CHAPTER 1

FIRST-ORDER DIFFERENTIAL EQUATIONS

SECTION 1.1
DIFFERENTIAL EQUATIONS AND MATHEMATICAL MODELS

The main purpose of Section 1.1 is simply to introduce the basic notation and terminology of
differential equations, and to show the student what is meant by a solution of a differential
equation. Also, the use of differential equations in the mathematical modeling of real-world
phenomena is outlined. i

Problems 1-12 are routine verifications by direct substitution of the suggested solutions into the
given differential equations. We include here just some typical examples of such verifications.

3. If y,=cos2x and y,=sin2x, then y =—2sin2x and y, =2cos2x so
¥ = —4cos2x = -4y, and Y, = —4sin2x = —4y,.

Thus y/+4y, = 0and y;+4y, = 0.

-3x

4. If y,=e” and y,=¢7", then y =3¢ and y,=-3e¢™ so
y =9 =9y and ) =9¢F =9y,.

5. If y=e"—¢e™, then y'=e*+e " s0 y -y = (e"+e"‘)—-(ex—e“x) = 2¢™*. Thus
y = y+2e.

6. If yy=¢ and y,=xe™, then y|=-2e, y/=4e™, yl =e™ -2xe™>*, and

-2x

Vi =—4e* +4xe™. Hence

yi+dy+dy = (4e7)+4(-2e7)+4(e™) = 0
and
Vy+4y,+4y, = (—4e’2x+4xe"2x)+4(e‘2x—2xe'2")+4(xe"2") = 0.
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11.

13.

14,

15.

16.

If y,=cosx—cos2x and y,=sinx—cos2x, then ! =-sinx+2sin2x,

yi=—cosx+4cos2x, and ), =cosx+2sin2x, yj=—sinx+4cos2x. Hence

W+y = (—cosx+4cos2x)+(cosx —cos2x) = 3cos2x
and
Yy +¥, = (—sinx+4cos2x)+(sinx —cos2x) = 3cos2x.

-3

If y=y =x7 then y'=-2x7 and »"=6x", so

Y +5xy' +4y = x2(6x“4)+5x(-—2x‘3)+4(x“2) = 0.

If y=y,=x"Inx then y=x7-2x"Inx and y"=-5x*+6x*Inx, so

x*y"+5xy +4y = x* (—Sx‘4 +6x! lnx)+ Sx(x"3 -2x7 lnx)+4(x"2 Inx)
0.

= (—Sx'2 +5x"2)+(6x“2 -10x7 +4x"2)lnx =

Substitution of y =e™ into 3y'=2y gives the equation 3re™ = 2¢™ that simplifies
to 3r=2. Thus r=2/3.

Substitution of y =e™ into 4y"=y gives the equation 4r°e™ = ™ that simplifies to
4r* =1. Thus r==1/2.

Substitution of y =e™ into y»"+)'—2y = 0 gives the equation 7’e™ +re™ —2e™ =0
that simplifiesto 7> +7-2 = (r+2)(r—1) = 0. Thus r=-2 or r=1.

Substitution of y =e™ into 3y"+3y'—4y = 0 gives the equation
3r’e™ +3re™ —4e™ =0 that simplifiesto 372 +3r—4 = 0. The quadratic formula then
gives the solutions » = (—3 +/57 ) /6.

The verifications of the suggested solutions in Problems 17-26 are similar to those in Problems
1-12. We illustrate the determination of the value of C only in some typical cases. However,
we illustrate typical solution curves for each of these problems.
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19. If y(x) = Ce™~1 then y(0)=5 gives C—1 = 5, so C = 6. The figure is on the
left below.
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20. If y(x) = Ce™+x~1 then y(0)=10 gives C—~1 = 10, so C = 11. The figure is
on the right above.

21.  C = 7. The figure is on the left at the top of the next page.
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22.  If y(x) = In(x+C) then »(0)=0 gives InC = 0, so C = 1. The figure is on the
right above.

23. If y(x) = 1x’+Cx7 then (2)=1 gives the equation +32+C-{ =1 with
solution C=-56. The figure is on the left below.
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24, C = 17. The figure is on the right above.
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25. If y(x) = tan(x*+C) then »(0)=1 gives the equation tan C = 1. Hence one value
of C is C=x/4 (asis this value plus any integral multiple of 7).

Wi
I

26. Substitution of x=7 and y=0 into y = (x+C)cosx yields the equation
= (#+C)-1, s0 C = —

N

[

27. y =x+y
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28.

29.

30.

31.

The slope of the line through (x,y) and (x/2,0) is Y = (y~0)/(x—-x/2) = 2y/x,
so the differential equationis xy)' = 2y.

If m=)" is the slope of the tangent line and m’ is the slope of the normal line at
(x,y), then the relation mm'=~1 yields m' = 1/y" = (y~1)/(x~0). Solution for
y" then gives the differential equation (1-y)y’ =

Here m=y' and m'= D, (x*+k) = 2x, so the orthogonality relation mm' = —1 gives
the differential equation 2xy)’ = —1.

The slope of the line through (x,y) and (-y,x) is ' = (x—y)/(=y—x), so the
differential equationis (x+y)y' = y—x.

In Problems 32-36 we get the desired differential equation when we replace the "time rate of
change" of the dependent variable with its derivative, the word "is" with the = sign, the phrase
"proportional to" with k, and finally translate the remainder of the given sentence into symbols.

32,

33.

34.

35.

36.

37.

38.

39.

40.

dP/dt = kP
avidt = kv?
dv/dt = k(250-v)

dN/dt

k(P ~N)

dN /dt

kN(P-N)

The second derivative of any linear function is zero, so we spot the two solutlons
y(x) =1 or y(x) = xofthe differential equation " =0.

A function whose derivative equals itself, and hence a solution of the differential
equation y' =y is y(x) =

We reason that if y = kx?, then each term in the differential equation is a multiple of x°.

The choice k=1 balances the equation, and provides the solution y(x) = x?.

If y is aconstant, then 3'=0 so the differential equation reduces to 3* =1. This gives
the two constant-valued solutions y(x) = 1 and y(x) = —
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41.

42.

43.

44.

(®)

45.

We reason that if y = ke®, then each term in the differential equation is a multiple of e*.
The choice k=7 balances the equation, and provides the solution y(x) = le”.

Two functions, each equaling the negative of its own second derivative, are the two
solutions y(x) = cosx and y(x) = sinx of the differential equation y"=-y.

(a) We need only substitute x(¢) =1/(C —kt) in both sides of the differential
equation x’= kx* for a routine verification.

(b) The zero-valued function x(¢) =0 obviously satisfies the initial value problem
x'=kx?, x(0)=0.

(a) The figure on the left below shows typical graphs of solutions of the differential
equation x'=1x’.

The figure on the right above shows typical graphs of solutions of the differential

equation x'=—1x’ We see that — whereas the graphs with k = + appear to "diverge

to infinity" — each solution with & =—1 appears to approach 0 as ¢ — . Indeed, we
see from the Problem 43(a) solution x(¢¥) =1/(C—4r) that x(¢¥) >« as t— 2C.
However, with k =—7 itis clear from the resulting solution x(r)=1/(C+1¢) that
x(¢) remains bounded on any finite interval, but x(¢) > 0 as ¢ — +o.

Substitution of P'=1 and P =10 into the differential equation P’ = kP> gives k=i,
so Problem 43(a) yields a solution of the form P(¢)=1/(C ~¢/100). The initial
condition P(0)=2 now yields C =1, so we get the solution
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46.

47.

48.

1 100
P = = .
0 1z 50—¢

2 100

We now find readily that P =100 when ¢ =49, andthat P =1000 when ¢ =49.9.
It appears that P grows without bound (and thus "explodes") as ¢ approaches 50.

Substitution of v'=-1 and v =3 into the differenﬁal equation v'=kv’ gives
k = —35, so Problem 43(a) yields a solution of the form v(f) =1/(C +1¢/ 25). The initial
condition v(0) =10 now yields C =4, so we get the solution

1 50
Vo = 1t 540
10 25

We now find readily that v=1 when £=22.5, andthat v=0.1 when ¢=247.5.

It appears that v approaches 0 as ¢ increases without bound. Thus the boat gradually
slows, but never comes to a "full stop" in a finite period of time.

(@  »(10)=10 yields 10=1/(C~10), so C=101/10.

(b) There is no such value of C, but the constant function y(x)=0 satisfies the
conditions y'=y* and y(0)=0.

(c) It is obvious visually (in Fig. 1.1.8 of the text) that one and only one solution
curve passes through each point (a,b) of the xy-plane, so it follows that there exists a

unique solution to the initial value problem ' = y*, y(a)=>.

(b) Obviously the functions u(x)=-x* and v(x)=+x* both satisfy the differential
equation xy' = 4y. But their derivatives #'(x)=-4x’ and v'(x)=+4x* match at

x = 0, where both are zero. Hence the given piecewise-defined function y(x) is
differentiable, and therefore satisfies the differential equation because u(x) and v(x)
doso (for x<0 and x>0, respectively).

(©) If a>0 (for instance), choose C, fixed so that C,a* = b. Then the function

) Cx* if x<0,
X =
4 Cx* if x>0

satisfies the given differential equation for every real number value of C .
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SECTION 1.2
INTEGRALS AS GENERAL AND PARTICULAR SOLUTIONS

This section introduces general solutions and particular solutions in the very simplest situation
— a differential equation of the form y'= f(x) — where only direct integration and evaluation

of the constant of integration are involved. Students should review carefully the elementary
concepts of velocity and acceleration, as well as the fps and mks unit systems.

1. Integration of »'=2x+1 yields y(x) = I(2x+1)dx = x> +x+C. Then substitution
of x=0, y=3 gives 3 =0+0+C = C, so y(x) = x*+x+3.

2. Integration of )’ =(x-2)* yields y(x) = _[(x -2 dx = L(x=2)’+C. Then
substitutionof x=2, y=1gives 1 = 0+C = C, so y(x) = 1(x-2) +1.

3. Integration of y,=\/; yields y(x) = J'\/; de = 2 ¥ +C. Then substitution of
x=4, y=0gives 0=%+C, s0 y(x) = 3(""-8)

4. Integration of 3 = 7 yields y(x) = J-x“zdx = —1/x+C. Then substitution of
x=1, y=5gives 5=-1+C, so y(x) = —1/x+6.

5. Integration of 3’ =(x+2)""? yields y(x) = I(x +2)"?dx = 24/x+2 +C. Then
substitution of x=2, y=-1 gives —1=2-2+C, so p(x) = 2Jx+2 -5.

6. Integration of y' =x(x*+9)"? yields y(x) = _[x (x*+9)%dx = L(x*+9)** +C.
Then substitution of x=-4, y=0 gives 0=1(5°+C, so
y(x) = H[ (5 +9) - 125].

7. Integration of )’ =10/(x* +1) yields y(x) = IlO/(xz +1)dx = 10tan” x+C. Then
substitution of x=0, y=0 gives 0=10-0+C, so y(x) = 10tan'x.

8. Integration of y'=cos2x yields y(x) = _[cos 2xdx = 1sin2x+ C. Then substitution
of x=0, y=1gives 1=0+C, so y(x) = Lsin2x+1.

9. Integration of »'=1/+1-x* yields y(x) = J.l/ V1-x*dx = sin? x+C. Then
substitution of x=0, y=0 gives 0=0+C, so y(x) = sin”" x.
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10.

11.

12.

13.

14.

15.

16.

10

Integration of y'=xe™ yields
y(x) = J.xe'xdx = _fue" du = (u-De" = —(x+De*+C

(when we substitute u =—x and apply Formula #46 inside the back cover of the
textbook). Then substitution of x=0, y=1 gives 1=-1+C, so

y(x) = —(x+De™+2.

If a(t¥) = 50 then v(t) = J‘SOdt = 50¢+v, = 50¢#+10. Hence
x(t) = [(50¢+10)dt = 256 +101+x, = 250 +101+20.

If a(f) = ~20 then v(f) = [(-20)dr = ~20¢+v, = —20¢-15. Hence
x(#) = [(=20¢-15)dt= ~10£ =15t +x, = ~10£ —15¢+5.

If a(r) =3¢ then w(r) = [3tdt = 3 +v, = #*+5. Hence
x(0) = [GP+5)dt= 18 +51+x, = 11 +51.

If a(t) = 2t+1 then‘v(t) = f(2t+1)dt = +t+v, = > +1-7. Hence

x(@) = [(P+t=Tydt= 1 +1t-Tt+x, = 1P +1t-Tt+4.

If a(f) = 4(1+3). then v(t) = [4(t+3)°dr = (1437 +C = 4(1+3)’~37 (taking

C=-37 so that v(0) =-1). Hence

x(1) = [[$¢+3) -37]dt= 1t +3)' ~37r+C = L(t+3)* —37-26.

If a(t) = 1/4i+4 then v(t) = [I/r+4dr = 2J1+4+C = 2i+4-5 (taking

C=-5 so that v(0)=-1). Hence
x(#) = [@Vr+4-5)dt= 4(t+47~51+C = 4(1+4)>=51-2

(taking C=-29/3 sothat x(0)=1).
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17.  If a(f) = (t+1)7 then v(f) = j(t+1)‘3 dt = —3(t+1)7+C = —L@t+1)? +4
(taking C =1 sothat v(0)=0). Hence

x(f) = j[—%(r+1)“2+%]dt= L+ +ir4C = %[(t+1)‘1+t—1]

(taking C =-1 sothat x(0)=0).

18. If a(¢) = 50sin5¢ then v(f) = J.SOSin5l‘ dt = —10cos5t+C = —10cos5¢ (taking
C =0 sothat »(0)=-10). Hence

x(1) = [(~10cosSt)dt = ~2sin5t+C = —2sin5t+10

(taking C =-10 sothat x(0)=8).

19.  Notethat v(f)=5 for 0<r<5 andthat v(f)=10—¢ for 5<¢<10. Hence
x(0)=5t+Cfor 0<r<5 and x(r)=10t-4r*+C, for 5<¢<10. Now C, =0
because x(0) =0, and continuity of x(¢) requires that x(f)=5¢ and

x(t) =10t —1#* + C, agree when ¢=35. This implies that C, =—-%, and we get the
following graph.

40

30-

(5,.25)
> 20
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20.

21.

22,

12

30k

> 20t

Note that v(f) =¢ for 0<¢<5 and that v(rf)=5 for 5<7<10. Hence x(t)=1r +C,
for 0<¢<5 and x(¥) = St+C, for 5<¢<10. Now C, =0 because x(0)=0, and
continuity of x(f) requires that x(f) = 17 and x(f)=5¢+ C, agree when ¢=5.
This implies that C, =—2, and we get the graph on the left below.

40

30

> 20+ -

: ,12.5)
G125

Note that v(#)=¢ for 0<¢<5 and that v(t) =10~¢ for 5<7<10. Hence
X()=4r+C, for 0<r<5 and x(£)=10t—1£+C, for 5<¢<10. Now C,=0
because x(0) =0, and continuity of x(f) requires that x(t)=17 and

x(¢) =10t — 17> + C, agree when ¢=5. This implies that C, =-25, and we get the
graph on the right above.

For 0<7<3: v()=3t so x(t)=%r+C,. Now C,=0 because x(0)=0, so

x(t)=2%¢ on this first interval, and its right endpoint value is x(3) =71,

For 3<¢<7: v(t)=5 so x(t)=5t+C,. Now x(3)= 7% implies that C, =-71,
so x(#) =5t-77 on this second interval, where its right endpoint value is x(7)=271.

For 7<1<10: v-5=-3(/=7), so v()=—4$r+2. Hence x(r)=-3+2Lt+C,,
and x(7) =277 implies that C, =—22. Finally, x(f)= 1(=5¢* +100t —290) on this
third interval, and we get the graph at the top of the next page.

Chapter 1

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall



23.

24.

25.

26.

27.

40

30

(7.2135)

> 20

10 -

3,7.5)

v = —9.8¢+49, so the ball reaches its maximum height (v=0) after =15 seconds. Its
maximum height then is y(5) = —4.9(5)* + 49(5) = 122.5 meters.

v = -32t and y = —167 + 400, so the ball hits the ground (y = 0) when
t = 5sec, and then v = -32(5) =-160 ft/sec.

a = -10m/s* and vy = 100 km/h ~ 27.78 m/s, so v = —10¢+27.78, and hence
x(f) = —5*+27.78¢. The car stops when v = 0, ¢ ~ 2.78, and thus the distance
traveled before stopping is x(2.78) ~ 38.59 meters.

v = —9.8t+ 100 and y = —4.97 + 100z + 20.

(a) v = 0 when #=100/9.8 so the projectile's maximum height is
1(100/9.8) = —4.9(100/9.8)2 +100(100/9.8) + 20 =~ 530 meters.

(b) It passes the top of the building when y(f) = —4.97 + 1001 +20 = 20,
and hence after 1= 100/4.9 =~ 20.41 seconds.

(c) The roots of the quadratic equation y(¢) = 4.9 +100¢+20 = 0 are
t = —0.20, 20.61. Hence the projectile is in the air 20.61 seconds.

a=-98m/s2 so v=-98¢-10 and
y = —497-10¢+y.

The ball hits the ground when y = 0 and

vy =-98r-10 = -60,
so f~35.10s. Hence

yo = 4.9(5.10)* + 10(5.10) =~ 178.57 m.
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28.

29.

30.

31.

32.

33.

14

v = =32t—40 and y = ~16f*—40¢ +555. The ball hits the ground (y = 0) when ¢ ~

4.77 sec, with velocity v = v(4.77) ~ —192.64 ft/sec, an impact speed of about 131
mph.

Integration of dv/dr=0.12 £ +0.6 ¢, v(0)=0 gives v(#)=0.3 +0.04 £. Hence

v(10) =70. Then integration of dx/dt=0.3 7+ 0.04 £, x(0)=0 gives
x(1)=0.1£+0.04 #*, so x(10) =200. Thus after 10 seconds the car has gone 200 ft and
is traveling at 70 f/sec.

Taking xp = 0 and vy = 60 mph = 88 ft/sec, we get

v = —qt+ 88,

and v = 0 yields ¢ = 88/a. Substituting this value of # and x = 176 in
x = —ar’/2+ 88,

we solve for a = 22 ft/sec’. Hence the car skids for 7 = 88/22 = 4 sec.
If a = —20 m/sec? and xo = 0 then the car's velocity and position at time ¢ are given
o v=220+tvy, x = —10[2+v0t.
It stops when v = 0 (so vy = 20f), and hence when

x=75=-10/+Q0)r = 10 A~
Thus ¢ = /7.5 sec so

vo = 2047.5 ~ 54.77 m/sec ~ 197 km/hr.
Starting with xo = 0 and vy = 50 km/h = 5x10* m/h, we find by the method of
Problem 30 that the car's deceleration is a = (25/3)x10” m/h?, Then, starting with xo =
0 and vy = 100 km/h = 10° m/h, we substitute # = vy/a into

x = —Lat +vg

and find that x = 60 m whenv = 0. Thus doubling the initial velocity quadruples the
distance the car skids.

If vo = 0 and yy = 20 then
v=—at and y = —Lar+20.

Substitution of ¢ = 2, y = 0 yields a = 10 fi/sec®. If v = 0 and
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34.

3s.

36.

37.

yo = 200 then

v = -10t and y = —5¢ + 200.

Hence y = 0 when ¢ = V40 = 210 sec and v = 2010 ~ —63.25 fi/sec.

On Earth: v = -32f+ vy, so ¢ = /32 at maximum height (when v = 0).
Substituting this value of # and y = 144 in

Yy = —1612+Vol‘,

we solve for vy = 96 ft/sec as the initial speed with which the person can throw a ball
straight upward.

On Planet Gzyx: From Problem 27, the surface gravitational acceleration on planet
Gzyx is a = 10 ft/sec?, so

v=-10t+96 and y = -57+96t.

Therefore v = 0 yields t = 9.6 sec, and thence ymax = 3(9.6) = 460.8 ft is the
height a ball will reach if its initial velocity is 96 ft/sec.

If vo = 0 and yo = /4 then the stone's velocity and height are given by

= —gt, =_0.5 gt* + h.
Hence y = 0 when ¢t = 2h/g so

v=—-g\2hlg = —2gh.

The method of solution is precisely the same as that in Problem 30. We find first that, on
Earth, the woman must jump straight upward with initial velocity vy = 12 ft/sec to
reach a maximum height of 2.25 ft. Then we find that, on the Moon, this initial velocity
yields a maximum height of about 13.58 ft.

We use units of miles and hours. If xy = vy = 0 then the car's velocity and position
after ¢ hours are given by
v =aqaf, x = 2.

o=

Since v = 60 when ¢ = 5/6, the velocity equation yields @ = 72 mi/hr®>. Hence the
distance traveled by 12:50 pm is

x = (0.5)(72)(5/6)* = 25 miles.
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38.

39.

40.

41.

42.

16

Again we have

Butnow v = 60 when x = 35. Substitution of a = 60/t (from the velocity equation)
into the position equation yields

35 = (0.5)(60/)(%) = 301,

whence ¢ = 7/6 hr, that is, 1:10 p.m.

Integration of y' = (9/v5)(1 — 4x%) yields
y = Bh(Bx-4x°) + C,
.and the initial condition y(—1/2) = 0 gives C = 3/vs. Hence the swimmer's trajectory
N y(x) = (Blv)(3x —4x> + 1).
Substitution of (1/2) = 1 now gives vy = 6 mph.
Integration of y = 3(1 — 16x*) yields
y = 3x—(48/5° + C,
gnd the initial condition y(-1/2) = 0 gives C = 6/5. Hence the swimmer’s trajectory
N y(x) = (1/5)(15x — 48x° + 6),
so his downstream driftis y(1/2) = 2.4 miles.

The bomb equations are a=-32, v=-32, and s, =s5= —-16¢* +800, with 7=0 at the
instant the bomb is dropped. The projectile is fired at time ¢ =2, so its corresponding
equations are a =-32, v=-32(1-2)+v,, and

sp, =85 = —16(t—2)" +v,(t—2)

for #>2 (the arbitrary constant vanishing because s,(2)=0). Now the condition
s5(t) =—16£> +800 = 400 gives ¢ =35, and then the requirement that 5,(5) =400 also
yields v, =544/3~181.33 ft/s for the projectile's needed initial velocity.

Let x(¢) be the (positive) altitude (in miles) of the spacecraft at time ¢ (hours), with
t =0 corresponding to the time at which the its retrorockets are fired; let v(¢) = x'(¢) be

Chapter 1

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall



43.

44.

the velocity of the spacecraft at time #. Then v,=-1000 and x, = x(0) is unknown.
But the (constant) acceleration is a = +20000, so

v(f) = 20000¢-1000 and  x(r)=100007* —10007+ x,.

Now v(¢) = 200007 —1000 = 0 (soft touchdown) when =% hr (that is, after exactly
3 minutes of descent. Finally, the condition

0 = x(&)=10000(%)" —1000(%) + x,
yields x, =25 miles for the altitude at which the retrorockets should be fired.

The velocity and position functions for the spacecraft are v (¢) = 0.0098¢ and
x3(#) =0.0049#°, and the corresponding functions for the projectile are
vp(t)=%c=3x10"and x,(¥)=3x10"¢t. The condition that Xg = X, when the
spacecraft overtakes the projectile gives 0.00497” =3x107¢, whence

_ 3x10’
~0.0049
_ 6.12245x10°

"~ (3600)(24)(365.25)

~ 6.12245x10° sec

~ 194 years.

Since the projectile is traveling at 5 the speed of light, it has then traveled a distance of
about 19.4 light years, which is about 1.8367 x10"7 meters.

Let a>0 denote the constant deceleration of the car when braking, and take x, =0 for

the cars position at time ¢ =0 when the brakes are applied. In the police experiment
with v, =25 fi/s, the distance the car travels in ¢ seconds is given by

x(f) = Lo 8805
2 60

(with the factor £ used to convert the velocity units from mi/hr to ft/s). When we solve
simultaneously the equations x(r) =45 and x'(f) =0 we find that o =14%~14.94 fv/ s>,

With this value of the deceleration and the (as yet) unknown velocity v, of the car
involved in the accident, its position function is

Section 1.2 17
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The simultaneous equations x(¢) =210 and x'(f) =0 finally yield v, = 10 /42 %7921

9
ft/s, almost exactly 54 miles per hour.

SECTION 1.3
SLOPE FIELDS AND SOLUTION CURVES

The instructor may choose to delay covering Section 1.3 until later in Chapter 1. However,
before proceeding to Chapter 2, it is important that students come to grips at some point with the
question of the existence of a unique solution of a differential equation — and realize that it
makes no sense to look for the solution without knowing in advance that it exists. It may help
some students to simplify the statement of the existence-uniqueness theorem as follows:

Suppose that the function f(x,y) and the partial derivative 0f/dy are both

continuous in some neighborhood of the point (a, 5). Then the initial value
problem
d.y
-~ = R ) a) = b
; S(x,p) y(a)

has a unique solution in some neighborhood of the point a.

Slope fields and geometrical solution curves are introduced in this section as a concrete aid in
visualizing solutions and existence-uniqueness questions. Instead, we provide some details of
the construction of the figure for the Problem 1 answer, and then include without further
comment the similarly constructed figures for Problems 2 through 9.

1. The following sequence of Mathematica commands generates the slope field and the
solution curves through the given points. Begin with the differential equation
dy/dx = f(x,y) where

flx , vy 1 := -y - Sin[x]
Then set up the viewing window
a=-3; b=3; ¢c=-3;d=3;
The components (u,v) of unit vectors corresponding to the short slope field line
segments are given by
ulx , v 1 = 1/sqrt[l + £ix, y]"2]
= flx, yl/Sqrt[l + £x, y]*2]
The slope field is then constructed by the commands

Needs["Graphics PlotField "]

dfield = PlotVectorField[{u[x, y], vIx, v1}, {x, a, b}, {y, <, d},
HeadWidth -> 0, HeadLength -> 0, PlotPoints -> 19,
PlotRange -> {{a, b}, {c, d}}, Axes -> True, Frame -> True,
FrameLabel -> {"x", "y"}, AspectRatio -> 1]:;

18 Chapter 1
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The original curve shown in Fig. 1.3.12 of the text (and its initial point not shown there)
are plotted by the commands

x0 = -1.9; y0 = 0;
point0 = Graphics[{PointSize[0.025], Point[{x0, y0}11}];
soln = NDSolve[{Derivative[1] [yllx] == £[x, y[x]], yv[x0] == yO0},
vIx]l, {x, a, b}];
solnf[1,1,2]];
curve0 = Plot[soln[[1,1,2]], {x, a, b},
PlotStyle -> {Thickness[0.0065], RGBColor[0, O, 11}1;

The Mathematica NDSolve command carries out an approximate numerical solution of

the given differential equation. Numerical solution techniques are discussed in Sections
2.4-2.6 of the textbook.

The coordinates of the 12 points are marked in Fig. 1.3.12 in the textbook. For instance
the 7th point is (2.5, 1). It and the corresponding solution curve are plotted by the
commands

x0 = -2.5; y0 = 1;
point7 = Graphics[{PointSize[0.025], Point[{x0, y0}1}1;
soln = NDSolve[{Derivative[l][y] [x] == flx, vIx]]l, yvI[x0] == yO0},
vixl, {x, a, b}l;
soln[[1,1,2]];
curve7 = Plot[soln[[1,1,2]], {x, a, b},
PlotStyle -> {Thickness[0.0065], RGBColor[0O, O, 111}1;

Finally, the desired figure is assembled by the Mathematica command

Show[ dfield, point0,curve0,
pointl,curvel, point2,curve2, point3,curve3 ’
point4, curved, point5,curve5, point6,curveé ,
point7,curve7, point8,curve8, point9 ,curve9,
pointl0,curvell, pointll,curvell, pointl2,curvel2] ;

Section 1.3 19
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11.

12.

13.

R e e

Because both  f(x,y) = 2x%* and df /8y = 4x*y are continuous everywhere, the

existence-uniqueness theorem of Section 1.3 in the textbook guarantees the existence of a
unique solution in some neighborhood of x

Both f(x,y) = xIlny and &f/dy = x/y are continuous in a neighborhood of
(1, 1), so the theorem guarantees the existence of a unique solution in some
neighborhood of x

Both f(x,y) = y" and &f/ dy = (1/3)y™? are continuous near (0, 1), so the
theorem guarantees the existence of a unique solution in some neighborhood of x

Section 1.3
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14.

15.

16.

17.

18.

19.

20.

21.

22

f(x,») = y" is continuous in a neighborhood of (0, 0), but df/dy = (1/3)™" is

not, so the theorem guarantees existence but not uniqueness in some neighborhood of
x = 0.

f(x,) = (x— »" isnot continuous at (2,2) because it is not even defined if y > x.

Hence the theorem guarantees neither existence nor uniqueness in any neighborhood of
the point x = 2.

f(x3) = (x-»"? and of 1oy = —(1/2)(x— y)™? are continuous in a neighborhood

of (2, 1), so the theorem guarantees both existence and uniqueness of a solution in some
neighborhood of x = 2.

Both f(x,y) = (x—1)/y and &f/dy = —(x—1)/y* are continuous near (0, 1), sothe
theorem guarantees both existence and uniqueness of a solution in some neighborhood of
x = 0.

Neither f(x,y) = (x—1)/y nor 8f/dy = —(x—1)/y* is continuous near (1, 0), sothe
existence-uniqueness theorem guarantees nothing.

Both f(x,y) = In(1+ *) and of /dy = 2y/(1 + y*) are continuous near 0, 0), so
the theorem guarantees the existence of a unique solution near x = 0.

Both f(x,y) = x*— 3* and 0f /@y = —2y are continuous near (0, 1), so the theorem
guarantees both existence and uniqueness of a solution in some neighborhood of x = 0.

The curve in the figure on the left below can be constructed using the commands
illustrated in Problem 1 above. Tracing this solution curve, we see that y(—4) ~ 3.

An exact solution of the differential equation yields the more accurate approximation
y(—4) ~3.0183.
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22.

23.
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24.

25.

Tracing the curve in the figure on the right at the bottom of the preceding page , we see
that y(—4)~-3. An exact solution of the differential equation yields the more accurate

approximation y(—4)=~-3.0017.

Tracing the curve in figure on the left below, we see that y(2) ~1. A more accurate
approximation is y(2) ~1.0044.

x
E

Tracing the curve in the figure on the right above, we see that y(2) ~1.5. A more
accurate approximation is y(2) ~1.4633.

The figure below indicates a limiting velocity of 20 ft/sec — about the same as jumping
off a 64 -foot wall, and hence quite survivable. Tracing the curve suggests that v(¢) =19

ft/sec when ¢ is a bit less than 2 seconds. An exact solution gives #~1.8723 then.
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26.  The figure below suggests that there are 40 deer after about 60 months; a more accurate
value is 7~ 61.61. And it's pretty clear that the limiting population is 75 deer.
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27.  If b <0 then the initial value problem 3’ = 2\/; , ¥(0) =50 has no solution, because the

square root of a negative number would be involved. If 5> 0 we get a unique solution
curve through (0,5) defined for all x by following a parabola — in the figure on the left

below — down (and leftward) to the x-axis and then following the x-axis to the left. But
starting at (0,0) we can follow the positive x-axis to the point (c,0) and then branching

off on the parabola y =(x—c)*. This gives infinitely many different solutions if & = 0.
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28.  The figure on the right above makes it clear initial value problem x)'=y, y(a)=»5 has
a unique solution off the y-axis where a =0; infinitely many solutions through the
origin where a=5=0; no solutionif a=0 but 5+ 0 (so the point (a,b) lies on the
positive or negative y-axis).
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29.

30.

31.

Looking at the figure on the left below, we see that we can start at the point (a,b) and

follow a branch of a cubic up or down to the x-axis, then follow the x-axis an arbitrary

distance before branching off (down or up) on another cubic. This gives infinitely many
solutions of the initial value problem ' =3y**, y(a)=5b that are defined for all x.

However, if b= 0 there is only a single cubic y = (x —c)’ passing through (a,b), so

the solution is unique near x =a.

R

AN

A\

i

-pi

X

pi

The function y(x)=cos(x —c), with y'(x)=—sin(x —c), satisfies the differential

equation 3’ =—,/1—y* onthe interval ¢ <x<c+7 where sin(x —c) >0, so it follows

—J1=y* = —\1-cos’(x—c) = —4fsin’(x—¢) = —sin(x—c) =

If |b| >1 then the initial value problem )’ =—/1-3°, y(a)=5 has no solution because

the square root of a negative number would be involved. If |b| <1 then there is only one

that

curve of the form y = cos(x —¢) through the point (a,b); this give a unique solution.
Butif b ==+1 then we can combine a left ray of the line y = +1, a cosine curve from the

line y =+1 to the line y=-1, and then a right ray of the line y =—1. Looking at the

figure on the right above, we see that this gives infinitely many solutions (defined for

all x) through any point of the form (a,*1).

The function y(x)=sin(x—c), with y'(x)=cos(x—c), satisfies the differential

equation )’ =./1—3y* ontheinterval ¢—7z/2<x<c+7/2 where cos(x—¢)>0, soit

follows that

\/1—-y2 = \/l—sinz(x—c) = Jeos’(x—c) = —sin(x—c) =

Section 1.3
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If |b’ >1 then the initial value problem ' =./1—3*, 3(a)=5 has no solution because
the square root of a negative number would be involved. If Ibl <1 then there is only one
curve of the form y =sin(x —¢) through the point (a,b); this give a unique solution.
But if b =+1 then we can combine a left ray of the line y =—1, a sine curve from the
line y =-1 to the line y =+1, and then a right ray of the line y = +1. Looking at the

figure on the left below, we see that this gives infinitely many solutions (defined for all x)
through any point of the form (a,%1).

SIS
/S )/

-pif2 pif2

32.  Looking at the figure on the right above, we see that we can picce together a "left half" of
a quartic for x negative, an interval along the x-axis, and a "right half" of a quartic curve

for x positive. This makes it clear that the initial value problem y'= 4x\/_ , W(a)=b

has infinitely many solutions (defined for all x) if 5> 0; there is no solution if 5 < 0
because this would involve the square root of a negative number.

33.  Looking at the figure provided in the answers section of the textbook, it suffices to
observe that, among the pictured curves y = x/(cx —1) for all possible values of c,

o there is a unique one of these curves through any point not on either coordinate axis;
there is no such curve through any point on the y-axis other than the origin; and
o there are infinitely many such curves through the origin (0,0).

But in addition we have the constant-valued solution y(x)=0 that "covers" the x-axis.
It follows that the given differential equation has near (a,b)

e aunique solutionif a#0;
e nosolutionif a=0 but 520;
e infinitely many different solutions if a=5=0.

26 Chapter 1

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall



34.

3s.

(a) With a computer algebra system we find that the solution of the initial value
problem y'=y-x+1, p(-1)=-1.21is p(x)=x-02e"", whence y(1)~-0.4778.
With the same differential equation but with initial condition y(-=1)=-0.8 the solution
is y(x)=x+0.2¢™", whence y(1)~2.4778.

(b) Similarly, the solution of the initial value problem y'=y—x+1, y(-3)=-3.01
is p(x)=x-0.01e"", whence y(3)~—1.0343. With the same differential equation but
with initial condition y(-3)=-2.99 the solutionis y(x)=x+0.01e***, whence

¥(3) ~7.0343. Thus close initial values y(-3)=-3+0.01 yield y(3) values that are far
apart.

(a) With a computer algebra system we find that the solution of the initial value
problem y'=x—-y+1, p(-3)=-0.2is y(x)=x+2.8¢*>, whence ¥(2) = 2.0189.
With the same differential equation but with initial condition ¥(-3)=+40.2 the solution
is y(x)=x+3.2¢7*7, whence y(2)~2.0216.

(b) Similarly, the solution of the initial value problem y'=x—y+1, y(=3)=-0.5
is y(x)=x+2.5¢"*", whence y(2)~2.0189. With the same differential equation but

with initial condition y(-3)=+0.5 the solutionis y(x)=x+3.5¢"*>, whence
¥(2) ~2.0236. Thus the initial values y(—3) = 0.5 that are not close both yield
y(2)~2.02.

SECTION 1.4

SEPARABLE EQUATIONS AND APPLICATIONS

Of course it should be emphasized to students that the possibility of separating the variables is
the first one you look for. The general concept of natural growth and decay is important for all
differential equations students, but the particular applications in this section are optional.
Torricelli's law in the form of Equation (24) in the text leads to some nice concrete examples and
problems.

Y __ .f2xdx; Iny = ~x*+¢; y(x) = e = Ce™
Y

—_—
N
Il

1
- 2xdx; -— = -x*-C; =
jx y YO =5
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10.

11.

12.

13.

14.

28

—_— = Isinxdx; Iny = —cosx+c¢;  p(x) = e = Ce™*
JY

"

Yoo (25 - anen+InG ) = C4 )
Jy I+x

-

dy — Jﬂ’ Sin—ly = \/;+C, y(X) = Sin(\/;;'i‘C)

Y 1")"2 2\/;

.
% = [3Vxdr; 2y =2x"242C;  y(x) = (x3/2+C)2

3/2
r;?; _ J‘4x1/3 d: %ym — 33 +3C p(x) = (2x4/3+C)
J

_[cosydy = I2xdx; siny = X’ +C;  y(x) = sin_l(x2+C)

J@i = J 2dx J(—l— + L] dx (partial fractions)
y

1—x? B

I+x 1-x
Iny = n(l+x)-In(l—x)+InC:  p(x) = CLF%
- X
dy _de R S DR e (R
1+ ) (1+x)*’ 1+y 1+x 1+x
1+x 1+x x—C(l+x
by = ) = r o 2ol
1+C(1+x) 1+C(1+x) 1+C(1+x)

(dy i 1 ¥ C ,\-172
3T dex, —ﬁ = 5T y(x) = (C—x )

ryychi = [xadx; fn(y*+1) = £x’+4InC; y*+1 = Ce”
oJ

3
y4 iyl Icosx dx; %ln(y4+1) = sinx+C
JY

J-(1+\/;)dy = J-(1+\/_);)dx; y+3y"? = x+2x*?+C
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15.

16.

17.

18.

19.

20.

21.

22.

23.

21 1 1 2 1 1
Ly = ||| - = -
Hyz y“] 4 Hx xzj y 3y n|x|+x+c

siny dy xdx
J = fl+x2’ —In(cosx) = %ln(1+x2) +InC

Y =1l4+x+y+xy = A+x)1+y)

d
1—3; = [d+x)dy; fl+y| = x+152+C

X’y = 1-x*+ 32 ~x%y? = (1-x*)(1+3?)

X

d 1
J LA J(——z——ljdx; tan"y = —l—x+C; y(x) = tan(C—l——x
x x

1—l~y2

d
J —yz = [e*dr; Iy = & +InC;  y(x) = Cexp(e”)

y(0)=2e implies C=2 so y(x) = 2exp(e”).

d .
J“—J;z = I3x2dx; tan”'y = x*+C; y(x) = tan(x3+C)

¥(0)=1 implies C=tan"'1=7/4 so y(x) = tan(x3+7r/4).
"
J2ydy = | Z2Z_. 2 - @ 16+C
Vx* =16
y(5)=2 implies C=1 so 3* = 1++/x*-16.

7}
J?y = I(4x3—1)dx; Iny = x*~x+InC; p(x) = Cexp(x*—x)

y()=-3 implies C=-3 so y(x) = —3exp(x*-x).

dy
J—z—yj = Idx, TIn2y-1) = x+1ilnC; 2y-1= Cé?

y(1)=1 implies C=e™ so yp(x) = %(l_l_er—Z).
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24.

25.

26.

27.

28.

29.

30.

30

f@ = Jm?xdx; Iny = In(sinx)+InC; y(x) = Csinx
y sin x

W5)=% implies C=% so y(x) = %sinx.

@
y

J(l+2xj; Iny = Inx+x*+InC; y(x) = C xexp(x?)
X

y()=1 implies C=e™ so y(x) = xexp(x*-1).

dy
—

y

J(2x+3x2); ——% = X +x +C; y(x) = FiriC

y(l):_l lmphes C:—l SO y(x) —

1—x?

_x3.
J.eydy = I6e2xdx; e =3e"+C;  y(x) =ln(3ezx+C)

¥(0)=0 implies C=-2 so y(x) =ln(3e2"—2).
2 - dx-. _ . — -1
Jsec ydy = Jm, tany = \/;+C, y(x) =tan (\/;+C)

y(4)=% implies C=-1 so y(x) =tan™ (\/;_ 1) .

(a) Separation of variables gives the general solution

1 1 1
J(——zjdy = -—J xdx, — =-x+C; y(x) = - .
y y x-C

(b) Inspection yields the singular solution y(x)=0 that corresponds to no value of
the constant C.

(© In the figure at the top of the next page we see that there is a unique solution
curve through every point in the xy-plane.

When we take square roots on both sides of the differential equation and separate
variables, we get

Jz—dj}? = J d; y=x-C yx = (x-C).

This general solution provides the parabolas illustrated in Fig. 1.4.5 in the textbook.
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31.

-5 -4 -2

Problem 29 Figure

Observe that y(x) is always nonnegative, consistent with both the square root and the
original differential equation. We spot also the singular solution y(x)=0 that
corresponds to no value of the constant C.

(a) Looking at Fig. 1.4.5, we see immediately that the differential equation
(¥)* =4y has no solution curve through the point (a,b) if 5<0.

(b) Butif 520 we obviously can combine branches of parabolas with segments
along the x-axis to form infinitely many solution curves through (a,b).

(©) Finally, if 5> 0 then on a interval containing (a,b) there are exactly two

solution curves through this point, corresponding to the two indicated parabolas through
(@,b) , one ascending and one descending from left to right.

The formal separation-of-variables process is the same as in Problem 30 where, indeed,
we started by taking square roots in (y’)? =4y to get the differential equation

V= 2\/; - But whereas y" can be either positive or negative in the original equation, the
latter equation requires that )’ be nonnegative. This means that only the right half of
each parabola y=(x~C )2 qualifies as a solution curve. Inspecting the figure at the top
of the next page, we therefore see that through the point (a,5) there passes:

(a) No solution curve if 5 <0,

(b) A unique solution curve if 5> 0,

(©) Infinitely many solution curves if 5 =0, because in this case we can pick any
¢ >a and define the solution y(x)=0 if x<e, y(x)=(x—c)’ if x>c.
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32.

32

-15 -1(‘) -5’ 0 é 1’0 1’5
P4
Problem 31 Figure

Separation of variables gives

dy -1
Xx=| —F——— = sec |y|+C
Jy\/yz—l 4

if l yl >1, so the general solution has the form y(x) = £sec(x — C). But the original

differential equation 3’ = y./y’ —1 implies that 3" >0 if y>1, while y' <0 if
y <-=1. Consequently, only the right halves of translated branches of the curve
y =secx (figure below) qualify as general solution curves. This explains the plotted

o~
T

w
T

y=sec(x)
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33.

34.

3S.

general solution curves we see in the figure below. In addition, we spot the two singular
solutions y(x)=1 and y(x)=-1. It follows upon inspection of this figure that the

initial value problem )= y\/3* -1, y(a)=b hasa unique solution if |b| >1 and has
no solution if lb’ <l. Butif b=1 (and similarly if 5=-1) then we can pick any

¢ > a and define the solution y(x) =1 if x<¢, yp(x)= Isec(x - c)l if c<x<c+Z.

So we see that if b =+1, then the initial value problem ' = ./ ¥ =1, y(@)=b has

R
Y

-4 0 4
X

12

n

The population growth rate is & = In(30000/25000)/10 ~ 0.01823, so the population
of the city ¢ years after 1960 is given by P(r) = 25000¢*”**". The expected year
2000 population is then P(40) = 25000754 ~ 51840,

The population growth rate is £ = In(6)/10 ~ 0.17918, so the population after ¢
hours is given by P(r) = F,e™'™*. To find how long it takes for the population to

double, we therefore need only solve the equation 2P, = P, ™' for
t = (In2)/0.17918 ~ 3.87 hours.

As in the textbook discussion of radioactive decay, the number of “C atoms after ¢
years is given by N(#) = N,e ", Hence we need only solve the equation

N, = N, e for ¢t = (In6)/0.0001216 ~ 14735 years to find the age of the
skull.
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36.

37.

38.

39.

40.

41.

42,

34

As in Problem 35, the number of "“C atoms after ¢ years is given by
N(#) = 5.0x10" ™% Hence we need only solve the equation
4.6x10" = 5.0x10" e for the age ¢ = (In(5.0/4.6))/0.0001216 ~ 686 years

of the relic. Thus it appears not to be a genuine relic of the time of Christ 2000 years
ago.

The amount in the account after 7 years is given by A(f) = 5000¢*%’. Hence the

amount in the account after 18 years is given by A(18) = 5000¢°®**® ~ 21,103.48
dollars.

When the book has been overdue for ¢ years, the fine owed is given in dollars by
A(t) = 0.30¢"™'. Hence the amount owed after 100 years is given by

A(100) = 0.30&"1% ~ 44.52 dollars.

To find the decay rate of this drug in the dog's blood stream, we solve the equation

1 = 7 (half-life 5 hours) for & =(In2)/5~0.13863. Thus the amount in the dog's

bloodstream after ¢ hours is given by A(f) = 4,e""***'. We therefore solve the

equation A(1) = 4,e™** = 50x45 = 2250 for A, ~2585mg, the amount to
anesthetize the dog properly.

To find the decay rate of radioactive cobalt, we solve the equation 1 = 7% (half-life

5.27 years) for k=(In2)/5.27 ~0.13153. Thus the amount of radioactive cobalt left
after 7 years is givenby A(r) = 4,7, We therefore solve the equation

At = 4,e*P" = 0.014, for 1=(In100)/0.13153~35.01 and find that it will be
about 35 years until the region is again inhabitable.

Taking ¢ = 0 when the body was formed and ¢ = T now, the amount Q(?) of **Uin
the body at time ¢ (in years) is given by Q(f) = Qe ™, where k = (In 2)/(4.51x10°).
The given information tells us that

o _ 0.9.

0,-O(T)

After substituting Q(7) = Qoe_kT, we solve readily for ¢/ = 19/9, so
T = (1/b)In(19/9) ~ 4.86x10°. Thus the body was formed approximately 4.86 billion
years ago.

Taking ¢ = 0 when the rock contained only potassium and ¢+ = T now, the amount
O(?) of potassium in the rock at time ¢ (in years) is given by Q(f) = Qpe ™, where

k = (In2)/(1.28x10%). The given information tells us that the amount A(?) of argon at
time ¢ is

A1) = 310, -00)]
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43.

44.

45.

46.

47.

and also that A(T) = Q(T). Thus
0, -9(T) = 90(D).
After substituting Q(T) = Qe we readily solve for

T = (In10/1n2)(1.28x10°) ~ 4.25x10°.

Thus the age of the rock is about 1.25 billion years.

Because 4 = 0 the differential equation reduces to 7" = k7T, so T(f) = 25¢™. The
fact that 7(20) = 15 yields k£ = (1/20)In(5/3), and finally we solve

5=25%" for t=(In5)/k~ 63min

The amount of sugar remaining undissolved after # minutes is given by A(¢) = Ae™;
we find the value of £ by solving the equation A(l) = 4™ = 0.754, for
k=-1n0.75~0.28768. To find how long it takes for half the sugar to dissolve, we solve
the equation A(¥) = Ae™ =14, for t=(In2)/0.28768 ~2.41 minutes.

(a) The light intensity at a depth of x meters is given by 7(x) = I,e™**. We solve
the equation I(x)=1Ie** =11, for x=(In2)/1.4 ~0.495 meters.

b)  Atdepth 10 meters the intensity is /(10) = I,e " ~ (8.32x107) I .
0 0

(©)  Wesolve the equation I(x)=1Ie™** =0.011, for x=(In100)/1.4 ~3.29
meters.

(a) The pressure at an altitude of x miles is givenby p(x) =29.92¢°?*. Hence the
pressure at altitude 10000 ftis p(10000/5280) ~ 20.49 inches, and the pressure at
altitude 30000 ftis p(30000/5280)~ 9.60 inches.

(b) To find the altitude where p = 15 in., we solve the equation 29.92¢7%%* =15 for
x=(In29.92/15)/0.2 ~ 3.452 miles ~ 18,200 ft.

If N(#) denotes the number of people (in thousands) who have heard the rumor after ¢
days, then the initial value problem is

N’= K100—N), NO) =0

Section 1.4 35

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall



48.

49.

50.

51.

36

and we are given that N(7) = 10. When we separate variables (dN /(100 — N Y=kdt)
and integrate, we get In(100 — N) =~ k¢ + C, and the initial condition N (0)=0 gives
C=In100. Then 100—N =100e™, so N()= 100(1 —e-’“‘). We substitute £ =7,

N=10 and solve for the value & =In(100/90)/7 ~0.01505. Finally, 50 thousand
people have heard the rumor after 7=(In2)/k ~46.05 days.

Let N,(f) and N,(¢) be the numbers of >*U and 2°U atoms, respectively, at time ¢ (in
billions of years after the creation of the universe). Then N,(¢)= N, 2 and

N;(t) =Ny, where N, is the initial number of atoms of each isotope. Also,
k=(n2)/4.51 and ¢=(In2)/0.71 from the given half-lives. We divide the equations
for N; and N; and find that when ¢ has the value corresponding to "now",

=

el b1

8 =137.7.

Z|

Finally we solve this last equation for ¢+ = (In137.7)/(c—k) ~ 5.99. Thus we get an
estimate of about 6 billion years for the age of the universe.

The cake's temperature will be 100° after 66 min 40 sec; this problem is just like
Example 6 in the text.

(@) A(r)=10€". Also 30 = A(%)=10¢"*?, soso

e =3 ko= i1ns = ln(32”5).
15

Therefore A(r) =10(e*)" =10-3%/",
(b) After 5 years we have A(5)=10-3*" ~20.80 pu.

_ 15 In(10)
2 InQd)

(c) A(H)=100 when A(f) = 10-3%'5%; ¢ ~ 15.72 years.

(@ A =15¢"; 10=A4(5) =15¢"",s0

Therefore
¢ 3 3 -1/5 (211/5
A(t) = 15 —h=] =152 =152 .
1) = Bew ( 5 2) (2)
(b) After 8 months we have
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52.

S3.

54.

5S.

56.

(c) A(t)=1 when
t/5 .
A) = 15.(%) =1 ¢= 5_IH(T§)

Thus it will be safe to return after about 33.4 months.

33.3944.

If L(#) denotes the number of human language families at time ¢ (in years), then
L(¢) = e for some constant k. The condition that L(6000) = ¢® 1.5 gives

k= 6—()166111% If "now" corresponds to time =T, then we are given that
L(T)=e" =3300,s0 T = l1n3300 = 60001n3300 ~119887.18. This result suggests
k In(3/2)

that the original human language was spoken about 120 thousand years ago.

If L(#) denotes the number of Native America language families at time ¢ (in years),
then L(#)=¢" for some constant k. The condition that L(6000) = ¢®®* =15 gives

1 3 . .
In=. If "now" corresponds to time =T, then we are given that

T6000 2
L(T)=¢e" =150,s0 T = %lnISO = 6_(:0(0Th121_)5_0 ~74146.48. This result suggests that the
n
ancestors of today's Native Americans first arrived in the western hemisphere about 74
thousand years ago.

With 4(y) constant, Equation (19) in the text takes the form

d_y:k\/;

dt

We readily solve this equation for 2\/3)— = kt+C. The condition (0) = 9 yields

C =6, and then y(1) = 4 yields k = 2. Thus the depth at time ¢ (in hours) is
() = (3 —%)*, and hence it takes 3 hours for the tank to empty.

With 4 = 7(3)" and a = #(1/12)*, and taking g = 32 ft/sec?, Equation (20)
reduces to 162) = ——\/; . The solution such that y = 9 when ¢ = 0 is given by
324\J]y = —t+972. Hence y = 0 when ¢ = 972 sec = 16 min 12 sec.

The radius of the cross section of the cone at height y is proportional to y, so A(y) is
proportional to 3*. Therefore Equation (20) takes the form
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57.

58.

59.

38

Yy = -kfy,
and a general solution is given by
2% = Skt+C.

The initial condition "y(0) = 16 yields C = 2048, and then (1) = 9 implies that
5k = 1562. Hence y = 0 when

t = C/5k = 2048/1562 ~ 1.31 hr.

The solution of 3" = —k./y is given by
2y = -kt+C.

The initial condition y(0) =% (the height of the cylinder) yields C =2+ . Then
substitution of =T, y=0 gives k= (2 N/ YT. 1t follows that

y = h(l-1T)>

If r denotes the radius of the cylinder, then
V(y) = 2y = ar’h(1=tIT) = V,(1-t/T)~

Since x = y** the cross-sectional area is A(y) = zx* = 7y*"%. Hence the

general equation A(y))' = —a2gy reduces to the differential equation yy'=—k

with general solution
AR2y* = -kt +C.

The initial condition 3(0) = 12 gives C = 72, and then y(1) = 6 yields k = 54.
Upon solving for y we find that the depth at time ¢ is

() = J144-108¢ .
Hence the tank is empty after # = 144/108 hr, that is, at 1:20 p-m.

(a) Since x> = by, the cross-sectional area is A(y) = nx* = zby. Hence the

equation A(y)y' = —a./2gy reduces to the differential equation

Yy = -k = —(a/nb)j2g
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60.

61.

with the general solution
@BRY"? = -kt + C.

The initial condition (0) = 4 gives C = 16/3, and then ¥(1) = 1 yields k£ = 14/3.
It follows that the depth at time ¢ is

w0 = 8-T70".

(b) The tank is empty after ¢ = 8/7 hr, that is, at 1:08:34 p.m.

()  Weseeabovethat k = (a/zb),/2g = 14/3. Substitutionof @ = #7r>, b = 1,

g = (32)(3600)* f/hr* yields » = (1/60)~/7/12 ft~0.15in for the radius of the
bottom-hole.

With g = 32 fi/sec” and a = 7(1/12)%, Equation (24) simplifies to
dy Fs
A= = == [y.
M= -y

If z denotes the distance from the center of the cylinder down to the fluid surface, then
y =3-z and A®p) = 1009 -2z)"2. Hence the equation above becomes

172 %
dt
180(3+2)2dz = ndi,

10(9 - 22) = %(3—@”2,

and integration yields
1203+ 2)"* = zt+C.

Now z = 0 when ¢t = 0, so C = 120(3)**. The tank is empty when z = 3 (that is,
when y = 0) and thus after

t = (120/2(6>% - 3*?) ~ 362.90 sec.

It therefore takes about 6 min 3 sec for the fluid to drain completely.

A(y) = #(8y—y*) asin Example 7 in the text, butnow a = 7/144 in Equation (24),
so the initial value problem is

188y — A = -y, 3(0) = 8.

We seek the value of + when y = 0. The answeris ¢~ 869 sec = 14 min 29 sec.
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62. The cross-sectional area function for the tank is A4 = 7(1—y*) and the area of vthe

bottom-hole is a = 10™*7z, so Eq. (24) in the text gives the initial value problem

ﬁ(l—yz)—i% = -10*722x9.8y, (0) = 1.

Simplification gives

(y-l/z__ys/z)%%’ = —1.4x107*V10

so integration yields
2y —%y” = —1.4x10*V107+C.

The initial condition »(0) =1 implies that C = 2 - 2/5 = 8/5, so y=0 after
t = (8/5)/(1.4x 10‘4\/1_6) ~ 3614 seconds. Thus the tank is empty at about 14
seconds after 2 pm.

63. (a) As in Example 8, the initial value problem is
2\ Ay
@y =)= = —wkfy,  y0)=4
where k£ = 0.67>\2g = 4.8+2. Integrating and applying the initial condition just in
the Example 8 solution in the text, we find that

16
=V

v 2 448
3 57

= —kt+—.
15

When we substitute y = 2 (ft) and 7 = 1800 (sec, that is, 30 min), we find that
k ~ 0.009469. Finally, y = 0 when

r = ﬂ ~ 3154 sec = 53 min 34 sec.

15k
Thus the tank is empty at 1:53:34 pm.

(b) The radius of the bottom-hole is

r = k/4.8 ~0.04442 ft ~ 0.53 in, thus about a half inch.
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65.

66.

The given rate of fall of the water level is dyldt = -4 in/hr = —(1/1 0800) ft/sec. With
4 =7x* and a = 7, Equation (24) is

(7x*)(1/10800) = —(7+%)[2gy = ~87r2.[y.

Hence the curve is of the form ¥ = kx*, and in order that it pass through (1,4) we
must have £ = 4. Comparing \/; = 2x* with the equation above, we see that

(87%)(10800) = 1/2,
so the radius of the bottom hole is r = 1/(240\/5) ft ~ 1/35in.

Let £ = 0 at the time of death. Then the solution of the initial value problem
"= K70 -1), 1(0) = 98.6
is
() = 70+28.6¢7".

If # = a at 12 noon, then we know that

T@) = 70+28.6e™™ = 80,

T(a+1) = 70+28.6¢7 ¥ ~ 75

Hence
28.6¢™ =10 and 28.6¢ "% = 5.

It follows that ¢ = 172, so k = In2. Finally the first of the previous two equations
yields

a = (In2.86)/(In2) ~ 1.516 hr ~ 1 hr 31 min,
so the death occurred at 10:29 a.m.

Let = 0 when it began to snow, and ¢ = fo at 7:00 am. Let x denote distance along
the road, with x = 0 where the snowplow begins at 7:00 a.m. If y = ¢ is the snow
depth at time ¢, w is the width of the road, and v = dx/drt is the plow's velocity, then
"plowing at a constant rate" means that the product wyv is constant. Hence our
differential equation is of the form

P
dt t
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67.

68.

42

The solution with x = 0 when ¢ = £ is

t = tye”

We are giventhat x = 2 when ¢t = f,+1 and x = 4 when ¢ = )+ 3, so it follows
that

fh+1 =1the* and f+3 = et
Elimination of #, yields the equation
e* -3 +2 = (P -1)*-2) = 0,

so it follows (since k> 0) that ¢ = 2. Hence to+1 = 2fy, so ty = 1. Thus it began
to snow at 6 a.m.

We still have 7 = 1 ¢, but now the given information yields the conditions

k

LHh+1 = 1064 and LHh+t2 = f()e7k

at 8 a.m. and 9 a.m., respectively. Elimination of #;, gives the equation
2¢* e -1 = 0,

which we solve numerically for £ = 0.08276. Using this value, we finally solve one of

the preceding pair of equations for #, = 2.5483 hr ~ 2 hr 33 min. Thus it began to
snow at 4:27 a.m.

(a) Note first that if @ denotes the angle between the tangent line and the horizontal,
then ¢ =%Z-6 so cota=cot(£—-6)=tanf = )'(x). It follows that

sin _ 1 _ 1
Jsin? ? \/ 2 N2
sin“ @ +cos” o I+cot" \/1+y(x)

sina =

Therefore the mechanical condition (sina)/v = constant (positive) with v=2gy
translates to

1
————=—— = constant, so Y[1+(3)*] = 2a
J2gy 1+ (V)

for some positive constant a. We readily solve the latter equation for the differential
equation
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69.

(b) The substitution y =2asin’t, dy =4asintcost di now gives

i /2a—2asin2t cost
4asthOStdt = ———z—dx = _—dx,
2asin” t sint
dx = 4asin’t dr.

Integration now gives

x = [4asin’rdr = 2a [(1-cos2r) d

2a(t—3sin26)+C = a(2t—sin2¢) +C,

and we recall that y =2gsin®f = a(1—-cos2f). The requirement that x =0 when 7 =0
implies that C =0. Finally, the substitution & = 2¢ (nothing to do with the previously
mentioned angle & of inclination from the horizontal) yields the desired parametric
equations

x =a(@—-sin0), y=a(l-cosé)

of the cycloid that is generated by a point on the rim of a circular wheel of radius a as it
rolls along the x-axis. [See Example 5 in Section 9.4 of Edwards and Penney, Calculus:
Early Transcendentals, Tth edition (Upper Saddle River, NJ: Prentice Hall, 2008).]

Substitution of v =dy/dx in the differential equation for y = y(x) gives

dv
a— = N1+,

dx

and separation of variables then yields

ke = | =; sinh'v = £+C; d_y = sinh iC—+C .
1 1
142 a a dx

The fact that y'(0)=0 implies that C, =0, so it follows that

Y = sinh(ic—); y(x) = acosh(£)+C.
dx a a

Of course the (vertical) position of the x-axis can be adjusted so that C =0, and the units
in which 7 and p are measured may be adjusted so that a =1. In essence, then the
shape of the hanging cable is the hyperbolic cosine graph y =coshzx.
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SECTION 1.5

LINEAR FIRST-ORDER EQUATIONS

1.

10.

44

p=exp(jldx)=ex; Dx(y-ex)=2ex; y-e=2+C; y(x) = 2+Ce””

¥(0)=0 implies C=-2 so p(x) = 2—2¢*

p=exp(j(—2)dx)=e‘2x; Dx(y-e'z")=3; e =3x+C;  y(x) = Bx+C)e™

¥(0)=0 implies C=0 so y(x) = 3xe**

p:exp(Ide)=e3x; Dx(y-e3")=2x; y-e¥=x’+C;  y(x) = (x*+C)e™
p=exp(_[(—2x)dx)=e'x2; Dx(y-e'x2)=1; y-e‘x2 =x+C; y(x) = (x+C)e"2
p=exp(j(2/x)dx)=e”“"=x2; Dx(y-x2)=3x2; y-x’=x+C

y(x) = x+C/x* y()=5 implies C=4 so y(x) = x+4/x>
p=exp(f(5/x)dx)=e51“x=x5; Dx(y~x5)=7x6; y-x=x"+C

y(x) = x*+C/x°;  p(2)=5 implies C=32 so y(x) = x> +32/°
p=exp(f(1/2x)dx)=e(h”‘)/2=\/;; Dx(y-\/;)=5; y-\/_=5x+C

y(x) = 5Jx +C/x

,o=exp(."(1/3x)dx)=e(l‘”‘)’3 =%/;c_; Dx(y-%/;)=4i/;; y-x=3x*"+C
y(x) = 3x+Cx713

p=exp(j(—1/x)dx)=e““"=1/x; D,(y-1/x)=1/x; y-1/x=lnx+C
y(x) = xInx+Cx; y(1)=7 implies C=7 so p(x) = xlnx+7x
yol ___exp(I(_S/zx)dx)=e(—31nx)/2 =x—3/2;

Dx(y-x_3/2)=9x”2/2; y-x7? =354y y(x) = 3x°+Cx"?
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11.

12.

13.

14.

15.

16.

17.

18.

19.

Yo, =exp(j(1/x—3)dx):e1“x‘3x =xe”*; D, (y-xe‘“) =0; y-xe*=C

y(x) = Cx7'e¥;  y(1)=0 implies C=0 so y(x)

0 (constant)

p:exp(j(3/x)dx)=e3l“x=x3; Dx(y-x3)=2x7; y-x’=1x*+C
y(x) = 12’ +Cx7;  y(2)=1 implies C=-56 so y(x) = 1x°—56x7
p=exp(J‘1dx)=ex; Dx(y-ex)=e2"; y-et=1e?*+C

y(x) = fe*+Ce™™;  p(0)=1 implies C=1 so y(x) = Le*+1le™
p=exp(f(—3/x)dx)=e"3hx=x'3; Dx(y-x"3)=x'1; y-x=lnx+C
y(x) = ¥’Inx+Cx% p(1)=10 implies C=10 so p(x) = ¥*Inx+10x°
p=exp(_f2xdx)=ex2; Dx(y-ex2)=xe"2; y-e* =%e"2 +C

y(x) = 1+Ce™;  y(0)=-2 implies C=-% s0 y(x) = 4-Fe™

X

p= exp( Icosxdx) =™ D, (y- e ) =ecosy;  y-e =M 4 C

y(x) = 1+Ce—sinx; y(ﬂ')=2 ll’nphes C=1 so y(x) — 1+e—sinx

p=exp(jl/(1+x)dx)=e1“(1”)=1+x; Dx(y-(1+x))=cosx; y-(1+x)=sinx+C

yoo) = SFSE )1 implies C=1 so y(x) = LFSI0X
I+x I+ x

p=exp(j(—2/x)dx)=e"21“x=x'2; Dx(y-x—2)=cosx; y-x?=sinx+C

y(x) = x*(sinx +C)

o= eXP( ICOthx) =" =sinx; D, (y-sinx)=sinxcosx

y-sinx=1sin’x+C;  y(x) = tsinx+Cescx
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20.

21.

22.

23.

24.

25.

46

p=exp( [(-1- x)dv) =" p, (v e ) = (14 x)e

y_e—x—x2/2 =_e—x—x2/2 +C, y(x) - _1+Cex+x2/2

¥(0)=0 implies C=1 so y(x) = —1+e&"* "2

o= exp(_[(—3/x)dx) =e™=x7, D (y-x"3) =cosx; y-x" =sinx+C
y(x) = ¥’sinx+Cx’;  p(27z)=0 implies C=0 so y(x) = x’sinx
o= exp(J.(—Zx)dx) =e™; D, (y-e“"z) =3x% y.e* =x’+C

y(x) = (x3+C)e+x2; ¥(0)=5 implies C=5 so y(x) = (x3+5)e+"2
p= exp( I(2 - 3/x)dx) =™ = x>, D, (y : x“3e2") =4¢™

y-x2e¥ =2 +C; y(x) = 28 +CxPe™

p= eXp(J-3x/(x2 +4)dx) — e3ln(x2+4)/2 :(x2 +4)3/2; Dx (y_(xl +4)3/2) — x(xZ +4)1/2
y-(x* +4)*"? =L(x*+4)? +C;  y(x) = 1+ C(x* +4)37

y(©) =1 implies C=% so y(x) = 4[1+16(x* +4)7"?]

First we calculate

J3x3dx = J[Sx— 3% ]dx = %[xz—ln(x2+1)].

x*+1 x> +1

It follows that o = (x* +1)*?exp(3x*/2) and thence that

D, (v + 1) exp(3x 12)) = 6x(x*+4)°?,
Y-+ exp(3x’/2) = —2(x* +4)** +C,
y(x) = —2exp(3x?/2) + C(x* +1)*? exp(-3x*/2).

Finally, y(0)=1 implies that C =3 so the desired particular solution is

y(x) = —2exp(3x*/2) +3(x* +1)** exp(-3x>/2).

Chapter 1

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall



26.  With x'=dx/dy, the differential equation is y°x'+43?x =1. Then with y as the
independent variable we calculate

p() = exp( [/ n)dy) = ™ = D,(x-y*) =y
i1, 1 C
. = —y+C;, x = +—
X y=Sy ) I

27.  With x'=dx/dy, the differential equationis x'~x=ye”. Thenwith y asthe
independent variable we calculate

PO = exp( [(-Ddy) = 73 D, (x-¢7) = y
x-e? =13y°+C; x(y) = (%y2+C)ey

28. With x"=dx/dy, the differential equation is (1+y*)x'=2yx=1. Then with y as the
independent variable we calculate

PO) = exp( [(2y M1+ y)dy) = &M < (1457
D,(x-(1+y)") = 1+
An integral table (or trigonometric substitution) now yields

X dy 1{ -
s = - = = ~+tan” y+C
1+y (1+y2) 2 1+y

x(y) = %[y+(1+y2)(tan”1y+C)]

29, p= exp( I(—2x)dx) = e"xz; D, (y e ) =¥, y: e =C+ fe"’z dt
y(x) = e (C + %\/;erf(x))
30.  After division of the given equation by 2x, multiplication by the integrating factor
= -2 .
P x ' yields
X2y ——;-x_my = x 2 cosx,

D (x‘”zy) = x " cosx,

X

29
x %y = C+I t2 cost dt.
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31.

32.

33.

34.

48

The initial condition (1) = 0 implies that C = 0, so the desired particular solution is

y(x) = x'? .[x " cost dr .
@ =Py =Py, s yi+Py =0

® = (_.p)e"IP"".[j(gejm)dx]+e_wx-gejpdx = -Py,+Q

(a) If y=Acosx+ Bsinx then
Y'+y = (A+B)cosx+(B—-A)sinx = 2sinx

provided that 4 =—1 and B=1. These coefficient values give the particular solution
Yp(x) = sinx - cos x.

(b) The general solution of the equation y'+ y =0 is ¥(x) = Ce™ so addition to the
particular solution found in part (a) gives y(x) = Ce™ +sinx — cos x.

(c) The initial condition »(0)=1 implies that C =2, so the desired particular
solution is y(x) = 2e¢™* + sin x — cos x.

The amount x(f) of salt (in kg) after ¢ seconds satisfies the differential equation
x'=-x/200, so x(#) = 100e™"*®. Hence we need only solve the equation
10 = 100e™*® for t =461 sec =7 min 41 sec (approximately).

Let x(#) denote the amount of pollutants in the lake after ¢ days, measured in millions of
cubic feet (mft’). The volume of the lake is 8000 mft’, and the initial amount x(0) of
pollutants is x, = (0.25%)(8000) = 20 mft’. We want to know when

x(1) = (0.10%)(8000) = 8 mft>. We set up the differential equation in infinitesimal form
by writing

dx = [in]—[out]

(0.0005)(500) df ——>—. 500,
8000

which simplifies to
dc 1 x de 1 1

—_ , or — X .
dt 4 16 dr 16 4

Using the integrating factor p =e”'®, we readily derive the solution x(£)=4+16e™""°
for which x(0)=20. Finally, we find that x =8 when #=16In4~22.2 days.

Chapter 1

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall



35.

36.

37.

38.

The only difference from the Example 4 solution in the textbook is that V= 1640 km®
and 7 =410 km’/yr for Lake Ontario, so the time required is

= Kln4 = 4In4 ~ 5.5452 years.
r

(a) The volume of brine in the tank after # minis ¥(f) = 60 —¢ gal, so the initial
value problem is

&, 3% x(0) = 0.
dt 60 —1
The solution is
(60-1)°
) = (60-1)———~,
x(8) = ( ) 3600

(b)  The maximum amount ever in the tank is 40/+/3 ~23.091b. This occurs after
t=60-20/3 ~25/36 min.

The volume of brine in the tank after + minis V() = 100+ 2¢ gal, so the initial value

problem is

& B x(0) = 50.
dt 100 +2¢

The integrating factor p(f) = (100 + 2/)*? leads to the solution

50000

x(f) = (100+2r)—m.

such that x(0) = 50. The tank is full after ¢ = 150 min, at which time
x(150) = 393.75 1b.

(a) de/dt = —x/20 and x(0)=50 so x(f) = 50e™%,
(b) The solution of the linear differential equation

D 5% 5y 5 1
dt 100 200 2 40

with y(0) = 50 is
y(t) = 1507 _100¢™2,

(c) The maximum value of y occurs when
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Y(t) = _%e—tMO 5720 = _%e—tMO (3_4e—t/40) - 0.

We find that ymax = 56.251b when ¢ = 40 In(4/3) ~ 11.51 min.
(a) The initial value problem

dx  x

o X 0) = 100
da 10 *(0)

for Tank 1 has solution x(#) = 100e™". Then the initial value problem

dt 10 10

DX Y g Y $(0) = 0

for Tank 2 has solution y(#) = 10tre™'",

(b) The maximum value of y occurs when
y’(t) — loe—t/lo_t_e—t/lo — O
and thus when t=10. We find that ymax = 3(10) = 100e! ~ 36.79 gal.

(b) Assuming inductively that x, = "e™’*/(n!2") , the equation for Xpe1 1S
n q

1 1 e’
- = _xn__xn+l = _ym__—xnﬂ'
dt 2 2 n'2 2

We easily solve this first-order equation with x,,(0) = 0 and find that

tn+1 e—t/2

thereby completing the proof by induction.
(@ A = 0.064+0.12S = 0.064+ 3.6
(b) The solution with 4(0) = 0 is

A(t) — 360(6006 t _ 60.05 t)’

Chapter 1

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall



42.

43.

44.

45.

so A(40) ~ 1308.283 thousand dollars.

The mass of the hailstone at time ¢ is m = (4/3)z7* = (4/3)zk’’. Then the equation
d(mv)/dt = mg simplifies to

w'+3v = gt
The solution satisfying the initial condition v(0) = 0 is W) = gt/4, so v() = g/4.

The solution of the initial value problem y'=x—y, y(=5)=y, is
¥(x) = x=1+(y, +6)e™".

Substituting x =5, we therefore solve the equation 4+ (y, +6)e™ = y,

with y; = 3.998, 3.999, 4, 4.001, 4.002 for the desired initial values
yo = =50.0529, -28.0265, —6.0000, 16.0265, 38.0529, respectively.

The solution of the initial value problem ' =x+ y, y(=5) =y, is
y(x) = —x—1+(y,—4)e*".

Substituting x =5, we therefore solve the equation —6+(y, —4)e'® = y,

with y; = -10, -5, 0, 5, 10 for the desired initial values
Yo = 3.99982, 4.00005, 4.00027, 4.00050, 4.00073, respectively.

With the pollutant measured in millions of liters and the reservoir water in millions of
cubic meters, the inflow-outflow rate is » = 1, the pollutant concentration in the inflow

is ¢, =10, and the volume of the reservoir is ¥ = 2. Substituting these values in the
equation x'=rc,—(r/V)x, we get the equation

& _, 1
dt 10
for the amount x(¢) of pollutant in the lake after # months. With the aid of the

integrating factor p =e'!°

, we readily find that the solution with x(0) =0 is
x(1) = 20(1—¢™"™).

Then we find that x =10 when r=10In2 ~ 6.93 months, and observe finally that, as
expected, x(¢)— 20 as ¢ — .
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46.  With the pollutant measured in millions of liters and the reservoir water in millions of
cubic meters, the inflow-outflow rate is » = 3. the pollutant concentration in the inflow

is ¢, =10(1+cosr), and the volume of the reservoir is ¥ = 2. Substituting these values
in the equation x'=rc, ~(r/V)x, we get the equation

g = 2(1+cost)——1—x, that is, ﬁ+ix= 2(1+cos?)
dt 10 dr 10

for the amount x(#) of pollutant in the lake after # months. With the aid of the
integrating factor p=e"", we get

x-e’ = I(2e’”° +2e'"" cost) dt

t/10
= 20e"0 4. ¢ —cost+sinf |+ C.
&)’ +1* {10

When we impose the condition x(0) =0, we get the desired particular solution

x(1) = %(101-—10%"“0+cost+lOsint).

In order to determine when x =10, we need to solve numerically. For instance, we can
use the Mathematica commands

x = (20/101) (101 - 102 Exp[-t/10] + Cos[t] + 10 Sin[t]):
FindRoot[ x == 10, {t,7} ]
{t -> 6.474591767017537}

and find that this occurs after about 6.47 months. Finally, as 7 — o we obsetve that
x(¥) approaches the function 20+ Br(cost+10sin7) that does, indeed, oscillate about

the equilibrium solution x(7) = 20.

SECTION 1.6
SUBSTITUTION METHODS AND EXACT EQUATIONS

It is traditional for every elementary differential equations text to include the particular types of
equations that are found in this section. However, no one of them is vitally important solely in
its own right. Their main purpose (at this point in the course) is to familiarize students with the
technique of transforming a differential equation by substitution. The subsection on airplane
flight trajectories (together with Problems 56—5 9) is included as an application, but is optional
material and may be omitted if the instructor desires.
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The differential equations in Problems 1-15 are homogeneous, so we make the substitutions

dy dv
y = vx, — = y+x—,
dx dx

ve2,
X

For each problem we give the differential equation in x, v(x),and v'=dv/dx that results,
together with the principal steps in its solution.

1. x(v+1)v’=—(v2+2v—l); jz—g‘{;—l)g—::—dex; ln(v2+2v—1)=—21nx+lnC
v +2v—

xz(v2+2v—l) =C;, y+2xy-x*=C

2. 2xvy' =1; I2vdv=filx~; vV =lnx+C; y2=x2(1nx+C)
x

dav dx 2
3. xv’=2\/1_z; j =f—-; \/; = Inx+C; = x(Ilnx+C
Iy . y ( )

. x(v-1v=—(s?+1); Jz(lz‘v)dv=f2dx; 2tan'v—In(v* +1) = 2Inx + C
ve+1 x

2tan”' (p/x)~In(y*/x* +1) = 2Inx+C

5. x(v+1)v =207 YJ(“I"F—IZ‘)CI":—f%; Inv-2 = —2Inx+C
vV v X \4

lny—lnx—--J£ = -2Inx+C; In(xy) = c+X
y Y

6. x(2v+1)v' =—2v% J(—z—+—12-)dv=—fﬁx-; 1nv2——l=—21nx+C
v o x v

21ny—21nx—£ = -2Inx+C; 2ylny = x+Cy
Y

7. xvv' =1, _‘-3v2dv=fyzc—; v = 3nx+C;, ® = x*(3Inx+C)
x

8. xv'=e"; —qu‘vdv=—fﬁ; e’ = -Inx+C;, -v = In(C-Inx)
x

y=-x ]n(C—]nx)
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10.

11.

12.

13.

14.

15.

54

XV =v; - d—;;:—fﬁ; L -lnx+C; =x = y(C—lnx)
v x v

xvv' =29 +1; j;‘;ivlz ﬂ; ln(2v2+1)=4lnx+lnC
\ x

2y*/x*+1 = Cx*; x*+2y* = CxS

2
x(l—vz)v’=v+v3; 1= dv = ﬁ; o dv = &
V4 x v v+l x

lnv—ln(v2+l) = Inx+InC, v = Cx(v2+1); y = C(x2+y2)

xvv =41 +4; f\/vr% =J%; V44 = Inx+C

V44 = (lnx+C)2; 4x* +y* = x2(1nx+C)2

xv’=w/v2+1; f dy =fﬂ; ln(v+\/v2+1)=1nx+lnC
Vvi+1 x

v+ +1 = Cxg YHxt+y?
xvv' = 1+9? —(1+v2)

Inx = J vdv
V14?2 ~(1+v?)

Cx*

1 du

i

= -—Jdl = ~lnw+InC
w

(u = 1+v%)

with w=1-u. Back-substitution and simplification finally yields the implicit

solution x—./x*+3? = C.

x(v+1)V'=-—2(V2+2V); 20+ Ddy %;

e . ln(v2 +2v) =

V42 = C/x'; X%y +2x%y= C
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16.  The substitution v = x+ y+ 1 leads to

X_J dv _J’Zudu = )
1+\/; 1+u

= 2u-2In(l+u)+C

2yx+y+1-2In(l+x+y+1D)+C

av 1. v C
3 = —tan" —+—
vi+4 2 2 2

v = 2tan(2x-C); y = 2tanRx~C)—4x

=
Il

17. v =4dx+y, v=1v'+4 xzj

18. v=x+y v =v+l;, x = ﬂ:J 1- ! jdv = v—-In(v+1)-C
v+1 v+1

y=hkx+y+1)+C.

Problems 19-25 are Bernoulli equations. For each, we indicate the appropriate substitution as
specified in Equation (10) of this section, the resulting linear differential equation in v, its
integrating factor p, and finally the resulting solution of the original Bernoulli equation.

19, v=y? V-_4v/x = -10/x*, p=1/x" y: = x/(Cx5+2)

20.  v=y* V+6xv =18x; p=€7; Y =3+Ce
21. v=y7 V42v = =2 p=e"; 3y = 1/(Ce”2x—1)
22.  v=yp7 V-6v/ix = -15/x% p=x" = 7x/(7C'x7+15)

23 v=y"% V-2v/x = -1, p=x? y= (x+Cx2)_3
24, v=y? V42v = e /x;  p=e y: = e /(C+Inx)
25. v=y" V+3v/x = 3/J1+x"; p=x; 3y = (C+3\/1+x4)/(2x3)

26.  The substitution v = 3° yields the linear equation v'+v = ¢ with integrating
factor p = ¢*. Solution: j’ = ¢*(x + C)

27.  The substitution v = 3° yields the linear equation xv'—v = 3x* with integrating
factor p = 1/x. Solution: y = (*+ C x)"?
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28.

29.

30.

The substitution v = & yields the linear equation x v'—2v = 2x°¢” with integrating
factor p = 1/x*. Solution: y = In(C £ +x%e™)

The substitution v = siny yields the homogeneous equation 2xv v’ = 45 + V7,
Solution: sin’y = 4~ Cx

First we multiply each side of the given equation by ¢”. Then the substitution v = &
gives the homogeneous equation (x+v)v' = x—v of Problem 1 above.
Solution: ¥*—2x & —e*” = C

Each of the differential equations in Problems 31-42 is of the form M dx+ Ndy = 0, and the
exactness condition &M /8y = 0N /dx is routine to verify. For each problem we give the
principal steps in the calculation corresponding to the method of Example 9 in this section.

31.

32.

33.

34.

3s.

36.

37.

56

F = j(2x+3y)dx = X +3xy+g(y); F, =3x+g(y) =3x+2y =N
g0 =2y g =4 43+ = C

F = [(4x-y)dr = 28—y +g0) F, = -x+g(0) = 6y-x = N

¥y

g(y) = 6y; gy =34 X —xy+3y* = C

F = _f(3x2+2y2)dx = X+x’+g(y); F, =4xy+g'(y) = 4xy +6y>= N

2

g'(y) =6y g

3

2y S +2x7°+2y° = C

il

2x’y+g'(y) = 2x’y+4y’= N

F = j(2xy2+3x2)dx = x3+x2y2+g(y); F

y

3

g =4y, g = »h < +x’yt+ !

C

F = I(x3+y/x)dx = Ixf+ymx+g(y); F, =lnx+g(y) =y +lax=N
g =y g = % 1x*+1y* 4 ylnx = C

F = f(1+ye"y)dx =x+e”+g(y); F, =xe”+g(y) = 2y+xe”? =N
g =2y g0 =% x+e?+y' = C

F = j(cosx+lny)dx = sinx+xlny+g(y), F, = x/y+g'(y) = x/y+e’=N

gy =¢e; gl =¢; sinx+xlny+e’ = C
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d x+y

38. = - = B
F f(x+tan Vde = 1x* +xtan™ y + g(y); F, = =+ g'(y) = =N
I+y 1+3?
' - _ Y .
g = 7,70 80 = fin(+y?); 7% +xtan” y+1inl+)7%) = C
3. F = [BFy+yY)dx = ¥y 11y 4 g(y);
F, = 3x3y2+4xy3+g’(y) = 3x3y2+y4+4xy3= N
g =y gy = 1y ¥y +xptely = C
40. F = I(e"siny+tany)dx = e'siny+xtany +g(y);
F, = e'cosy+xsec’ y+g'(y) = e*cosy+xsec’y= N
g =0 gy =0 e’siny+xtany = C
2x 3y? 2oy
41. F = J(—-—Ljd =22 ;
P PR g(y);
x> 2y , x> 2
F = -=+Stg() = -+ Loy
y oy
P )
g =—= g =2Jy; T+Liafy-c
y y o x
42. F = 2 3 s " -2/3 -3/2
YTy Ty e = xyT x4 g(y);
F = 2 513, . -3/2 ' 32 2
= —Exy +x 7+ g (y) = x —Ex PP N
g =0 g0 =0 xy?P+x?ly = €
43.  The substitution )’ = p. Y'=p'in xy"=y yields
xp' = p, (separable)
jill _ (% = 1 I
- . np = Inx+InC,
y'=p=Cx,
¥(x) = +Cx*+B = Ax* + B.
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44.  The substitution y'=p, y"=pp'=p(dp/dy) in yy"+( y’)2 =0 yields

ypp'+p* =0 = yp' = —p, (separable)
@b _ dy
p

p=Cly = «x J—dy—f dy

= Inp=-lny+InC,

y
X = 2 _+B = Ay*+B.
) > y

45.  The substitution y'=p, y"=pp'=p(dp/dy) in y"+4y=0 yields

pp'+4y =0, (separable)
[pdp = - [4ydy = 1p" =-2y"+C,
p’ = -4y +2C = 4(%C—y2),
-1y

x = |=dy = n” +D,

S Ever
y(x) = ksin[2x—2D] = k(sin2xcos2D —cos2xsin2D),
y(x) = Acos2x+ Bsin2x.

46.  The substitution y' =p, y"=p' in xy"+ ) =4x yields

xp'+p = 4x, (linear in p)
Dlx-pl=4x = x-p=2x"+4,
= @ = 2x+£,
dx x

y(x) = x*+Alnx +B.

47.  The substitution y'=p, y"=p' in Y =( y’)2 yields

p =7p, (separable)

jfl%= dex = —l=x+B,
p p

a1

dx x+B’

y(x) = A—1n|x+A|.
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48.  The substitution y'=p, y"=p' in x’y"+3xy" =2 yields

D

x
DIxpl=2x = x*p=x"+C,
& 1.C

+..._
dx x x¥’

y(x) = lnx+£2+B.
X

49.  The substitution y'=p, y"=pp'=p(dp/dy) in yy"+( y’)2 =yy' yields
ypp'+p’ =y = yp+p=y (lnearin p),
D,y-pl =y,
1, 1 y+C

==y +-C = = s
yp 2)’ ) D 2y
x = fldy - jzzydy = ln(y2+C)-—lnB,

p v +C
Y +C =B = y(x) = £(4+Be)”.
50.  The substitution y'=p, y"=p' in 3"=(x+ y’)2 gives p'=(x+ p)’, and then the
substitution v=x+p, p'=v'—1 yields
vV-1l=1v = o 142,
dx
av -
5 =Idx = tan" v = x+ 4,
1+v

: dy
x+y =v =tan(x+4) = o = tan(x+ 4)—x,
y(x) = Infsec(x + 4)|-Lx* + B.

51.

The substitution y'=p, y"=pp'=p(dp/dy) in y" =2y ( y’)3 yields
, d 1
pp' =2yp = J—% = IZydy = -— = y"+C,
p b
1 1 5
x= |—dy = -y —-Cx+D,
p 3

¥’ +3x+4y+B =0
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52.

53.

54.

55.

56.

60

The substitution y'=p, y"=pp = p(dp/dy) in y’y"=1 yields

dy 1 1 A
3 =1 dp = — e —p? = '———+
y'pp = [pdp = P = Tty

, _ A1 Jl J ydy
P = > x= |—dy = |22
v p N
x = i A’ —1+C = Ax+B = 4’ -1,

Ay* —(Ax+B)? =

The substitution y'=p, y"=pp'=p(dp/dy) in y"=2yy’ yields
pp =2y = Idp J2ydy = p=y+4,
J— Jzyzzlt an” 2 +C,
vy +4 A A

tan*% = Ax-C) = % = tan(Ax — AC),

y(x) = Atan(A4x + B).
The substitution ' =p, y"=pp'=p(dp/dy) in yy"=3( y’)2 yields

, d 3d
ywp = 3p2 - J.ﬁ = J_l

Inp = 3lny+InC = p =0,

= J\—-dy = J y3 = — 1 > +B’
p Cy 2Cy
1

Ay*(B-x) =

The substitution v=ax+by+c, y=(v—ax—c)/b in y' = F(ax+by+c) yields the
separable differential equation (dv/dx—a)/b = F(v), thatis, dv/dx = a+bF(v).

If v =y then y = vV so y' = vV /(1-n). Hence the given Bernoulli
equation transforms to

n/(l—n) d 1/(1-n n/(1-n).
W 4 P(x) v = Qx) v

1—n
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57.

S8.

59.

60.

Multiplication by (1—r)/v"*™ then yields the linear differential equation
V+(1-n)Pv = (1-n)Qv.

If v=1Iny then y = ¢" so )' = e'v'. Hence the given equation transforms to

e’V +P(x)e’ = Q(x)ve'. Cancellation of the factor e’ then yields the linear
differential equation v'—-Q(x)v = P(x).

The substitution v=1Iny, y =¢', y'=e¢" v’ yields the linear equation x v'+2v = 4x*
with integrating factor p = x%. Solution: y = exp(x*+ Cix%)

The substitution x = u—1, y = v—2 yields the homogeneous equation

The substitution v = pu leads to

1) d 1
Inu = —J(—;Z% = —5[1n(p2+2p~1)—1nc]

We thus obtain the implicit solution
W (p*+2p-1) = C
2
w’ (%+21—1j = v +2uw—u’ = C
u u

(P +2P2 +2(x+D)(y+2)—(x+1)> = C
Y +2xy—x>+2x+6y = C.

The substitution x = u—3, y = v—2 yields the homogeneous equation

gll _ —u+2v
du dy—3v

The substitution v = pu leads to

IJMLHJ_ 15 jdp
Gp+D(p-1 4 p—-1 3p+1

%[ln(p—l)—Sln(3p+1)+lnC].
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We thus obtain the implicit solution

. C(p-1) _ Cv/u-1 _ Cu*(v—-u)
Gp+1’  @Gv/u+1y’ Bv+u)

Gv+u)’ = C(v-u)

(x+3y+3)° = C(y-x-5).

61. The substitution v = x — y yields the separable equation v/ = 1 — sin v. With the aid
of the identity

1 _ 1+4sinvy

— = —— = sec’ v+secy tanv
1-sinv cos” v

we obtain the solution
x = tan(x — y) +sec(x — y) + C.

62.  The substitution y =vx in the given homogeneous differential equation yields the

separable equation x(2v3 - 1) v =— (v4 + v) that we solve as follows:

3
[Fateef
Vv +v X

f ( 2v-1 1, 1 )dv = _ f & (partial fractions)
X

Vov+l oy v+1

In( —v+D)-Inv+In(v+1) = ~Inx+InC
x(vz——v+1)(v+l) =Cv

(Y ~xy+x°)(x+y) = Cxp

X*+3° = Cxy

63. If we substitute y = n+1/v, ¥y = yi —v'/v* (primes denoting differentiation with
respect to x) into the Riccati equation V' = Ay’ + By +C and use the fact that
Vo= A+ By, +C, then we immediately get the linear differential equation
V+(B+24y)v = - 4.

In Problems 64 and 65 we outline the application of the method of Problem 63 to the given
Riccati equation.

64.  The substitution y=x+1/v yields the linear equation v'—2xv = 1 with integrating

factor p = ™. In Problem 29 of Section 1.5 we saw that the general solution of this
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65.

66.

67.

68.

69.

70.

linear equation is v(x) = e~ [C + @erf (x):| in terms of the error function erf(x)
introduced there. Hence the general solution of our Riccati equation is given by

2 -1
y(x) = x+e” [C + iz—”—erf(x):l X

The substitution y =x+1/v yields the trivial linear equation v' = —1 with immediate
solution v(x)=C —x. Hence the general solution of our Riccati equation is given by
y(x) = x+1/(C~x).

The substitution y’ = C in the Clairaut equation immediately yields the general solution
y = Cx+gC).

Clearly the line y = Cx— C*4 and the tangent line at (C/2, C*/4) to the parabola
y = x* both have slope C.

1n(v+\/1+v2) = —klnx+klna =ln(x/a)_k

y+1+v2 = (x/a)_k

[(x/a)‘k-—v:r =1+

(x/a)_2k —2v(x/a)_k+v2 = 1+v

= GIRIIBIEE D RE]

With ¢ = 100 and k£ = 1/10, Equation (19) in the text is
y = 50[(x/100)"*° - (x/100)'"'%].

The equation y'(x) = 0 then yields
(e/100)10 = (9/11)12,

so it follows that

Ymax = S0[(9/11°2 = (9/11)'"*] ~ 3.68 mi.

With k£ =w/v,=10/500=1/10, Eq. (16) in the text gives

ln(v+m) = —Ila-lnx+C
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71.

72.

64

where v=y/x. Substitutionof x=200,y=150,v=3/4 yields C = 111(2-200”10),

thence
2 1
In| 2+, /1+25 | = - Inx+1n(2-200"),
x X 10

which — after exponentiation and then multiplication of the resulting equation by x —
simplifies as desired to y + x>+ ) = 2(200x9 )mo. If x=0 then this equation
yields y =0, thereby verifying that the airplane reaches the airport at the origin.

(a) With a=100and k=w/v,=2/4=1/2, the solution given by equation (19) in

the textbook is y(x) = 50[(x/100)"” — (x/100)*?]. The fact that (0) = 0 means that
this trajectory goes through the origin where the tree is located.

(b) With k=4/4=1 the solutionis y(x) = 50[1 — (x/ 100)*] and we see that the
swimmer hits the bank at a distance y(0) = 50 north of the tree.

() With £=6/4 =3/2 the solution is y(x) = 50[(x/100)? — (x/100)*2]. This

trajectory is asymptotic to the positive x-axis, so we see that the swimmer never reaches
the west bank of the river.

The substitution y'=p, y"=p' in r" = [1+(3')’F? yields
rdp
rp' = (1+p*)? = J— = |dx
(1+p2)3/2 I

Now integral formula #52 in the back of our favorite calculus textbook gives

P __ x4 = rp’ = 1+ p*)(x—a),
Ji+p?

and we solve readily for

,  (x-a) dy xX—a

= = —=p = ==
r—(x—a)’ dx NP = (x—a)?

=

whence
\/7"2—(x—a)2

which finally gives (x—a)’+(y—b)’> =r* as desired.
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SECTION 1.7
POPULATION MODELS

Section 1.7 introduces the first of the two major classes of mathematical models studied in the
textbook, and is a prerequisite to the discussion of equilibrium solutions and stability in Section 7.1.

In Problems 1-8 we outline the derivation of the desired particular solution, and then sketch some
typical solution curves.

1. Noting that x >1 because x(0)=2, we write

dx : 11 )
Jx(l_x) = [1ar, Hx x_l)dx [rae

Inx-In(x-1) = t+InC; —— =C¢

x-1

x(0)=2 implies C=2; x = 2(x-1)e’

el 2
1) = = .
X = = 2 e

Typical solution curves are shown in the figure on the left below.

3 T T T T 15

N
RN D

0 1 2 3 4 5 o 1
t t

N
3

2. Noting that x <10 because x(0)=1, we write

J—dx = fran J(-]‘—Jr ! )dx=j10dt
x(10-x) x 10—x
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66

Typical solution curves are shown in the figure on the right at the bottom of the

X

Inx—In(10-x) = 10t+1InC; = Ce"™
10—x
x(0)=1 implies C=é; 9x = (10-x)e"™
10e™ 10

x(t) =

Otel™ 14971

preceding page.

Noting that x >1 because x(0)=3, we write

N
T

1

i . P
jm= J-ldt’ J(x—l x+1jdx I( 2) dt

x—1
x+1

In(x~D-In(x+1) = -2¢r+InC; = Ce™

x(0)=3 implies C= %; 2(x-1) = (x+De™

24+e 2e¥ +1
2—e 2% -1

Typical solution curves are shown in the figure on the left below.

x(t) =

3

1Y

Noting that |x| <2 because x(0)=0, we write
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dx . 1 1 B
f(3+2x)(3—2x) = Jua H3+zx+3_zxjd" = Joar

LinG+2n-IimG-2x) = 64 Llmc 32X _ (g
2 2 2 3-2x
x(0)=0 implies C=1; 3+2x = (3—-2x)e™®

~ 3@12t-—3 _ 3(812t_1)
X0 = 2% 40 2(e12’+1)'

Typical solution curves are shown in the figure on the right at the bottom of the
preceding page.

Noting that x >5 because x(0) =8, we write

dx _ 11 ~
fx(x—S) = j(—s)dr, J(;—x_sjdx = j15dz

Inx—-In(x-5) = 15t+InC; —x—s = Ce"
x—.

x(0)=8 implies C=8/3; 3x = 8§(x—=5)e"

—40 " 40
x(t) = 3“8@15t = 8_3e—l5t N

Typical solution curves are shown in the figure on the left below.

AN |

.
0 0.25 a5

Noting that x <5 because x(0) =2, we write
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d 11 o
jx(S—x) = [(-3yar, Hx+5_x)dx = [(-15)ar

X
5—-x

x(0)=2 implies C=2/3; 3x = 2(5-x)e ™

Inx-In(5-x) = ~15¢t+1InC; = Ce™

10e7™"" 10
) = = .
iy e SN

Typical solution curves are shown in the figure on the right at the bottom of the

preceding page.
7. Noting that x >7 because x(0)=11, we write
J . [-4yar, J 11 jdx = [28at
x(x=7) x x-7
Inx-In(x-7) = 28¢t+InC; X~ e
x-=17
x(0)=11 implies C=11/4; 4x = 11(x-17)e*™

=77¢% 77
4-11"%  11-4e°

x(1) =

Typical solution curves are shown in the figure on the left below.

15 T 30

t ‘ t

8. Noting that x >13 because x(0) =17, we write
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10.

11.

12.

dx ] 11 _
e (R

x
x—13

x(0)=17 implies C=17/4; 4x = 17(x-13)e™"

Inx~In(x-13) = =917 +InC; = Ce™"

—221¢7V 221
x(t) = —91¢ = 91r *
4-17e 17—4e

Typical solution curves are shown in the figure on the right at the bottom of the
preceding page.

Substitution of P(0)=100 and P'(0)=20 into P'=k~/P yields k=2, so the
differential equationis P’ = 2+/P. Separation of variables and integration,
[dP/2NP = [dt, gives P = t+C. Then P(0)=100 implies C=10, so

P(f) = (¢+ 10)*. Hence the number of rabbits after one yearis P(12) = 484.

Given P'=—6P =—(k/\[P)P =~k+/P, separation of variables and integration as in
Problem 9 yields 2+/P = —kt+C. The initial condition P(0) = 900 gives C =60, and

then the condition P(6) = 441 implies that k= 3. Therefore 2+/P = —3r+60, so
P = 0 after + = 20 weeks.

(a) Starting with dP/dr = k\/]T, dPldt = k~/P , We separate the variables and
integrate to get P() = (kt/2 + C)* Clearly P(0) = P, implies C = \/FO .

(b) If P(H) = (kt/2 + 10, then P(6) = 169 implies that £ = 1. Hence
P(t) = (t/2+10)%, so there are 256 fish after 12 months.

Solution of the equation P’ = k P? by separation of variables and integration,

— = [kat; —% = kt-C,

gives P(f) = 1/(C—kf). Now P(0)=12 implies that C =1/ 12, sonow P(f) =
12/(1 — 12k). Then P(10)=24 implies that k= 1/240, so finally P(f) = 240/(20 — 7).
Hence P =48 when =15, that is, in the year 2003. And obviously P — « as ¢t — 20.
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(a) If the birth and death rates both are proportional to P? and B>, thenEq. (1)in
this section gives P’ =kP* with k positive. Separating variables and integrating as in
Problem 12, we find that P(¢) = 1/(C —kf). The initial condition P(0) = P, then gives

14.

15.

16.

17.

18.

19.

20.

21.

70

C=1/P,s0 P(t) = 1/(1/P,~ki) = P,/(1-kByp).

(b) If =6 then P(t) = 6/(1-6kt). Now the fact that P(10) =9 implies that
k=180, so P(t) = 6/(1-¢/30) = 180/(30—1¢). Hence it is clear that
P — 0 as t - 30 (doomsday).

Now dP/dt = —kP* with k>0, and separation of variables yields P(?) = 1/(kt + C).
Clearly C = 1/Py as in Problem 13, s0 P(f) = Po/(1 + kPot) . Therefore it is clear
that P(£) — 0 as ¢ — o, so the population dies out in the long run.

If we write P’ = bP(a/b—P) we seethat M = a/b. Hence

By _ (@R)E,

Y
D, bP} b '

Note also (for Problems 16 and 17) that a=B,/P, and b= D,/P} = k.

The relations in Problem 15 give k= 1/2400 and M= 160. The solution is
P(t) = 19200/(120+40e™"""*). We find that P =0.95M after about 27.69 months.

The relations in Problem 15 give k= 1/2400 and M= 180. The solution is
P(r) = 43200/(240—-60¢™'®). We find that P=1.05M after about 44.22 months.

If we write P' = a P(P—b/a) we see that M = b/a. Hence

DA _ (bR)R, _ b
= 2 = —_— = M.
B, af, a

Note also (for Problems 19 and 20) that 5=D,/F, and a=B,/P? = k.

The relations in Problem 18 give k= 1/1000 and M= 90. The solution is
P(t) = 9000/(100-10¢”"'*). We find that P=10M after about 24.41 months.

The relations in Problem 18 give k=1/1100 and M = 120. The solution is
P(#) = 13200/(110+10€%/*°). We find that P=0.1M after about 42.12 months.

Starting with the differential equation dP/dt = kP(200— P), we separate variables and

integrate, noting that P <200 because P, =100:
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22.

23.

24.

f_‘”;zjkdr = j(l+ I JdP=j200kdt;
PQ00-P) P 200-P

P = 200kt +InC = P _ 200k

In =
200-P 200-P

Now P(0) =100 gives C=1, and P'(0)=1 implies that 1=%- 100(200-100), so
we find that £ =1/10000. Substitution of these numerical values gives

P
200¢/10000 t/50
= ¢ = e

200-P ’

and we solve readily for P(r)=200/(1+¢™*). Finally, P(60)= 200/(1+¢™*)~153.7

million.

We work in thousands of persons, so M = 100 for the total fixed population. We
substitute M = 100, P'(0) = 1, and Py = 50 inthe logistic equation, and thereby obtain

1 = K(50)(100 - 50), so k= 0.0004.

If ¢ denotes the number of days until 80 thousand people have heard the rumor, then Eq. (7)
in the text gives

B 50x100
50+ (100 —50)e "%’

and we solve this equation for ¢~ 34.66. Thus the rumor will have spread to 80% of the
population in a little less than 35 days.

(a) x' = 0.8x—0.004x = 0.004x(200 — x), so the maximum amount that will dissolve
1s M = 200 g.

(b) With M = 200, Py = 50, and k = 0.004, Equation (4) in the text yields the
solution
*(#) = 10000 .
50+150¢ %

Substituting x = 100 on the left, we solve for = 1.25In3 ~ 1.37 sec.

The differential equation for M) is N'(f) = kN (15 — N). When we substitute N@O) =5
(thousands) and N'(0) = 0.5 (thousands/day) we find that £ = 0.01. With N in place of
P, this is the logistic equation in Eq. (3) of the text, so its solution is given by Equation (7):

Section 1.7 71

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall



25.

26.

27.

72

15x5 15

N() = - .
O S l0exp00003 17267

Upon substituting N = 10 on the left, we solve for ¢ = (In 4)/(0.15) ~ 9.24 days.
Proceeding as in Example 3 in the text, we solve the equations

25.00k(M —25.00) = 3/8,  47.54k(M—47.54) = 12
for M = 100 and k£ = 0.0002. Then Equation (4) gives the population function

B 2500
25+ 75700 -

P()
We find that P = 75 when # = 50In9 ~ 110, that is, in 2035 A. D.
The differential equation for P() is

P'(® = 0.001P*-SP.
When we substitute P(0) = 100 and P'(0) = 8 we find that & = 0.02, so

‘2—1: = 0.001P*-0.02P = 0.001P(P —20).

We separate variables and integrate, noting that P > 20 because F,=100:

J_dp__ - [oootdr = J(—l———l—JdP = fo.02a;
P(P—20) P-20 P

w22 - Lo o 2220 gem
P50 P

Now P(0)=100 gives C =4/5, hence

100

5(P—20) = 4Pe'/50 = P(f) = m

It follows readily that P = 200 when ¢ = 50 In(9/8) ~ 5.89 months.

We are given that
P' = kP>~ 0.01P,

When we substitute P(0) = 200 and P'(0) = 2 we find that £ = 0.0001, so
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28.

ci—f = 0.0001P> -0.01P = 0.0001P(P -100).

We separate variables and integrate, noting that P >100 because F, =200:

Jd—P=jo.0001dt = H 1 —i]dP=j0.01dt;
P(P—100) P-100 P

0 e o 22190 o,
P 100 P
Now P(0)=100 gives C =1/2, hence
200
2(P-100) = P = P@) = 5

(@) P = 1000 when ¢ = 100 In(9/5) ~ 58.78.
b P>w as —>100In2 ~69.31.

Our alligator population satisfies the equation

%’]; = 0.0001x> —0.01x = 0.0001x(x —100).

With x in place of P, this is the same differential equation as in Problem 27, but now we
use absolute values to allow both possibilities x <100 and x >100:

J_dx_zjo.ooma’r = J[ 1 —lesz0.0ldt;
x(x —100) x—100 «x

w100 1 e o 2109
X 100 X

— Cet/lOO' (*)

(a) If x(0)=25 then x<100 and |x - 100| =100-x, so (*) gives C =3 and hence

‘ 100
100—x = 3xe /100 = X(f) = -1—_—|_—3—;—t/_16()_
We therefore see that x(¢) > 0 as ¢t — oo.
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29.

30.

31.

74

(b) Butif x(0)=150 then x>100 and |x —100| =x-100, so (*)gives C=1/3
and hence

3(x-100) = xe™ = x(0) = 5 300

1/100 °
—€

Now x(f) >+ as ¢ —(100In3)", so doomsday occurs after about 109.86 months.

Here we have the logistic equation

f‘g- = 0.03135P —0.0001489 P> = 0.0001489 P(210.544 — P)

where k=0.0001489 and P =210.544. With F, =3.9 also, Eq. (7) in the text gives

(210.544)(3.9) 821.122

PO = (3.9)+(210.544 —3.9) "W T 3 9.4.906.644 "

@ This solution gives P(140) = 127.008, fairly close to the actual 1930 U.S. census
population of 123.2 million.

(b) The limiting population as ¢ — o is 821.122/3.9 = 210.544 million.

(c) Since the actual U.S. population in 200 was about 281 million — already exceeding
the maximum population predicted by the logistic equation — we see that that this model
did not continue to hold throughout the 20th century.

The equation is separable, so we have

.[gf? B Jﬂoe_mdt, so InP = —&e_“’+C.
o

The initial condition P(0)=F, gives C=InF, + f,/«, so

P(t) = E,exp[ﬁi(l—e““’)}.
o
If we substitute P(0) = 10° and P'(0) = 3x10° into the differential equation
P,(t) = ﬁoe_atps

we find that £, = 0.3. Hence the solution given in Problem 30 is

- P(f) = Pexp[(0.3/a)(1—e™*")].
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32.

The fact that P(6) = 2Py now yields the equation
fla) = (03)1 - -aln2 =0
for a. We apply Newton's iterative formula

Y (G

T Sl

with f'(&) =1.8e¢™°* —In2 and initial guess oy = 1, and find that & ~ 0.3915 .
Therefore the limiting cell populationas ¢ —> o is

Pexp(B,/a) = 10°exp(0.3/0.3915) ~ 2.15x10°.

Thus the tumor does not grow much further after 6 months.

We separate the variables in the logistic equation and use absolute values to allow for both
possibilities £, <M and P> M :

J_df_=J'kdf = J(1+ ! )szjkMdt;
P(M - P) P M-P

1n——P— = kMt+InC = P

| —P| M—P|

Ce™". *)

If <M then P<M and |M—P|=M—P, so substitutionof =0, P=F in (*)
gives C=F, /(M —F,). It follows that

P __ K o
M-P M-P

Butif £, >M then P>M and |M—P|:P—M, so substitution of =0, P=F, in
(*) gives C=F,/(F,— M), and it follows that

P _ B en
P-M P-M

We see that the preceding two equations are equivalent, and either yields

MPOeld\/It
(M —R)+Re™"”

(M—-P)P = (M-P)Pe™ = P@ =

which gives the desired result upon division of numerator and denominator by e*/".
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33.

34.

76

(@) We separate the variables in the extinction-explosion equation and use absolute
values to allow for both possibilities £, <M and P, > M :

Ji_ = frar = ﬂ—L__ljdp = [k ar;
PP - M) P-M P

|P— M| |P - M|

ln———P— = kMt+InC = = Ce™, (*)

If <M then P<M and |P—M|=M—P, so substitution of #=0, P=PF, in (*)
gives C=(M —F,)/F,. It follows that

M-P _ M-B
P P, '

Butif £, >M then P> M and |P—M|=P—M, so substitution of =0, P=F, in
(*) gives C=(F —M)/P,, and it follows that

P-M _ R-M
P P, '

We see that the preceding two equations are equivalent, and either yields

MP,

(P-M)P, = (B,—~M)P™" = P@) = POl

(b) If P, <M then the coefficient M — P, is positive and the denominator increases
without bound, so P(¥) > 0 as ¢ — . Butif P, > M, then the denominator

P, —(P,— M)e™" approaches zero—so P(t) —> +o0 —as ¢ approaches the value
(1/EM)In[F, /(Py— M)] >0 from the left.

Differentiation of both sides of the logistic equation P’'=kP-(M — P) yields

_dp ap

T dP dt

= [k-(M = P)+kP-(-1)]-kP(M - P)

k[M -2P]-kP(M — P) = 2k*P(M -1 P)(M - P)

P”

i

as desired. The conclusions that P">0 if 0<P<iM, that P"=0 if P=1M, and
that P"<0 if M <P <M arethen immediate. Thus it follows that each of the

curves for which £, < M has an inflection point where it crosses the horizontal line
P=IM.
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35.  Any way you look at it, you should see that, the larger the parameter k> 0 is, the faster the
logistic population P(f) approaches its limiting population M.

36.  With x=e™ P =5308, P =23.192, and P, =76.212, Egs. (7) in the text take the

form
RM AM
B+(M-P)x U R+M-PR)x

from which we get

P +(M~-B)x = BMIB, PB+(M-B)x = BM/P,

x = P()(M—Pl)’ x2 = R)(M—PZ) (l)
B(M-P) B(M-PR)

R(M-B)Y R(M-B)

PX(M-PB) ~ B(M-PR)

RP(M-PR) = B'(M-R)M-PB)

RPM*~2RRPM+BRE, = B*M*~B*(P,+ P,)M + B,P*F,
We cancel the final terms on the two sides of this last equation and solve for

_ RQRB-RR-FP)

M ii

Substitution of the given values F, =5.308, P =23.192, and P, =76.212 now gives
M = 188.121. The first equation in (i) and x = exp(—kMzt,) yield

_1  RM-B)

Mt R(M-R) -

Now substitution of # =50 and our numerical values of M, F,, F,, P, gives

k = 0.000167716. Finally, substitution of these values of k¥ and M (and P) in the
logistic solution (4) gives the logistic model of Eq. (8) in the text.

In Problems 37 and 38 we give just the values of k£ and M calculated using Egs. (ii) and (iii) in
Problem 36 above, the resulting logistic solution, and the predicted year 2000 population.

25761.7
76.212 +261.815 g 002260451 2

37. k = 0.0000668717 and M =338.027, so P(t) =

predicting P = 192.525 in the year 2000.
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4829.73

38. k = 0.000146679 and M =208.250, so P(t) =
) = 33 193+185.058 om0
predicting P = 248.856 in the year 2000.
P
120
t
39.  Wereadily separate the variables and integrate:
j_c_z’_]i = J.(k +bcos2zt)dt = InP =kt +isin27rt+ InC.
P 2z
Clearly C =F,, so we find that P(¢) = P,exp (kt + Eb—sin 27:t]. The colored curve in
V4
the figure above shows the graph that results with the typical numerical values
F,=100, £=0.03, and 5=0.06. It oscillates about the black curve which represents
natural growth with £, and k =0.03. We see that the two agree at the end of each full
year.
SECTION 1.8

ACCELERATION-VELOCITY MODELS

This section consists of three essentially independent subsections that can be studied separately:
resistance proportional to velocity, resistance proportional to velocity-squared, and inverse-square
gravitational acceleration.
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Equation:

Solution:

Answer:

Equation:

Solution:

Answer:

Equation:

Solution:

Answer:

Equation:

Solution;

Equation:

Solution:

Answer:

V' = k(250—v), »(0) =0, »10) = 100

(-Ddv
250 —v

= - [kdt; In(250-v) = ~kr+InC,

v(0)=0 implies C = 250; v(f) = 250(1—e™)
y(10) =100 implies k=-1n(250/150) ~ 0.0511;
v =200 when t=-(In50/250)/k ~31.5sec

Vi=—kv, v(0) = vy; x =, x(0) = x,
X'(f) = v(t) = ve™;  x(t) = ~(v,/k)e™ +C
C = x,+(v,/k)e™; x(t) = x0+(v0/k)(1—e-k')

limx(f) = }i_r)g[xo+(v0/k)(1—e_k’)} = x,+(,/k)

Vi=—kv, v(0) = 40; v(10)=20 x' =, x(0) = 0
w(t) = 40 e with k = (1/10)ln 2

x(f) = (40/k)(1 — e™**

x(e0) = lim(40/k)(1-e™) = 40/k = 400/In2 ~ 577 fi

V==’ v0) =v; x =v, x0) = X,

—ﬂ=_|.kdt; l=kz‘+C'; C=L
v v

k)

Yo
1+ vkt

X' () = v(t) = ; x() = %ln(1+vokt)+x0
x(t) > 0 as x(t) > ©

vVi=—kv, v(0) = 40; v(10)=20 x' =v, x(0) =0

Vv = (as in Problem 3)
1+ 40kt

400

v(10) =20 implies 40k =1/10, so v(¢) =
10+¢

x(7) = 400 In[(10 +£)/10]
x(60) = 400In7 ~ 778 ft
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80

Equation:

Solution:

Equation:

()

(b)

Equation:

()

(b)

Vi=—kv? w(0) = v; x =, x(0) = X,

3 d;zszdt; L____k_f_+c; c - 1
2y 2 Y

Fo o
4
x'(t) = v(t) = ﬁ—z; x(t) = ———\/E——+C
(2+kt Vo) k(2+kt vo)
2 2
C = x0+~£; x(f) = x,+ Yolq- 2
k k 2+ kt\v,

x(0) = x,+2v, 'k
v =10-0.1v, x(0) = v(0) =0

~0.1dy
—— =" = [(-0.1)dr;, In(10-0.1v) = —£/10+InC
JlO—O.lv Jeon ( K !

v(0)=0 implies C =10; 1n[(10—0.1v)/10] = —1/10
v(t) = 100(1-e""), v(e0) = 100 ft/sec (limiting velocity)

x() = 100£-1000(1-e"")
v = 90 ft/sec when ¢ = 23.0259 sec and x = 1402.59 fi

V = 10-0.001v*, x(0) = v(0) = 0

tanh——-:—t—+C

f 0.01dv  _ rdr, av
1-0.0001v* 10° 100 10

v(0) = 0 implies C=0 so v(f) = 100tanh(¢/10)

t/10 ~1/10
e f—

= +e

> o

— 100 ft/sec

x(t) = 1000 In(coshz/10)
v = 90 ft/sec when ¢ = 14.7222 sec and x = 830.366 ft

The solution of the initial value problem

is

1000 v" = 5000 — 100 v, v(0) =0

v(t) = 50(1 - /19,
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Hence, as t — oo, we see that v(7) approaches Vmax = 50 ft/sec ~ 34 mph.
10. Before opening parachute:

v = =32-0.15v, v(0)=0, p(0)=10000
v(t) = 213.333(e™ —1),  w(20) = —202.712 fi/sec
(1) = 1142221422225 ~213.3331, 1(20) = 7084.75 ft

After opening parachute:

Vo= —32-15v, v(0)=-202.712, 1(0)=7084.75
w(f) = —21.3333-181.379¢™"

¥(t) = 6964.83+120.919¢"* —21.3333¢,
y = 0 when ¢=326.476

Thus she opens her parachute after 20 sec at a height of 7085 feet, and the total
time of descent is 20 + 326.476 = 346.476 sec, about 5 minutes and 46.5 seconds. Her
impact speed is 21.33 fi/sec, about 15 mph.

11.  Ifthe paratrooper’s terminal velocity was 100 mph = 440/3 ft/sec, then Equation (7) in
the text yields p = 12/55. Then we find by solving Equation (9) numerically with

¥o = 1200 and vy = 0 that y = 0 when ¢ = 12.5 sec. Thus the newspaper account is
inaccurate.

12.  With m = 640/32 = 20slugs, W = 6401b, B = (8)(62.5) = 5001b,and Fr = —v 1b
(Fr is upward when v <0), the differential equation is

20v(f) = 640+ 500 —v = —140—v .
Its solution with v(0) = 0 is
V(1) = 140(e™% -1),
and integration with (0)=0 yields
¥(0) = 2800(™ " ~1)-140¢

Using these equations we find that ¢+ = 20 In(28/13) ~ 15.35 sec when v = —75 fi/sec,
and that 1(15.35) ~ —648.31 ft. Thus the maximum safe depth is just under 650 ft.

Given the hints and integrals provided in the text, Problems 13—16 are fairly straightforward (and
fairly tedious) integration problems.
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17.

18.

19.

20.

82

To solve the initial value problem v = —9.8—0.0011v*, v(0)=49 we write

J & fa J 0.010595dy ___  fo.103827r
9.8+0.0011v 1+(0.010595v)

tan™'(0.010595v) = —0.103827¢+C; v(0)=49 implies C = 0.478854
v(t) = 94.3841 tan(0.478854 —0.103827¢)

Integration with 3(0) =0 gives
y(t) = 108.468+909.052 In(cos(0.478854 —0.1038271¢)).
We solve v(0)=0 for t=4.612, and then calculate (4.612) = 108.468.

We solve the initial value problem v' = —9.8+0.0011v*, v(0)=0 muchasin

Problem 17, except using hyperbolic rather than ordinary trigonometric functions. We first
get

v(t) = —94.3841 tanh(0.103827¢),
and then integration with 1(0) = 108.47 gives

1(f) = 108.47 —909.052 In(cosh(0.1038271)).

We solve ¥(0)=0 for # = cosh™ (exp(108.47/909.052))/0.103.827 ~4.7992, and then
calculate v(4.7992) =—43.489.

Equation: v = 4-(1/400)v*, v(0) = 0

Solution: Ji——? = Idt; MZ_ - JL dt
4-(1/400)v 1-(v/40) 10

tanh™'(v/40) = t/10+C; C=0, w(f) = 40tanh(s/10)
Answer: v(10) ~30.46 fi/sec, (o) = 40 ft/sec

Equation: v = —32-(1/800)v*, v(0) =160, »(0) =0

Solution: J dv > = - Jdt; Jﬂlé_(l)d_vz = —fldt;
32+ (1/800)v 1+(v/160) 5

tan'(v/160) = —t/5+C; v(0)=160 implies C=7/4
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/A
W) = 160tan(z—§)

3(t) = 800 ln[cos (% - 3)) +400In2

We solve W) = 0 for £=3.92699 and then calculate 3(3.92699) = 277.26 ft.

21.  Equation: V= —g-pv, v(0) =y, »0) =

. _ plgdv B ]
Solution: Jm = _‘-dt J——-———~( p/gv) = _f gpdt;

an‘l(«/p/gv) = —\/ﬁt+C; v(0) =v, implies C=tan_1(\/p/gvo)

v(t) = —\/gtan(t gp —tan™ (vo\/—;—}]
P g

P

L (vo —) and substitute in Eq. (17) for 3(¢):
V8P, g

We solve w(f) = 0 for ¢ =

ln}cos (’cam“1 volp/ g —tan"' v [p/ g )‘
‘ cos(tan‘1 volP/ 8 ) |

1 _ 1 PV

= ;ln(sec(tan lv()«/p/g)) ;ln /l+ go
Vo = ln(1+pv°) |
2p g )

By an integration similar to the one in Problem 19, the solution of the initial value problem
v = =32+0.075v*, v(0)=0 is

ymax =

1
P

22.

v(t) = —20.666tanh(1.54919¢)
so the terminal speed is 20.666 ft/sec. Then a further integration with »(0) =0 gives

y(f) = 10000-13.333 In(cosh(1.549191)) .

We solve »(0)=0 for t=484.57. Thus the descent takes about 8 min 5 sec.
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23.

24,

25.

26.

84

Before opening parachute:

v = —32+0.00075v%, v(0)=0, p(0)=10000
w(1) = —206.559tanh(0.154919f)  w(30) = —206.521 ft/sec
() = 10000—1333.33 In(cosh(0.154919¢)), »(30) = 4727.30 ft

After opening parachute:

v = =32+40.075v*, v(0)=-206.521, y(0)=4727.30
v(t) = —20.6559tanh(1.54919¢+0.00519595)

y(t) = 4727.30-13.3333In(cosh(1.54919¢ +0.00519595))
y = 0 when ¢=229.304

Thus she opens her parachute after 30 sec at a height of 4727 feet, and the total
time of descent is 30 + 229.304 = 259.304 sec, about 4 minutes and 19.3 seconds.

Let M denote the mass of the Earth. Then
(a) V2GM /R = ¢ implies R = 0.884x10™ meters, about 0.88 cm;

b  J2G(329320M)/R = cimplies R = 2.91x10° meters, about 2.91 kilometers.

(a) The rocket's apex occurs when v =0. We get the desired formula when we set
v=0 in Eq. (23),

Vo= v§+2GM(l—lj,
r R

and solve for r.

()  Wesubstitute v=0, »=R+10> (100 km = 10° m) and the mks values
G=6.6726x10", M = 5.975x10*, R = 6.378x10° in Eq. (23) and solve for
v, =1389.21 m/s~1.389 km/s.

(c) When we substitute v, =(9/10)v2GM /R in the formula derived in part (a), we
find that »__=100R/19.

By an elementary computation (as in Section 1.2) we find that an initial velocity of v, =16

ft/sec is required to jump vertically 4 feet high on earth. We must determine whether this
initial velocity is adequate for escape from the asteroid. Let » denote the ratio of the radius
of the asteroid to the radius R = 3960 miles of the earth, so that

. 15 1
3960 2640

Then the mass and radius of the asteroid are given by
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27.

28.

M,=rM ad R, =rR

in terms of the mass M and radius R of the earth. Hence the escape velocity from the
asteroid's surface is given by

2GM, 2G-r’M 2GM
v, = = = P — =¥V,
R, R, R

in terms of the escape velocity v, from the earth's surface. Hence v, = 36680/2640

~13.9 ft/sec. Since the escape velocity from this asteroid is thus less than the initial
velocity of 16 ft/sec that your legs can provide, you can indeed jump right off this asteroid
into space.

@ Substitution of v =2GM /R =k’ /R in Eq. (23) of the textbook gives

ir__v_ /2GM___k_
dt r \/;

We separate variables and proceed to integrate:

j\/;dr = j'kdt = %r” - kt+%R3’2

(using the fact that » = R when ¢=0). We solve for »(¢) = (-%—kt +R"? )2/3 and note that
r(t)—> 0 as t — oo.

(b) If v,>2GM /R then Eq. (23) gives

dr 2GM ( ) 2GM) \/kz k

— =v = V| = | —ta > —.

dt r R r Jr
Therefore, at every instant in its ascent, the upward velocity of the projectile in this part is
greater than the velocity at the same instant of the projectile of part (a). It's as though the

projectile of part (a) is the fox, and the projectile of this part is a rabbit that runs faster.
Since the fox goes to infinity, so does the faster rabbit.

lv2 = GM(l_lj
2 roK

a vV = — 2GM[l—l)
dt ror

(a) Integration of gives

and we solve for

taking the negative square root because v <0 in descent. Hence
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29.

30.

86

t = —\/ % d— (r =7,cos” 0)
2GM Ty =7

Jn12GM erO cos> 6 do

32
i

N2GM
‘IZC?M {\/rro —7” +r,cos”" \/%J

(b) Substitution of G =6.6726x107"", M = 5.975x10*kg, r=R = 6.378x10° m,

and 7, = R+10° yields #=510.504, that is, about 84 minutes for the descent to the
surface of the earth. (Recall that we are ignoring air resistance.)

(6 +5sinf cosB)

(©) Substitution of the same numeral values along with v, =0 in the original
differential equation of part (a) yields v=-4116.42 m/s~—4.116 km/s for the velocity at
impact with the earth's surface where » = R.

Integration of vﬂ = — —-G——A{——z—, y(0)=0, v(0)=v, gives
dy (y+R)
1, GM GM 1 ,
—v° = -t
2 y+R R 2

which simplifies to the desired formula for v*. Then substitution of
G=6.6726x10", M = 5.975x10"kg, R = 6.378x10°m v=0,and vp=1
yields an equation that we easily solve for y = 51427.3, that is, about 51.427 km.

When we integrate

Vﬂ = — Gﬂzle + GM’”2 , r(0)=R, r'(0)=v,
dr r (S-r)

in the usual way and solve for v, we get

\/ 2GM, 2GM, 2GM, 2GM, ,
v = - - + +v;.
r R r-S R-S

The earth and moon attractions balance at the point where the right-hand side in the
acceleration equation vanishes, which is when
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If we substitute this value of r, M, =7.35x10” kg, S =384.4x10°, and the usual values

of the other constants involved, then set v = 0 (to just reach the balancing point), we can
solve the resulting equation for vo = 11,109 m/s. Note that this is only 71 m/s less
than the earth escape velocity of 11,180 m/s, so the moon really doesn't help much.

CHAPTER 1 Review Problems

The main objective of this set of review problems is practice in the identification of the different
types of first-order differential equations discussed in this chapter. In each of Problems 1-36 we
identify the type of the given equation and indicate an appropriate method of solution.

1.

If we write the equation in the form y'—(3/x)y = x* we see that it is linear with

integrating factor p =x. The method of Section 1.5 then yields the general solution
y = x(C+1nx).

We write this equation in the separable form 3'/y* = (x+3)/x*. Then separation of

variables and integration as in Section 1.4 yields the general solution
y=x/@3- Cx—xlnx).

This equation is somogeneous. The substitution y =vx of Equation (8) in Section 1.6
leads to the general solution y = x/(C —Inx).

We note that D, (2xy3 + e") = D, (3x2 y* +sin y) =6xy°®, so the given equation is

exact. The method of Example 9 in Section 1.6 yields the implicit general solution
Xy +ef—cos y = C

We write this equation in the separable form y'/y* = (2x—3)/x*. Then separation

of variables and integration as in Section 1.4 yields the general solution
y = Cexpl[(1 —x)/x3].

We write this equation in the separable form y'/y* = (1-2x)/x*. Then separation

of variables and integration as in Section 1.4 yields the general solution
y=x/(1+Cx+2xInx).

If we write the equation in the form '+ (2/x)y = 1/x* we see that it is linear with

integrating factor p =x’. The method of Section 1.5 then yields the general solution
y = xC+Inx).
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

88

This equation is homogeneous. The substitution y =vx of Equation (8) in Section 1.6
leads to the general solution y = 3Cx/(C —x).

If we write the equation in the form y'+(2/x)y = 6x\[)7 we see that it is a Bernoulli

equation with n = 1/2. The substitution v = y™'? of Eq. (10) in Section 1.6 then
yields the general solution y = (x*+ Clx) .

We write this equation in the separable form y'/ (1 + yz) = 1+x*. Then separation
of variables and integration as in Section 1.4 yields the general solution
y = tan(C +x +x°/3).

This equation is homogeneous. The substitution y =vx of Equation (8) in Section 1.6
leads to the general solution y = x/(C -3 Inx).

We note that D, (6xy3 +2 y4)

equation is exact. The method of Example 9 in Section 1.6 yields the implicit general
solution 3x%y° + 2wyt = C.

D, (9x2y2 + 8xy3) = 18xy*> +8y°, so the given

We write this equation in the separable form 3'/y* = 5x* —4x. Then separation

of variables and integration as in Section 1.4 yields the general solution
y = 1/(C+2x*=x).

This equation is homogeneous. The substitution y =vx of Equation (8) in Section 1.6
leads to the implicit general solution ¥ = x*/(C+2nx).

This is a linear differential equation with integrating factor p =e’*. The method of
Section 1.5 yields the general solution y = (x* + C)e™

The substitution v=y—x, y=v+x, y'=v'+1 gives the separable equation

v'+1 = (y—x)* = v* in the new dependent variable v. The resulting implicit general
solution of the original equationis y—x—1 = C Fy—x+1).

We note that D, (ex + ye"y) =D, (ey + xe’”’) = e’ +xye’”, sothe given equation is

exact. The method of Example 9 in Section 1.6 yields the implicit general solution
&+ +e? = C.

This equation is somogeneous. The substitution y =vx of Equation (8) in Section 1.6
leads to the implicit general solution 3y = Cx*(x* - 17).

We write this equation in the separable form y'/y* = (2 -3x’ ) /x*. Then separation

of variables and integration as in Section 1.4 yields the general solution

Chapter 1

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall



20.

21.

22,

23.

24.

25.

26.

27.

28.

y = x2/(x5+Cx2+1).

If we write the equation in the form 3’ +(3/x)y = 3x'> we see that it is linear with

integrating factor p =x’. The method of Section 1.5 then yields the general solution
y =2+ o

If we write the equation in the form y'+(1/(x+1))y = 1/(x* —1) we see that it is linear

with integrating factor p =x+1. The method of Section then 1.5 yields the general
solution y = [C+In(x—1)]/ (x+1).

If we write the equation in the form )’ —(6/x)y = 12x°y*® we see that it is a Bernoulli

equation with n = 1/3. The substitution v = y™” of Eq. (10) in Section 1.6 then
yields the general solution y = (2x" + Cx%)’.

We note that D, (ey + ycosx) =D, (x e’ +sin x) = e’ +cosx, sothe given equation
is exact. The method of Example 9 in Section 1.6 yields the implicit general solution
x&+ ysinx = C.

3/2

We write this equation in the separable form y'/y®> = (1 -9x* )/ x”'*. Then separation

of variables and integration as in Section 1.4 yields the general solution
y = x"/(6x* + Cx'"? + 2).

If we write the equation in the form '+ (2 /(x+ 1)) y = 3 we see that it is linear with

integrating factor p = (x + 1)2 . The method of Section 1.5 then yields the general
solution y = x+1+C (x+1)™

We note that D, (9x1/zy4/3 _ 12x1/5y3/2) = D, (8x3/2y1/3 _15x6/5y1/2) -

12x"2y'? —18x'° "2, so the given equation is exact. The method of Example 9 in
Section 1.6 yields the implicit general solution 6x” 2y4/ 310557 = C.

If we write the equation in the form ' +(1/x)y = —x*y*/3 we see that it is a Bernoulli

equation with n = 4. The substitution v = y~ of Eq. (10) in Section 1.6 then yields

the general solution y = xN(C+1n x)_” 3,

If we write the equation in the form y'+(1/x)y = 2e°*/x we see that it is linear with
integrating factor o =x. The method of Section 1.5 then yields the general solution
y = x{C+e.

Review Problems 89

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall



29.

30.

31.

32.

33.

34.

3S.

36.

90

If we write the equation in the form ' +(1/(2x +1))y = (2x+1)"* we see that it is

linear with integrating factor p =(2x+ 1)“2 . The method of Section 1.5 then yields
the general solutiony = o +x+ CO)(2x + 2.

The substitution v=x+y, y=v—x, y'=v -1 gives the separable equation

v =1 = /v inthe new dependent variable v. The resulting implicit general solution of
the original equationis x = 2(x + W22 In[1+(x+ W21+ C.

dy(y+7) = 3x’dxis separable; y'+3x’y = 21xis linear.
dy/(y* 1) = xdxis separable; y'+xy = xy’is a Bernoulli equation with » = 3.
(B3x? +2y")dx +4xydy = Oisexact; ) = —1(3x/y+2y/x)is homogeneous.

1+3y/x

(x+3y)dx+(Bx—y)dy = Oisexact; ) =
y/x-3

is homogeneous.

dy(y+1) = 2xdx/(x* +1)is separable; y'—(2x/(x*+1))y = 2x/(x* +1)is linear.

dy/ (\/_); - y) = cotxdxis separable; ) +(cotx)y = (cot x)\/; is a Bernoulli equation
with n=1/2.
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