for each given unit: kWh, poise, slug, cfm, cSt.

PLAN

1. Find each primary dimension by using Table F.1.
2. Organize results using a table.

SOLUTION
Unit Associated Dimension Associated Primary Dimensions
kWh Energy ML2/T 2

poise Viscosity M/ (L · T )
slug Mass M
cfm Volume Flow Rate L3/T
cSt Kinematic viscosity L2/T
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1.13: PROBLEM DEFINITION

Situation:
In the context of measurement, a dimension is:
a. a category for measurement
b. a standard of measurement for size or magnitude
c. an increment for measuring “how much”

SOLUTION

a. a category for measurement
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1.14: PROBLEM DEFINITION

Situation:
What is the approximate mass in units of slugs for
a. A 2-liter bottle of water?
b. A typical adult male?
c. A typical automobile?
a)

PLAN

Mass in slugs for: 2-L bottle of water

SOLUTION µ
2L
¶µ

1000 kg

m3

¶µ
1m3

1000L

¶µ
1 slug

14.59 kg

¶
= 0.137 slug

b)

PLAN

Answers will vary, but for 180-lb male:

SOLUTION

On earth 1 lbf weighs 1 lbm
To convert to slugs µ

180 lb
¶µ

1 slug

32.17 lb

¶
= 5.60 slug

c)

PLAN

Answers will vary, but for 3000-lb automobile:

SOLUTION

On earth 1 lbf weighs 1 lbm
To convert to slugs µ

3000 lb
¶µ

1 slug

32.17 lb

¶
= 93.3 slug
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1.15: PROBLEM DEFINITION

Situation:
In the list below, identify which parameters are dimensions and which paramenters
are units: slug, mass, kg, energy/time, meters, horsepower, pressure, and pascals.

SOLUTION

Dimensions: mass, energy/time, pressure
Units: slug, kg, meters, horsepower, pascals
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1.16: PROBLEM DEFINITION

Situation:
Of the 3 lists below, which sets of units are consistent? Select all that Apply.
a. pounds-mass, pounds-force, feet, and seconds.
b. slugs, pounds-force, feet, and seconds
c. kilograms, newtons, meters, and seconds.

SOLUTION

Answers (a) and (c) are correct.
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Problem 1.17

No solution provided, students are asked to describe the actions for each step of the
WWM in their own words.
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1.18: PROBLEM DEFINITION

Situation:
Which of these is a correct conversion ratio?

SOLUTION

Answers (a) and (b) are correct
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1.19: PROBLEM DEFINITION

Situation:
If the local atmospheric pressure is 93 kPa, use the grid method to find the pressure
in units of
a. psia
b. psf
c. bar
d. atmospheres
e. feet of water
f. inches of mercury

PLAN

Follow the process given in the text. Look up conversion ratios in Table F.1 (EFM
10e).
a)

SOLUTION µ
93 kPa

¶µ
1000Pa

1 kPa

¶µ
1.450× 10−4 psi

Pa

¶
93 kPa = 13.485 psia

b)

SOLUTION µ
93 kPa

¶µ
1000Pa

1 kPa

¶µ
1.450× 10−4 psi

Pa

¶µ
144 in2

1 ft2

¶
93 kPa = 1941.8 psf

c)

SOLUTION µ
93 kPa

¶µ
1000Pa

1 kPa

¶µ
1 bar

100000Pa

¶
93 kPa = 0.93bar

d)

SOLUTION
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µ
93 kPa

¶µ
1000Pa

1 kPa

¶µ
1.450× 10−4 psi

Pa

¶µ
1 atm

14.7 psi

¶
93 kPa = 0.917 atm

e)

SOLUTION µ
93 kPa

¶µ
1000Pa

1 kPa

¶µ
0.004019 in-H20

Pa

¶µ
1 ft

12 in

¶
93 kPa = 31.15 ft-H2O

f)

SOLUTION µ
93 kPa

¶µ
1000Pa

1 kPa

¶µ
1 in ·HG
3386.39Pa

¶
93 kPa = 27.46 in-HG
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1.20: PROBLEM DEFINITION

Apply the grid method.

Situation:
Density of ideal gas is given by:

ρ =
p

RT

p = 60 psi, R = 1716 ft · lbf/ slug · ◦R.
T = 180 ◦F = 640 ◦R.

Find:
Calculate density (in lbm/ft3).

PLAN

Use the definition of density.
Follow the process for the grid method given in the text.
Look up conversion formulas in Table F.1 (EFM 10e).

SOLUTION

(Note, cancellation of units not shown below, but student should show cancellations
on handworked problems.)

ρ =
p

RT

=

µ
60 lbf

in2

¶µ
12 in

ft

¶2µ
slug ·o R
1716 ft · lbf

¶µ
1.0

640 oR

¶µ
32.17 lbm
1.0 slug

¶
ρ = 0.253 lbm/ ft3
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1.21: PROBLEM DEFINITION

Apply the grid method.

Situation:
Wind is hitting a window of building.
∆p = ρV 2

2
.

ρ = 1.2 kg/m3, V = 60 mph.

Find:
a. Express the answer in pascals.
b. Express the answer in pounds force per square inch (psi).
c. Express the answer in inches of water column (inch H20).

PLAN

Follow the process for the grid method given in the text. Look up conversion ratios
in Table F.1.

SOLUTION

a)
Pascals.

∆p =
ρV 2

2

=
1

2

µ
1.2 kg

m3

¶µ
60 mph
1.0

¶2µ
1.0m/ s

2.237 mph

¶2µ
Pa · m · s2

kg

¶

∆p = 432Pa

b)
Pounds per square inch.

∆p = 432Pa

µ
1.450× 10−4 psi

Pa

¶
∆p = 0.062 6 psi

c)
Inches of water column

∆p = 432Pa

µ
0.004019 in-H20

Pa

¶
∆p = 1.74 in-H20
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1.22: PROBLEM DEFINITION

Apply the grid method.

Situation:
Force is given by F = ma.
a) m = 10 kg, a = 10m/ s2.
b) m = 10 lbm, a = 10 ft/ s2.
c) m = 10 slug, a = 10 ft/ s2.

Find:
Calculate force.

PLAN

Follow the process for the grid method given in the text. Look up conversion ratios
in Table F.1.

SOLUTION

a)
Force in newtons for m = 10kg and a = 10m/ s2.

F = ma

= (10 kg)
³
10
m

s2

´µ N · s2
kg · m

¶
F = 100N

b)
Force in lbf for m = 10 lbm and a = 10 ft/ s2.

F = ma

= (10 lbm)
µ
10
ft

s2

¶µ
lbf · s2

32.2 lbm · ft

¶
F = 3.11 lbf

c)
Force in newtons for m = 10 slug and acceleration is a = 10 ft/ s2.

F = ma

= (10 slug)

µ
10
ft

s2

¶µ
lbf · s2
slug · ft

¶µ
4.448N

lbf

¶
F = 445N
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1.23: PROBLEM DEFINITION

Apply the grid method.

Situation:
A cyclist is travelling along a road.
P = FV.
V = 24mi/h, F = 5 lbf.

Find:
a) Find power in watts.
b) Find the energy in food calories to ride for 1 hour.

PLAN

Follow the process for the grid method given in the text. Look up conversion ratios
in Table F.1.

SOLUTION

a)
Power

P = FV

= (5 lbf)

µ
4.448N

lbf

¶
(24 mph)

µ
1.0m/ s

2.237 mph

¶µ
W · s
N · m

¶
P = 239W

b)
Energy

∆E = P∆t

=

µ
239 J

s

¶
(1 h)

µ
3600 s

h

¶µ
1.0 calorie (nutritional)

4187 J

¶

∆E = 205 calories
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1.24: PROBLEM DEFINITION

Apply the grid method.

Situation:
A pump operates for one year.
P = 20hp.
The pump operates for 20 hours/day.
Electricity costs $0.10/kWh.

Find:
The cost (U.S. dollars) of operating the pump for one year.

PLAN

1. Find energy consumed using E = Pt, where P is power and t is time.
2. Find cost using C = E × ($0.1/kWh).

SOLUTION

1. Energy Consumed

E = Pt

= (20 hp)

µ
W

1.341× 10−3 hp

¶µ
20 h

d

¶µ
365 d

year

¶
= 1. 09× 108W · h

µ
kWh

1000W · h

¶
per year

E = 1.09× 105 kWh per year
2. Cost

C = E($0.1/kWh)

=
¡
1. 09× 105 kWh

¢µ$0.10
kWh

¶
C = $10, 900
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1.25: PROBLEM DEFINITION

Situation:
Start with the Ideal Gas Law and prove that
a. Boyle’s law is true.
b. Charles’ law is true.

PLAN

Start with Ideal Gas Law

pV = nRuT

SOLUTION

a) If temperature is held constant, then

pV = nRu × constant

for a given # of molecules of a given gas,

pV = constant

⇒ Boyle’s Law is True

b) Starting again with

pV = nRuT

If the pressure is held constant, for a given number of molecules (n), of a given gas,

V

T
= constant

⇒ Charles’ Law is True
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1.26: PROBLEM DEFINITION

Situation:
Calculate the number of moles in:
a) One cubic cm of water at room conditions
b) One cubic cm of air at room conditions

a)

PLAN

1. The density of water at room conditions is known (Table A.5 EFM10e), and the
volume is given, so:

m = ρV

2. From the Internet, water has a molar mass of 18 g/mol, use this to determine the
number of moles in this sample.
3. Avogadro’s number says that there are 6× 1023 molecules/mol

SOLUTION

1.
m = ρwaterV

Assume conditions are atmospheric with T = 20◦C and ρ = 998 kg
m3

mwater =

µ
998 kg

m3

¶µ
1m3

1003 cm3

¶¡
1 cm3

¢
= 0.001 kg

2. To determine the number of moles:

(0.0010 kg)

µ
1mol

18 g

¶µ
1000 g

1 kg

¶
= 0.055 mol

3. Using Avogadro’s number

(0.055mol)

µ
6× 1023 molecules

mol

¶
= 3.3×1022 molecules

b)

PLAN
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1. The density of air at room conditions is known (Table A.3 EFM10e), and the
volume is given, so:

m = ρV

2. From the Internet, dry air has a molar mass of 28.97 g/mol, use this to determine
the number of moles in this sample.
3. Avogadro’s number says that there are 6× 1023 molecules/mol

SOLUTION

1.
m = ρairV

Assume conditions are atmospheric with T = 20◦C and ρ = 1.20 kg
m3

mair =

µ
1.20 kg

m3

¶µ
1m3

1003 cm3

¶¡
1 cm3

¢
= 1.2×10−6 kg

2. To determine the number of moles:

¡
1.2× 10−6 kg

¢µ 1mol

28.97 g

¶µ
1000 g

1 kg

¶
= 4.14×10−5mol

3. Using Avogadro’s number

¡
4.14× 10−5mol

¢µ6× 1023 molecules
mol

¶
= 2.5×1019 molecules

REVIEW

There are more moles in one cm3of water than one cm3 of dry air. This makes sense,
because the molecules in a liquid are held together by weak inter-molecular bonding,
and in gases they are not; see Table 1.1 in Section 1.2 (EFM 10e).
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1.27: PROBLEM DEFINITION

Situation:
Start with the molar form of the Ideal Gas Law, and show the steps to prove that
the mass form is correct.

SOLUTION

The molar form is:

pV = nRuT

Where n = number of moles of gas, and the Universal Gas Constant = Ru =
8.314 J/mol · K.
Specific gas constants are given by

Rspecific = R =
Ru

molar mass of a gas

=

µ
8.314 J

mol · K

¶µ
X moles

g

¶
= 8.314 X

J

g · K

Indeed, we see that the units for gas constants, R, in table A.2 (EFM10e), are

J
g·K

So

pV = (Rspecific) (m) (T ) and ρ =
m

V

p = ρRT

Thus the mass form is correct.
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1.28: PROBLEM DEFINITION

Situation:
Start with the universal gas constant and show that RN2 = 297

J
kg·K .

SOLUTION

Start with universal gas constant:

Ru =
8.314 J

mol · K
The molar mass of nitrogen, N2, is 28.02 g/mol.

RN2 =
Ru

molar mass
=

µ
8.314 J

mol · K

¶µ
1mol

28.02 g

¶µ
1000 g

1 kg

¶
= 296.7 J

kg·K
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1.29: PROBLEM DEFINITION

Situation:
Spherical tank of CO2, does p2 = 4p1?
Case 1:

p = 3 atm
T = 20◦C
Volume is constant inside the tank
Case 2:

p = ?
T = 80◦C
Volume for case 2 is equivalent to that in case 1

PLAN

1. Volume inside the tank is constant, as is the mass.
Mass is related to volume by density.

2. Use the Ideal Gas Law to find P2

SOLUTION

1. Mass in terms of density

m = ρV

For both case 1 and 2, ρ1 =
m

V
= ρ2, because mass is contained by the tank.

2. Ideal Gas Law for constant volume

ρ =
p

RT

ρ1,2 =
p1
RT1

=
p2
RT2

p1
T1

=
p2
T2

Therefore, if T2 = 4T1, Then p2 = 4p1; however, the Ideal Gas Law applies ONLY
if the temperature is absolute, which for this system means Kelvin. In the problem
statement, the temperatures were given in Centigrade. We need to convert the given
temperatures to Kelvin in order to relate them to the pressures. We see that the
ratio of temperatures in K is not 1:4. Rather,
20◦C = 293.15K, and
80◦C = 353.15K

Therefore, T2
T1
= 353.15K

293.15K
= p2

p1
= 1.2
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⇒ No, p2 does not equal 4p1. Instead, p2 = 1.2 p1

REVIEW

Always convert T to Rankine (traditional) or Kelvin (SI) when working with Ideal
Gas Law.
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1.30: PROBLEM DEFINITION

Situation:
An engineer needs to know the local density for an experiment with a glider.
z = 2500 ft.
Local temperature = 74.3 ◦F = 296.7K.
Local pressure = 27.3 in.-Hg = 92.45 kPa.

Find:
Calculate density of air using local conditions.
Compare calculated density with the value from Table A.2, and make a recommen-

dation.

Properties:
From Table A.2, Rair = 287 J

kg·K = 287
N·m
kg·K , ρ = 1.22 kg/m

3.

PLAN

Calculate density by applying the ideal gas law for local conditions.

SOLUTION

Ideal gas law

ρ =
p

RT

=
92, 450N/m2³

287 N·m
kg·K

´
(296.7K)

= 1.086 kg/m3

ρ = 1.09 kg/m3 (local conditions)

Table value. From Table A.2

ρ = 1.22 kg/m3 (table value)

The density difference (local conditions versus table value) is about 12%. Most
of this difference is due to the effect of elevation on atmospheric pressure.

Recommendation—use the local value of density because the effects of elevation are significant .

REVIEW

Note: Use absolute pressure when working with the ideal gas law.
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1.31: PROBLEM DEFINITION

Situation:
Carbon dioxide.

Find:
Density and specific weight of CO2.

Properties:
From Table A.2, RCO2 = 189 J/kg·K.
p = 300 kPa, T = 60 ◦C.

PLAN

1. First, apply the ideal gas law to find density.
2. Then, calculate specific weight using γ = ρg.

SOLUTION

1. Ideal gas law

ρCO2 =
P

RT

=
300, 000 kPa

(189 J/ kgK) (60 + 273)K

ρCO2 = 4.767 kg/m
3

2. Specific weight
γ = ρg

Thus

γCO2 = ρCO2 × g

= 4.767 kg/m3 × 9.81m/ s2

γCO2 = 46.764 N/m
3

REVIEW

Always use absolute pressure when working with the ideal gas law.
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1.32: PROBLEM DEFINITION

Situation:
Methane gas.

Find:
Density (kg/m3).

Properties:
From Table A.2, RMethane = 518 J

kg·K
p = 300 kPa, T = 60 ◦C.

PLAN

1. Apply the ideal gas law to find density.

SOLUTION

1. Ideal gas law

ρMethane =
p

RT

=
300, 000 N

m2

518 J
kg·K(60 + 273K)

ρMethane = 1.74 kg/m
3

REVIEW

Always use absolute pressure when working with the ideal gas law.
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1.33: PROBLEM DEFINITION

Situation:
Find D for 10 moles of methane gas.
p = 2bar = 29 lbf

in2
= 4176 lbf

ft2

T = 70◦ F = 529.7◦ R

Properties:
Rmethane = 3098

ft· lbf
slug· ◦R

PLAN

1. Find volume to get diameter.
2. Moles of methane can be related to mass by molecular weight.
3. Mass and volume are related by density.
4. Ideal Gas Law for constant volume.

ρ =
p

RT

SOLUTION

1.

Vsphere =
4

3
πr3 =

1

6
πD3

=⇒ D =
3

r
6V

π

2. Methane, CH4, has a molecular weight of
16 g
mol
.

Thus, 10 moles of methane weighs 160 g.
3.

ρ =
m

V
=

Known
Unknown

4.

ρ =
P

RT
=
Known
Known

=
4176 lbf/ ft2

3098 ft lbf/ slug◦R

5. Solve for density, then go back and solve for volume, yielding V = 4.31 ft3.
6. Use volume to solve for diameter

D = 2.02 ft

REVIEW

Always convert Temperature to Rankine (traditional) or Kelvin (SI) when working
with Ideal Gas Law.
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1.34: PROBLEM DEFINITION

Natural gas is stored in a spherical tank.

Find:
Ratio of final mass to initial mass in the tank.

Properties:
patm = 100 kPa, p1 = 100 kPa-gage.
p2 = 200 kPa-gage, T = 10 ◦C.

PLAN

Use the ideal gas law to develop a formula for the ratio of final mass to initial mass.

SOLUTION

1. Mass in terms of density
M = ρV (1)

2. Ideal gas law
ρ =

p

RT
(2)

3. Combine Eqs. (1) and (2)

M = ρV

= (p/RT )V

4. Volume and gas temperature are constant, so

M2

M1
=

p2
p1

and

M2

M1
=

300 kPa
200 kPa
M2

M1
= 1.5
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1.35: PROBLEM DEFINITION

Situation:
Wind and water at 100 ◦C and 5 atm.

Find:
Ratio of density of water to density of air.

Properties:
Air, Table A.2: Rair = 287 J/kg·K.
Water (100oC), Table A.5: ρwater = 958 kg/m

3.

PLAN

Apply the ideal gas law to air.

SOLUTION

Ideal gas law

ρair =
p

RT

=
506, 600Pa

(287 J/ kgK) (100 + 273)K

= 4.73 kg/m3

For water
ρwater = 958 kg/m

3

Ratio

ρwater
ρair

=
958 kg/m3

4.73 kg/m3

ρwater
ρair

= 203

REVIEW

Always use absolute pressures when working with the ideal gas law.
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1.36: PROBLEM DEFINITION

Situation:
Oxygen fills a tank.
Vtank = 6 ft

3, Wtank = 90 lbf.

Find:
Weight (tank plus oxygen).

Properties:
From Table A.2, RO2 = 1555 ft·lbf/(slug ·o R) .
p = 400 psia, T = 70 ◦F.

PLAN

1. Apply the ideal gas law to find density of oxygen.
2. Find the weight of the oxygen using specific weight (γ) and add this to the weight
of the tank.

SOLUTION

1. Ideal gas law

pabs. = 400 psia× 144 psf/psi = 57, 600 psf
T = 460 + 70 = 530◦R

ρ =
p

RT

=
57, 600 psf

(1555 ft lbf/ slugoR) (530oR)

ρ = 0.070 slugs/ft3

2. Specific weight

γ = ρg

= 0.070
slug

ft3
× 32.2 ft

s2

γ = 2.25 lbf/ft3

3. Weight of filled tank

Woxygen = 2.25 lbf/ft3 × 6 ft3

= 13.50 lbf

Wtotal = Woxygen +Wtank

= 13.5 lbf + 90 lbf

Wtotal = 103.5 lbf

REVIEW

36



1. For compressed gas in a tank, pressures are often very high and the ideal gas
assumption is invalid. For this problem the pressure is about 34 atmospheres—it is
a good idea to check a thermodynamics reference to analyze whether or not real gas
effects are significant.
2. Always use absolute pressure when working with the ideal gas law.
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1.37: PROBLEM DEFINITION

Situation:
Oxygen is released from a tank through a valve.
V = 4m3.

Find:
Mass of oxygen that has been released.

Properties:
RO2 = 260

J
kg·K .

p1 = 700 kPa, T1 = 20 ◦C.
p2 = 500 kPa, T2 = 20 ◦C.

PLAN

1. Use ideal gas law, expressed in terms of density and the gas-specific (not universal)
gas constant.
2. Find the density for the case before the gas is released; and then mass from
density, given the tank volume.
3. Find the density for the case after the gas is released, and the corresponding mass.
4. Calculate the mass difference, which is the mass released.

SOLUTION

1. Ideal gas law

ρ =
p

RT

2. Density and mass for case 1

ρ1 =
700, 000 N

m2

(260 N·m
kg·K)(293K)

ρ1 = 9.19
kg

m3

M1 = ρ1V

= 9.19
kg

m3
× 4m3

M1 = 36.8 kg

3. Density and mass for case 2

ρ2 =
500, 000 N

m2

(260 N·m
kg·K)(293K)

ρ2 = 6.56
kg

m3
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M2 = ρ1V

= 6.56
kg

m3
× 4m3

M2 = 26.3 kg

4. Mass released from tank

M1 −M2 = 36.8− 26.3
M1 −M2 = 10.5 kg
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1.38: PROBLEM DEFINITION

Situation:
Properties of air.

Find:
Specific weight (N/m3).
Density (kg/m3).

Properties:
From Table A.2, R = 287 J

kg·K .
p = 600 kPa, T = 50 ◦C.

PLAN

First, apply the ideal gas law to find density. Then, calculate specific weight using
γ = ρg.

SOLUTION

1. Ideal gas law

ρair =
P

RT

=
600, 000Pa

(287 J/ kgK) (50 + 273)K

ρair = 6.47 kg/m
3

2. Specific weight

γair = ρair × g

= 6.47 kg/m3 × 9.81m/ s2

γair = 63.5 N/m
3

REVIEW

Always use absolute pressure when working with the ideal gas law.
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1.39: PROBLEM DEFINITION

Situation:
Consider a mass of air in the atmosphere.
V = 1mi3.

Find:
Mass of air using units of slugs and kg.

Properties:
From Table A.2, ρair = 0.00237 slugs/ft

3.

Assumptions:
The density of air is the value at sea level for standard conditions.

SOLUTION

Units of slugs

M = ρV

M = 0.00237 slug
ft3
× (5280)3 ft3

M = 3.49× 108 slugs
Units of kg

M =
¡
3.49× 108 slug

¢
×
µ
14.59

kg

slug

¶
M = 5.09× 109 kg

REVIEW

The mass will probably be somewhat less than this because density decreases with
altitude.
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1.40: PROBLEM DEFINITION

Situation:
For a cyclist, temperature changes affect air density, thereby affecting both aero-

dynamic drag and tire pressure.

Find:
a.) Plot air density versus temperature for a range of -10oC to 50oC.
b.) Plot tire pressure versus temperature for the same temperature range.

Properties:
From Table A.2, Rair = 287 J/kg/K.
Initial conditions for part b: p = 450 kPa, T = 20 ◦C.

Assumptions:
For part b, assume that the bike tire volume does not change.

PLAN

Apply the ideal gas law.

SOLUTION

a.) Ideal gas law

ρ =
p

RT
=

101000Pa

(287 J/ kgK) (273 + T )

Temperature (o C)

-20 -10 0 10 20 30 40 50 60

 

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

D
en

si
ty

 (k
g/

m
)3

b.) If the volume is constant, since mass can’t change, then density must be constant.
Thus

p

T
=

po
To

p = 450 kPa

µ
T

20 ◦C

¶
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1.41: PROBLEM DEFINITION

Situation:
Design of a CO2 cartridge to inflate a rubber raft.
Inflation pressure = 3 psi above patm = 17.7 psia = 122 kPa abs.

Find:
Estimate the volume of the raft.
Calculate the mass of CO2 (in grams) to inflate the raft.

Sketch:

Assumptions:
CO2 in the raft is at 62 ◦F = 290K.
Volume of the raft ≈ Volume of a cylinder with D = 0.45m & L = 16m (8 meters

for the length of the sides and 8 meters for the lengths of the ends plus center tubes).

Properties:
CO2, Table A.2, R = 189 J/kg·K.

PLAN

Since mass is related to volume by m = ρV, the steps are:
1. Find volume using the formula for a cylinder.
2. Find density using the ideal gas law (IGL).
3. Calculate mass.

SOLUTION

1. Volume

V =
πD2

4
× L

=

µ
π × 0.452

4
× 16

¶
m3

V = 2.54 m3
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2. Ideal gas law

ρ =
p

RT

=
122, 000N/m2

(189 J/ kg · K) (290K)
= 2.226 kg/m3

3. Mass of CO2

m = ρV

=
¡
2.226 kg/m3¢ ¡2.54m3¢
m = 5660 g

REVIEW

The final mass (5.66 kg = 12.5 lbm) is large. This would require a large and potentially
expensive CO2 tank. Thus, this design idea may be impractical for a product that is
driven by cost.
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1.42: PROBLEM DEFINITION

Situation:
A helium filled balloon is being designed.
r = 1.3m, z = 80, 000 ft.

Find:
Weight of helium inside balloon.

Properties:
From Table A.2, RHe = 2077 J/kg·K.
p = 0.89 bar = 89 kPa, T = 22 ◦C = 295.2K.

PLAN

Weight is given by W = mg. Mass is related to volume by M = ρ ∗ V. Density can
be found using the ideal gas law.

SOLUTION

Volume in a sphere

V =
4

3
πr3

=
4

3
π (1.3m)3

= 9.203m3

Ideal gas law

ρ =
p

RT

=
89, 000N/m2

(2077 J/ kg · K) (295.2K)
= 0.145 kg/m3

Weight of helium

W = ρ× V × g

=
¡
0.145 kg/m3

¢
×
¡
9.203m3

¢
×
¡
9.81m/ s2

¢
= 13.10N

Weight = 13.1 N
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1.43: PROBLEM DEFINITION

Note: solutions for this problem will vary, but should include the steps indicated in
bold. The steps below are outlined in detail in Example 1.2 in §1.7 (EFM 10e).
With our students, we place particular emphasis on the "Define the Situation" step.
Problem Statement
Apply the WWM and Grid Method to find the acceleraton for a force of 2 N acting

on an object of 7 ounces.
Define the situation (summarize the physics, check for inconsistent units)
A force acting on a body is causing it to accelerate.
The physics of this situation are described by Newton’s 2nd Law of motion, F = ma
The units are inconsistent

State the Goal
a <== the acceleration of the object

Generate Ideas and Make a Plan
1. Apply Grid Method
2. Apply Newton’s 2nd Law of motion, F = ma.
3. Do calculations, and conversions to SI units.
4. Answer should be in m/s2

Take Action (Execute the Plan)

F = ma
2 kg · m
s2

=

µ
7 oz

¶µ
1 lb

16 oz

¶µ
1 kg

2.2 lb

¶³am
s2

´
a = 10.06 m

s2

Review the Solution to the Problem
(typical student reflective comment)
This is a straightforword F = ma problem, but in the real world you should always
check whether the units are from different systems, and do the appropriate conversions
if they are.
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1.44: PROBLEM DEFINITION

Situation:
From Example 1.2 in §1.7, state the 3 steps that an engineer takes to "State the
Goal".

SOLUTION

1. List the variable(s) to be solved for.
2. List the units on these variables.
3. Describe each variable(s) with a short statement.
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1.45: PROBLEM DEFINITION

Situation:
For Problem 1.37 (10e), complete the “Define the Situation”, “State the Goal”, and
“Generate Ideas and Make a Plan” operations of the WWM.
Answers will vary. A representative solution is provided here.
Define the Situation
Oxygen is released from a tank through a valve.
The volume of the tank is V = 4m3.
RO2 = 260

J
kg·K .

p1 = 700 kPa, T1 = 20 ◦C.
p2 = 500 kPa, T2 = 20 ◦C.

State the Goal
Find the mass of oxygen that has been released.

Generate Ideas and Make a Plan
Recognize that density, which is M

V
, is related to p and V via the ideal gas law.

Specific steps are as follows:
1. Use ideal gas law, expressed in terms of density and the gas-specific (not uni-

versal) gas constant.
2. Find the density for the case before the gas is released; and then mass from

density, given the tank volume.
3. Find the density for the case after the gas is released, and the corresponding

mass.
4. Calculate the mass difference, which is the mass released.

Take Action
1. Ideal gas law

ρ =
p

RT
2. Density and mass for case 1

ρ1 =
700, 000 N

m2

(260 N·m
kg·K)(293K)

ρ1 = 9.19
kg

m3

M1 = ρ1V

= 9.19
kg

m3
× 4m3

M1 = 36.8 kg

3. Density and mass for case 2

ρ2 =
500, 000 N

m2

(260 N·m
kg·K)(293K)

ρ2 = 6.56
kg

m3
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M2 = ρ1V

= 6.56
kg

m3
× 4m3

M2 = 26.3 kg

4. Mass released from tank

M1 −M2 = 36.8− 26.25
M1 −M2 = 10.5 kg

Review the Solution and the Process
(typical student reflections could include...)
The important concept in this problem is that density, which is M

V
, is related to p

and V via the ideal gas law.
Also, always remember that when you use the ideal gas law, you must convert the

T to absolute T .
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1.46: PROBLEM DEFINITION

Situation:
The hydrostatic equation is

p

γ
+ z = C

p is pressure, γ is specific weight, z is elevation and C is a constant.

Find:
Prove that the hydrostatic equation is dimensionally homogeneous.

PLAN

Show that each term has the same primary dimensions. Thus, show that the primary
dimensions of p/γ equal the primary dimensions of z. Find primary dimensions using
Table F.1.

SOLUTION

1. Primary dimensions of p/γ:∙
p

γ

¸
=
[p]

[γ]
=

µ
M

LT 2

¶µ
L2T 2

M

¶
= L

2. Primary dimensions of z :
[z] = L

3. Dimensional homogeneity. Since the primary dimensions of each term is length,
the equation is dimensionally homogeneous. Note that the constant C in the equation
will also have the same primary dimension.
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1.47: PROBLEM DEFINITION

Situation:
Four terms are given in the problem statement.

Find: Primary dimensions of each term.
a) ρV 2/σ (kinetic pressure).
b) T (torque).
c) P (power).
d) ρV 2L/σ (Weber number).

SOLUTION

a. Kinetic pressure: ∙
ρV 2

2

¸
= [ρ] [V ]2 =

µ
M

L3

¶µ
L

T

¶2
=

M

L · T 2

b. Torque.

[Torque] = [Force] [Distance] =
µ
ML

T 2

¶
(L) =

M · L2
T 2

c. Power (from Table F.1).

[P ] =
M · L2
T 3

d. Weber Number:∙
ρV 2L

σ

¸
=
[ρ] [V ]2 [L]

[σ]
=
(M/L3) (L/T )2 (L)

(M/T 2)
= []

Thus, this is a dimensionless group
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1.48: PROBLEM DEFINITION

Situation:
The power provided by a centrifugal pump is given by:

P = ṁgh

Find:
Prove that the above equation is dimensionally homogenous.

PLAN

1. Look up primary dimensions of P and ṁ using Table F.1.
2. Show that the primary dimensions of P are the same as the primary dimensions
of ṁgh.

SOLUTION

1. Primary dimensions:

[P ] =
M · L2
T 3

[ṁ] =
M

T

[g] =
L

T 2

[h] = L

2. Primary dimensions of ṁgh:

[ṁgh] = [ṁ] [g] [h] =

µ
M

T

¶µ
L

T 2

¶
(L) =

M · L2
T 3

Since [ṁgh] = [P ] , The power equation is dimensionally homogenous.
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1.49: PROBLEM DEFINITION

Situation:
Two terms are specified.

a.
Z

ρV 2dA.

b. d
dt

Z
V

ρV dV .

Find:
Primary dimensions for each term.

PLAN

1. To find primary dimensions for term a, use the idea that an integral is defined
using a sum.
2. To find primary dimensions for term b, use the idea that a derivative is defined
using a ratio.

SOLUTION

Term a: ∙Z
ρV 2dA

¸
= [ρ]

£
V 2
¤
[A] =

µ
M

L3

¶µ
L

T

¶2 ¡
L2
¢
= ML

T 2

Term b:

⎡⎣ d

dt

Z
V

ρV dV

⎤⎦ =
∙Z

ρV dV

¸
[t]

=
[ρ] [V ] [V]

[t]
=

¡
M
L3

¢ ¡
L
T

¢
(L3)

T
= ML

T2
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