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Problem 2.1

Hence :

_JA:(_ = —= f —t a
= - f_oo x(t+bb (—db)

- f t+b

= 1f°; f“’bdb— i(t)

where we have made the change of variables : b = —a and used the relationship : z(b) = z(-b).

b. In exactly the same way as in part (a) we prove :

(1) = #(—t)

c. z(t) = coswot, so its Fourier transform is : X(f) = 3 [6(f — fo) +0(f + fo)], fo = 2mwo.
Exploiting the phase-shifting property (2-1-4) of the Hilbert transform :

1

X(f) = 5 (23007 = J0) + 380 + o)l = 5= 607 = o) = 807 + fo)l = F {sin 2t}

Hence, 2(t) = sinwyt.
d. In a similar way to part (c) :

() = sinwnt = X(f) = 3= [5(F = fo) = 5(f + fo)l = X () = 5 167 = fo) = 6(/ + 1)

= X(f) = —% [6(f = fo) +0(f + fo)] = —F ! {cos 2mwyt} = &(t) = — coswpt

e. The positive frequency content of the new signal will be : (—7)(—j) X (f) = =X (f), f > 0, while

the negative frequency content will be : j - jX(f) = —X(f), f < 0.Hence, since X(f) =-X(f),
we have : z(t) = —xz(t).

f. Since the magnitude response of the Hilbert transformer is characterized by : |H(f)| = 1, we
have that : ‘X(f)‘ =|H()|IX(f)] =|X(f)|. Hence :

[ ol a= [ xara

PROPRIETARY MATERIAL. ©The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed,
reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the
limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a
student using this Manual, you are using it without permission.




and using Parseval’s relationship :

g. From parts (a) and (b) above, we note that if z(¢) is even, Z(t) is odd and vice-versa. Therefore,
z(t)Z(t) is always odd and hence : [0 x(t)Z(t)dt = 0.

Problem 2.2

1. Using relations

X(f) = %Xl(f — fo) + %Xl(_f — fo)

Y(f) = $Yilf  fo) + 5Vi(~f ~ fo)

and Parseval’s relation, we have

| swuwa= [~ xpyia

:/oo [1Xl(f fo) + Xz( f- fo)H Yi(f - fo)+ Y}( = fo) *df
1 1

= _/ Xl(f—fo)yz*(f—fo)df‘Fz/ Xi(—f = fo)Yi(—=f — fo) df
/ Xi(u du+4Xl( v)Y (v) dv

:—Re [/ X(f df]
zéRe [/_ooxz() ()dt}

where we have used the fact that since X;(f — fo) and Y;(—f — fo) do not overlap, X;(f —
fo)Yi(=f = fo) = 0 and similarly X;(—f — fo)Yi(f — fo) = 0.

2. Putting y(t) = z(t) we get the desired result from the result of part 1.
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Problem 2.3

A well-known result in estimation theory based on the minimum mean-squared-error criterion states
that the minimum of &, is obtained when the error is orthogonal to each of the functions in the
series expansion. Hence :

/.

since the functions {f,(t)} are orthonormal, only the term with & = n will remain in the sum, so :

K

s(t) — Zskfk(t)] Fdt=0, n=12...K (1)

k=1

[o¢]
/ SOt —sn =0, n=1,2 K

—00
or:

¢]
Sp = / s(t) fr(t)dt n=12.,K

—0o0

The corresponding residual error &, is :

Euin = 7% [5(0) = TSI shu®)] [56) = i sutult)]
= [ s dt — 25 Sy sefu(t)s (t)dt — S8 85 20 [s(t> - Skfk(t)] fr(t)dt
= [ |s®)Pdt — [20S0 sful(t)s*(t)dt

K 2
= & — D p—1 I8kl

where we have exploited relationship (1) to go from the second to the third step in the above
calculation.

Note : Relationship (1) can also be obtained by simple differentiation of the residual error with
respect to the coefficients {s,}. Since s, is, in general, complex-valued s,, = a, + jb, we have to
differentiate with respect to both real and imaginary parts :

g, = 2 [, [s(0) = S sufe®)] [50) = SILy sufal®)] de =0
= = [ anfal®) [s(0) = LIy saful®)] + anfi(®) [s0) = DI sufu()] de =0
= —2a, [*_ Re { £2(1) [s(t) ~E s fn(t)} } dt =0

= [ R f20) [s(0) ~ SI sufult)] Jdt =0, n=1,2.K
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where we have exploited the identity : (x + 2*) = 2Re{x}. Differentiation of £ with respect to by,
will give the corresponding relationship for the imaginary part; combining the two we get (1).

Problem 2.4

The procedure is very similar to the one for the real-valued signals described in the book (pages
33-37). The only difference is that the projections should conform to the complex-valued vector
space :

C12= /OO Sg(t)ff(t)dt

—00

and, in general for the k-th function :

[o¢]
Cik =/ st fEt)dt, i=1,2,... k-1

—00

Problem 2.5

The first basis function is :

sa(t)  sa(t) ) —1/V3, 0<t<3
ven V3 0, 0.W.

Then, for the second basis function :

. 2/3, 0<t<2
ci3 = / s3(t)ga(t)dt = —1/V/3 = gi(t) = s3(t) — casga(t) = § —4/3, 2<t <3

—00
0, 0.W

Hence :
1/v/6, 0<t<2
93(t) = ={ —2/V6, 2<t<3

0, o0.W

where Es3 denotes the energy of g4(t) : E3 = f03 (gh(t)*dt = 8/3.
For the third basis function :

oo

Cq2 = /OO Sg(t)g4(t)dt =0 and C3g = / Sg(t)g3(t)dt =0

—0o0 —00
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Hence :

9o (t) = s2(t) — ca29a(t) — c3293(t) = s2(t)
and

0 1/v2, 0<t<1
ga(l
go(t) = =< —1/V2, 1<t<2
(t) NG /
0, o0.W

where : fo so(t))*dt = 2.

Finally for the fourth basis function :

C41 = /OO Sl(t)g4(t)dt = —2/\/5, C31 = /OO Sl(t)gg(t)dt = 2/\/6, Co1 = 0

[e.o] —00

Hence :
91(t) = s1(t) — ca194(t) — c3193(t) — ca192(t) = 0= g1 () =0

The last result is expected, since the dimensionality of the vector space generated by these signals
is 3. Based on the basis functions (g2(t), g3(t), ga(t)) the basis representation of the signals is :

=(0,0,V3) =& =3
8/3, —1/\/3) = & =3
(f,o,o) =& =2
(2/V6,-2/V3,0) = & =2

| |
/_\

Problem 2.6

Consider the set of signals gnl(t) = joni(t), 1 <n < N, then by definition of lowpass equivalent
signals and by Equations 2.2-49 and 2.2-54, we see that On(t)’s areN\/i times the lowpass equivalents
of ¢n(t)’s and ¢, (t)’s are v/2 times the lowpass equivalents of ¢p(t)’s. We also note that since

¢n(t)’s have unit energy, (dni(t), Pni(t)) = (Pni(t), joni(t)) = —j and since the inner product is pure
imaginary, we conclude that ¢, (t) and ¢,(t) are orthogonal. Using the orthonormality of the set
Oni(t), we have

<¢nl (t)v —J Pmi (t)> = J0mn

and using the result of problem 2.2 we have

(), dm(t)) = 0 for all n,m

We also have

<¢n(t)7 ¢m(t)> =0 for all n 7& m
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and - B
(on(t), dm(t)) =0 for all n #m

Using the fact that the energy in lowpass equivalent signal is twice the energy in the bandpass
signal we conclude that the energy in ¢, (¢)’s and ¢y, (t)’s is unity and hence the set of 2N signals
{on(t), <z~5n(t)} constitute an orthonormal set. The fact that this orthonormal set is sufficient for
expansion of bandpass signals follows from Equation 2.2-57.

Problem 2.7

Let x(t) = m(t) cos 2w fot where m(t) is real and lowpass with bandwidth less than fy. Then
Flet)] = —jsgn(f) [gM(f — fo) + M (f + fo)] and hence F[i(t)] = —5M(f — fo) + 5M(f + fo)
where we have used that fact that M(f — fo) =0 for f < 0 and M(f + fo) = 0 for f > 0. This
shows that (t) = m(t) sin 27 fot. Similarly we can show that Hilbert transform of m(t) sin 27 fot is
—m(t) cos 27 fot. From above and Equation 2.2-54 we have

H[an(t)] = \/§¢nz(t) sin 27Tf0t + \/i(bnq(t) cos 27Tf0t = _(gn(t)

Problem 2.8

For real-valued signals the correlation coefficients are given by : pg,, = ﬁ I sk(t)sm(t)dt and
the Euclidean distances by : d,(;?l = {E'k +En — 2\/5k5mpkm}1/2 . For the signals in this problem :

£1=2 6 =2 =3 E=3

2

pr2=0  piz3= pla = ——%=

Sl
(=)

p23 =0 p2y =0
P34 = —%

and:

) =2 dif = \2+3-26Z =1 df = 2+3+2/6% =3

d¥) = v213=v5 d) = /5

d) = \/3+3+2%3L =22
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Problem 2.9

We know from Fourier transform properties that if a signal x(¢) is real-valued then its Fourier
transform satisfies : X (—f) = X*(f) (Hermitian property). Hence the condition under which s;(t)
is real-valued is : S;(—f) = S/ (f) or going back to the bandpass signal s(t) (using 2-1-5):

Si(fe=f)=53(fe+ 1)

The last condition shows that in order to have a real-valued lowpass signal s;(t), the positive fre-
quency content of the corresponding bandpass signal must exhibit hermitian symmetry around the
center frequency f.. In general, bandpass signals do not satisfy this property (they have Hermitian
symmetry around f = 0), hence, the lowpass equivalent is generally complex-valued.

Problem 2.10

a. To show that the waveforms f,(t), n =1,...,3 are orthogonal we have to prove that:

/ @ fa()dt =0,  m#£n

[e%) 4
cH:l/me@ﬁz/ﬁ@MWt
::/flﬁ ﬁ+/h \falt)

1 1
- dt— - [ dt=-x2—=x(4—2

4/0 4/2 4X 742
~ 0

Clearly:

Similarly:
cwzl/flﬁ )dt = /ﬁ V()
1 1 /4
= dt — = | dt—= [ dt dt
TSR ué
=0
and :

[e%) 4
cmzk/fwmwﬁZAﬁ@MWt
1 1 1 2 1 3 1 4
S e e et

=0
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Thus, the signals f,(t) are orthogonal. It is also straightforward to prove that the signals have unit
energy :

/ [fi@)Pdt =1, i=1,2,3

Hence, they are orthonormal.

b. We first determine the weighting coefficients

Ty = /OO x(t) fn(t)dt, n=123

—0o0

4 1 1 1 2 1 3 1 4
rT = / l‘(t)fl(t)dt = ——/ dt + = / dt — —/ dt + —/ dt =0
0 2 0 2 1 2 2 2 3

4 1 4
Ty = /Oa:(t)fg(t)dt:§/0 z(t)dt =0

4 1 1 1 2 1 3 1 4
ry = / l‘(t)fg(t)dt = ——/ dt — = / dt + —/ dt + —/ dt =0
0 2 0 2 1 2 2 2 3

As it is observed, x(t) is orthogonal to the signal wavaforms f,(¢), n = 1,2,3 and thus it can not
represented as a linear combination of these functions.

Problem 2.11

a. As an orthonormal set of basis functions we consider the set

1 0<t«1 1 1<t<?2
fit) = fa(t) =

0 ow 0 ow

1 2<t<3 1 3<t<4
f3(t) = fa(t) =

0 ow 0 ow

In matrix notation, the four waveforms can be represented as

Sy(t t

s1(t) 2 1 -1 -1\ [ A®
s | | -2 1 1 o || RO
ss) || 1 -1 1 =1 || A0
(t) fa(t)

Note that the rank of the transformation matrix is 4 and therefore, the dimensionality of the
waveforms is 4
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10

b. The representation vectors are

o= [2 1 1 1]
s = |-211 0]

ss o= [1 -1 1 1]
sio= |1 -2 2 2]

c. The distance between the first and the second vector is:

d1,2=\/\S1—82|2:\/H4 -2 -2 —1”22\/%

Similarly we find that :

. 112

diz = \/W:\/ 10 -2 0| =V5
dig = \/W:\/-l 11 —3:2=\/ﬁ
by = VRl =
dys = \/W:\/_—:a 3 3 —2”2:\/3_1

r 2
dsg = \/|S3—S4|2=\/ 01 3 —3” =19

Thus, the minimum distance between any pair of vectors is dpyin = V5.

2

V14

-3 2 01

Problem 2.12

As a set of orthonormal functions we consider the waveforms
1 0<t«1 1 1<t<?2 1 2<t<3
fit) = fa(t) = f3(t) =

0 ow 0 ow 0 ow

The vector representation of the signals is

s1 = _222_
S2 = :200:
S3 = _0 —2 —2]
S84 = -220-
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11

Note that s3(t) = sa(t) — s1(t) and that the dimensionality of the waveforms is 3.

Problem 2.13

1. P(E5) = P(R2,R3, R4) = 3/7.

2. P(E3|Ey) = Pg;gy — ng) =1

3. Here Ey = {R2, R4, B2, R1, B1} and P(E,|E4E3) = Pﬁgfgf;) - P(mg(;gwl) -1

4. E5 = {Ra, Ry, Bo}. We have P(E3Es) = P(Ry, Bo) = 2 and P(E3) = P(R1, R2,B1,B2) = 1
and P(E5) = 2. Obviously P(E3Es) # P(FEs3)P(Es) and the events are not independent.

Problem 2.14

1. P(R) = P(A)P(R|A) + P(B)P(R|B) + P(C)P(R|C) = 0.2 x 0.05 + 0.3 x 0.1 + 0.5 x 0.15 =
0.01 + 0.03 + 0.075 = 0.115.

A A
2. P(AIR) = 55051 = s ~ 0.087,

Problem 2.15

The relationship holds for n = 2 (2-1-34) : p(x1,z2) = p(x2|x1)p(x1)
Suppose it holds for n = k,i.e : p(z1,z2,...,z) = p(Tk|TR—1, ..., T1)D(T)—1|TR—2, ..., 1) ..p(T1)
Then forn =k +1:

(1,22, o Tpe, Thy1) = P(Thy1|Th Thm1, oy ©1)P(Th, Th—1--, T1)

= p(rs1|Tr, To—1, s 21)P(TR|TR—15 s 1) P(TR—1|TR—2, s T1) -oD(21)

Hence the relationship holds for n = k 4+ 1, and by induction it holds for any n.
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12

Problem 2.16

1. Let T and R denote channel input and outputs respectively. Using Bayes rule we have

p(T = 0)p(R = A|T = 0)

p(T'=0R=A) =
(L=01R=A) = o =GR = AT = 0) + p(T = Dp(R = AT = 1)
B 0.4><%
0.4 % §40.6 x 3
1
4

and therefore p(T = 1|R = A) = 3, obviously if R = A is observed, the best decision would
be to declare that a 1 was sent, i.e., T' = 1, because T" = 1 is more probable that T' = 0.
Similarly it can be verified that p(T' = 0|R = B) = 2 and p(T = 0|R = C) = %. Therefore,
when the output is B, the best decision is 0 and when the output is C, the best decision is
T = 1. Therefore the decision function d can be defined as

1, R=AorC
d(R) = or
0, R=B
This is the optimal decision scheme.

2. Here we know that a 0 is transmitted, therefore we are looking for p(error|T" = 0), this is
the probability that the receiver declares a 1 was sent when actually a 0 was transmitted.
Since by the decision method described in part 1 the receiver declares that a 1 was sent when
R = Aor R =C, therefore, p(error|T = 0) = p(R = A|T = 0) + p(R = C|T = 0) = 1.

3. We have p(error|T = 0) = %, and p(error|T' = 1) = p(R = B|T = 1) = £. Therefore, by the
total probability theorem

p(error) = p(T = 0)p(error|T" = 0) + p(T" = 1)p(error|T" = 1)

—04><1—|-06><1
= 0. 3 . 3
1
3

Problem 2.17

Following the same procedure as in example 2-1-1, we prove :

py(y) = —px <y—"’)

lal a
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Problem 2.18

Relationship (2-1-44) gives :

B 1 y—>b 1/3
py(y)—ga[(y_b)/a]Q/gpx [( - ) ]

. . . : . g2
X is a gaussian r.v. with zero mean and unit variance : px(z) = \/%76 2%/2

Hence :
1

" 3av2r [(y — b) /]

5"

py (y) €

pdf of Y
T

0.5

Problem 2.19

1) The random variable X is Gaussian with zero mean and variance o2 = 10~%. Thus p(X > z) =

Q(%) and

—4
p(X>1071) = Q@ <18—_4> = Q(1) = .159

—4
p(X >4x107" = Q <%> =Q(4) =3.17x107°
p(—2x107' < X <107 = 1-Q(1) —Q(2) = .8182

. X>10"% X>0) p(X>10"%) .15
X > 10-4[x > 0) = & ’ = =2 = 318
p | ) p(X > 0) p(X > 0) 5
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Problem 2.20

1) y = g(z) = az®. Assume without loss of generality that a > 0. Then, if y < 0 the equation

y = ax? has no real solutions and fy (y) = 0. If y > 0 there are two solutions to the system, namely

x12 = \/y/a. Hence,

fx(z1) +fX(fC2)
g (z1)] 19’ (22)]
FelVuT) | =570
NN

1 y

= e — 2a02

JVayV22no?

Ir(y)

2) The equation y = g(x) has no solutions if y < —b. Thus Fy (y) and fy (y) are zero for y < —b. If
—b <y < b, then for a fixed y, g(z) < y if x < y; hence Fy(y) = Fx(y). If y > b then g(z) <b<y
for every x; hence Fy (y) = 1. At the points y = +b, Fy (y) is discontinuous and the discontinuities
equal to

Fy(=b%) — Fy(=b") = Fx(~b)

and
Fy(b") — Fy(b™) =1— Fx(b)

The PDF of y = g(z) is
fr(y) = Fx(=b)d(y +b) + (1 — Fx(b))o(y —b) + fx (y)[u-1(y +b) — u_1(y — b)]
= Q(3) 6l+v o)+ =

e 20 [u_y(y +b) — u_y(y — b)]
2ro?

3) In the case of the hard limiter

Thus Fy (y) is a staircase function and

fr(y) = Fx(0)d(y — ) + (1 - Fx(0))d(y —a)
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4) The random variable y = g(z) takes the values y,, = x, with probability
p(Y = yn) = p(an <X< an+1) = FX(anJrl) - FX(an)

Thus, Fy (y) is a staircase function with Fy(y) =0 if y < 1 and Fy(y) =1 if y > xn. The PDF
is a sequence of impulse functions, that is

N
fry) = Z[Fx(am)—Fx(ai)]é(y—xi)

= o) - e () st

Problem 2.21

For n odd, ™ is odd and since the zero-mean Gaussian PDF is even their product is odd. Since
the integral of an odd function over the interval [—oo, 00| is zero, we obtain E[X"] = 0 for n odd.
Let I, = [%_a"exp(—a?/20?)dx. Obviously I, is a constant and its derivative with respect to x
is zero, i.e.,

d [e'e) 22 1 22
d—In = / [nﬂc”_le_%_Q — —2:5”“6_20_2 der =0
X —00 o

which results in the recursion
2
Iyt =no L,

This is true for all n. Now let n = 2k — 1, we will have Ip, = (2k — 1)0%I;_o, with the initial
condition Iy = v2wo2. Substituting we have

I = 0*V2mo?
Iy = 30621, = 306*V 2702
Is =5 % 3021, = 5 x 365V 2no2

Is=7x 0%l =7 x5 x 365V 2mro2

and in general if Iy, = (2k —1)(2k —3)(2k —5) x - - - x 3 x 1622102, then Loy o = (2k+1)02 Iy, =
(2k+1)(2k —1)(2k —3)(2k —5) x - - - x 3 x 16?**2y/27152. Using the fact that E[X?}] = I, /v 2m02,
we obtain

I,=1x3x5x---x(n—-1)c"

for n even.
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Problem 2.22

a. Since (X, X;) are statistically independent :

1 (2422 2
px(qu’xz) = pX(xT)pX(xZ) = 27TO_26 (xr‘i’wz)/ZU

Also :
Y, +5Y; = (X, + X;)e/¢ =

X, +X; =Y, +jY) e ?® =Y, cos ¢+ Ysinp + j(—Y, sin¢ + Y; cos ¢) =
X, = Y,cosp+Y;sing
X;= =Y,.sin¢+ Y;cos ¢
The Jacobian of the above transformation is :

0X, 0Xi

g | | cos¢ —sing 1
T oaxr x| | -
Y, o sing cos¢

Hence, by (2-1-55) :

py(yr,yi) = px((Yrcos¢ +Yising), (=Y, sin¢ + Yjcos ¢))
= 1 (v+y})/20°
2702

b. Y =AX and X = A"'Y

’ 2 . . . .
Now, px(x) —X'%/20" (the covariance matrix M of the random variables z1, ..., z, is

_ 1
- (271-0-2)71./2

M = 21, since they are i.i.d) and J = 1/|det(A)|. Hence :

]. ]. 7y'(A71)/A71y/202
(2702)/2 [det(A)]©

For the pdf’s of X and Y to be identical we require that :

py(y) =

|det(A)|=1and (A"YA I =1 = A 1=A'

Hence, A must be a unitary (orthogonal) matrix .

Problem 2.23

Since we are dealing with linear combinations of jointly Gaussian random variables, it is clear
that Y is jointly Gaussian. We clearly have my = E[AX]| = Amx. This means that Y — my =
A (X —mx). Also note that

Cy=E[Y-my)(Y —my)]=E[A(X —mx) (X —mx) A
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resulting in Cy = ACxA’.

Problem 2.24

a.
Uy (o) = B[] = B[ =] = B [T e | = [T B[] = (ux(e)"
i=1 i=1
But,
px(z) =pd(x — 1)+ (1 —p)i(x) = wX(ej”) =1+ p+ pel?
= Py (jv) = (1 +p+pe*)"
b.
d jv ) o] .
E(Y)= —J%\U:o = —jn(l —p+pe’)" 1 jpel’|,—o = np
and
d? jv d .. o
E(Y2) — _%‘UO — _% []n(l _p+pe]U)n lpe]ll] v— = np + np(n — 1)p

= E(Y?) = n?p* + np(1 - p)

Problem 2.25

1. In the figure shown below
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let us consider the region u > x,v > x shown as the colored region extending to infinity, call
2

u2 v
this region R, and let us integrate e~ > over this region. We have

u2+v2 T2
//e_ 2 dudv://e_2rdrd0
R R
00 2 %
S/ re” 2z dr/ db
:t\/§ 0

15
= — |—e 2
2 /3

™ o _ .2
:_eit

2

where we have used the fact that region R is included in the region outside the quarter circle
as shown in the figure. On the other hand we have

_u?40? W2 0 W2
//e 2dudv:/e2du e~ 2 dv
x xT
R

22

and therefore, Q(z) < 3¢z
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¥

2
2. In fxoo e T z—g defineu = e~ 7 and dv = z—g and use the integration by parts relation [wdv =

2
uwv — [vdu. We have v = —é and du = —ye_yT dy. Therefore

2 oo 2
. 2 g _y? oo ) _a?
/ 67%_2: e —/ eiy?dy:e —V21Q(x)
x Y Y x x
xr
2
Now note that fxoo e~ T ;l—g > (0 which results in
22
e 2 1 22
—V271Q(x) > 0= Q(x) < e 2
T 2mx

On the other hand, note that

/OO _v dy 1 & y? V2T
e 2 e 2ay
T

which results in

[

_x

or, \/2m 1+$2Q(az) > -2 which results in

T2

3. From
X z2 ]_ z2
e 2 < x) < e 2
V27 (1 + 2?) Q@) 21w
we have
1 2 1 2
e T <Qx) < ez

V2r (1 + ) 2nx

As = becomes large % in the denominator of the left hand side becomes small and the two
bounds become equal, therefore for large x we have
1 o2
Q) ~ ——c 2

2rx

Problem 2.26
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1. Fyv,(y) =PlYn<yl=1-PY,>yl=1—Plz; >y, Xo>y,....,. X, >y =1— (P[X
where we have used the independence of X;’s in the last step. But P[X > y| = fy Yy

A
Therefore, Fy, (y) =1 — (A;{)n, and fy, (y) = dilyFyn (y) = nmfj#_l, 0<y<A.

Problem 2.27

V121 +v2T2+v3T3+v4T4)

W(jvr, jug, jus, jus) = E |

4841/}(j111,j7)2,j7)3,jv4) |
0v10v90v3004 v1=02=vs=04=0

From (2-1-151) of the text, and the zero-mean property of the given rv’s :

E(X1X2X3X4) = (—])

U(jv) = B

where v = [v1,v2,v3,v4]" , M = [p;5] -
We obtain the desired result by bringing the exponent to a scalar form and then performing
quadruple differentiation. We can simplify the procedure by noting that :

I(jv)
a’UZ‘

1.7
— _Hgve—iv Mv

where pf = [, fi2, fti3, pia] - Also note that :

/
i M
o, ij ji

Hence : . . . .
MY (juvr, jua, jus, jua)
81}1 87)281}387)4

[V=0 = H12/434 + p23pb14 + 2413
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Problem 2.28

1) By Chernov bound, for ¢ > 0,
P[X > a] < e E[e¥] = e O x (1)
This is true for all ¢ > 0, hence

> a] < min [~ S -
lnP[X_Oé]_Ithlél[ ta+InOx(t)] I?féi[m In ©x(t)]

2) Here

In P[S,, > a] =In P[Y > na| < — max [tna — In Oy ()]

where Y = X1 + Xo + -+ + X, and Oy (t) = E[ef1HX2t+Xn] = [©x(¢)]". Hence,

1
IHP[Sn > Cl] = —r{l;lgin[ta — lnex(t)] = —n[(a) = _P[Sn > a] < efnl(a)
= n
Ox(t) = fooo el e dp — %_t as long as t < 1. I(a) = max;>o(ta+ In(1 —¢)), hence %(ta +In(1 —
t)) = 0and t* = 21 Since a > 0, ¢* > 0 and also obviously t* < 1. I(a) =a—1+In(1-2=1) =

a — 1 —Ina, using the large deviation theorem

In P[Sn 2 Oé] = ein(aililna)JrO(n) = anefn(a71)+o(n)

Problem 2.29

For the central chi-square with n degress of freedom :

1

by = —
( ) (1 _ j2v0_2)n/2
. dip(jv) no” dy (jv)
Jv Jno . v ,
= E(Y)=— e
dv (1-— j2v02)"/2+1 = E{Y) T 0o lv=0 = no
Py(jv) _ —2n0' (n/2+1) o d(v) )
= B(y?) = _dviy), )
dv? (1 _j2,002)n/2+2 = ( ) dv? |v70 n(n+ )g

The variance is 02 = E (Y?) — [E (Y)]* = 2no*
For the non-central chi-square with n degrees of freedom :

1 2 5 2
¥ ju) = eJvs /(1—321}0 )
G) (1 —j2v02)n/2
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where by definition : s* = Y1 | m?
dl/}(jv) _ jn02 + j52 j’USQ/(l*jQ’UO'Q)
N o, 2\n/2+1 o o2tz | €
dv (1 —j2v0?) (1 —j2v0?)
Hence, E (Y) = —j%\vzo =no? + s*
d*y(jv) B —not (n +2) —52(n + 4)0? — ns’o? —st jus?/(1-j200?)
d’U2 - o 2 n/2+2 + . 2 n/2+3 + o 2 n/2+4 €
(1 — j2v0?) (1 — j2v0?) (1= j52v0?)
Hence,
(5
) (YQ) = —%bzo = 2not + 4s%0% + (n02 + 52)
v

and
o3 = E(Y?) - [E(Y)]? = 2no" + 40?5

Problem 2.30

a/m

x2 +a2 )

The Cauchy r.v. has : p(z) = —00 < T < 00

since p(z) is an even function.

E(Xx?) = /OO 22p(x)ds = = /OO .

21 42
oo T ) o ta
2 .
Note that for large x, 3% — 1 (i.e non-zero value). Hence,

E(XQ) :oo,a2 = 00

o0

wlio) =B (™) = [

2(1/77 2ejvzdx _ /OO -(1/71' : ejvxdx
o ta oo (@4 ja) (z — ja)

This integral can be evaluated by using the residue theorem in complex variable theory. Then, for
v>0:

P(jv) = 2mj <7a/ﬂ. ej”) =e
T —l-j(l r=ja

For v < 0:

(jo) = 2 (—“/” ) _ ey
r=—ja

T —ja
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Therefore :

b(jv) = eV
Note: an alternative way to find the characteristic function is to use the Fourier transform rela-
tionship between p(z), 1 (jv) and the Fourier pair :

1 c
—b|t| - _ _
e <—>7r762+f2,6—b/27r,f—27rv

Problem 2.31

Since Ry and R; are independent fr, g, (r0,71) = fro(70)fR, (1) and
u2 il
fro,R:(T0,71) = %IO (’;—Tgl) e 2Ze” 2T, ro,r >0
0, otherwise.
Now

P(Ry > Ry) = // f(ro,r1) dridrg

TO>T1

= [T [0,

= [Tt ([ ntrorane) ar,
- [T ([ e dry) d
_ /OOO Fra(m) [_e——r dr,

= / e_%_leRl (r1) dry

0
*® pryy et
= —2_[0 (—2) e 202 d?”l
0 o o

Now using the change of variable y = v/2r; and letting s = 4= we obtain

V2
o 2 2
Yy sy\ _z2249 dy
P(Ry>Ry) = | —Z-1I (—) 2t 2L
(Ro> R = [~ 2 (% v
1 _2 [y sy\ _s24y?
S =0 I Ca
1 _ 2
_= 56_202
o
= — 40
5¢
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S2 2
where we have used the fact that fooo % 1o (z—%) e 202 dy =1 because it is the integral of a Rician
pdf.

Problem 2.32

1. The joint pdf of a,b is :

pab(aa b) = pxy(a —my,b— mz) = px(a - mr)py(b - mz) =

2. u=+a?2+b%, ¢=tan "'b/a = a=ucos¢@, b=usin¢ The Jacobian of the transformation is

2 J(a,b) = 9a/Ou 9a/0¢ = u, hence :
ob/ou  Ob/O¢

pw(u ¢) _ u 6—2(%2[(ucos¢—mw)2+(usin¢—mi)2]
) 2

U o 2:%2 [u2+M2—2uM cos(¢>—6)]
2702

where we have used the transformation :

M = /m?+m? my = M cos 0
=

0 = tan ~tm;/m, m; = M sinf

27
pu(n) = /0 P (1 $)d

2 a2 2
U _uleM 1 _
_ e 202 / e 557 [—2uM cos(¢ 6)}d¢
0

2mo?
2 2 21
U _ui+M? ] _0) /2
= —e 202 €uMcos(qS 0)/o do
o 2 Jo

u _uZem?

= ;e 202 IO (’LLM/UQ)
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Problem 2.33

a. Y =131 X;, ¢y, (jv) = e

n n

by (o) = B [ Za | < [T B [¢3%] = [T ox,Go/n) = [eel/m]" = e

i=1 =1

a/m

b. Since ¢y (jv) = ¢x;(jv) = py (y) = px;(z:)) = Py (y) = Zhaz-

c. Asn — oo, py(y) = yg/ﬁ, which is not Gaussian ; hence, the central limit theorem does not

hold. The reason is that the Cauchy distribution does not have a finite variance.

Problem 2.34

Since Z and Ze’’ have the same pdf, we have E[Z] = E [Ze] = eI’ E[Z] for all §. Putting
0 = gives E[Z] = 0. We also have E [22'] = E | Ze? (Ze1°)'| or E [22"] = ¢4°E [221], for
all 6. Putting 0 = 3 gives I/ [ZZt] = 0. Since Z is zero-mean and F [ZZt] = 0, we conclude that
it is proper.

Problem 2.35

Using Equation 2.6-29 we note that for the zero-mean proper case if W = e?Z_ it is suf-
ficient to show that det(Cw) = det(Cz) and wiCyyw = zfC'2z. But Cw = WWH] =
Elei?Ze 19ZH] = E[ZZ"] = Cz, hence det(Cw ) = det(Cyz). Similarly, wCijw = e 1921 C ' ze? =
2" C,'z. Substituting into Equation 2.6-29, we conclude that p(w) = p(z).

Problem 2.36

Since Z is proper, we have E[(Z — E(Z))(Z — E(Z))!] = 0. Let W = AZ + b, then

E[(W — E(W))(W — E(W))'| = AE((Z - BE(2))(Z - E(Z))'|A"=0
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hence W is proper.

Problem 2.37

We assume that z(t),y(t), 2(t) are real-valued stochastic processes. The treatment of complex-
valued processes is similar.

Roo(7) = E{[z(t +7) +y(t + )] [2(t) + y(O)]} = Raw(7) + Ray(7) + Rya(T) + Ryy(7)

b. When z(t),y(t) are uncorrelated :
Ray(7) = Efz(t + 7)y(t)] = E [z(t + )] Ey()] = mam,

Similarly :
Ry (1) = mgmy,

Hence :
R..(T) = Ryx(T) + Ryy(7) + 2mym,,

c. When z(t),y(t) are uncorrelated and have zero means :

R..(T) = Ryu(T) + Ryy(7)

Problem 2.38

The power spectral density of the random process z(t) is :

Sez(f) = /OO Rm(T)eij”deT = Np/2.

—00

The power spectral density at the output of the filter will be :

Suf) = Seal PIH(NP = “2IH ()
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Hence, the total power at the output of the filter will be :

R =0) = [~ Spar =52 [~ ) Par = Sem) = Nop

2 —00

Problem 2.39

The power spectral density of X (t) corresponds to : Ry (t) = 2BNy2222BL From the result of

Problem 2.14 :

in 2Bt
o) = B, 0)+ 20, (r) = (2880 + 85°0¢ (2220
2w Bt
Also :
Syy(f) = R:?:a:(o)(s(f) + 2S:v:v(f) *® Sa:a:(f)
The following figure shows the power spectral density of Y (¢) :
(2BNo(f)
2N B
f
—-2B 0 2B
Problem 2.40
X1
My =FE[(X-m,;)(X—-m,)], X=| X, |, m, is the corresponding vector of mean values.
X3

Then :
(Y —my)(Y —m,)']

El
= EAX—m,)(A(X ~m,))]
E[A(X —m,)(X - m,)'A
= AE[(X - my)(X — my)] A/
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Hence :
M1 0 M1 + (13
MY = 0 4/122 0

g1+ p31 0 pnr + g3+ 31+ 33

Problem 2.41

Y(t) = X2(t), Rou(r) = E [2(t + 7)2(t)]
Ry, (1) = Ey(t+7)y(t)] = E [2°(t + 7)2°(t)]
Let X1 = Xy = 2(t), X3 = X4 = z(t + 7). Then, from problem 2.7 :
E(X1X2X3X4) = E(X1X2) E (X3Xy) + E (X1 X3) F (XoXy) + E (X1 X4) E (X2X3)

Hence :
Ryy(T) = Rg$(o) + QRET:II(T)

Problem 2.42

pr(r) = v (8)" 2R, X = o
We know that : px(z) = ﬁpR (1/‘:3/5) .
Hence :
1 2 m\m™m 2m—1 2 2 2
— e 0 —m(zvQ)%/Q _ m,2m—1_—mzx
px () 1/\/§I‘(m) (Q) (33 ) e I‘(m)m x e

Problem 2.43

The transfer function of the filter is :

H(f) = 1/jwC 1 B 1
- R4+1/jwC  jwRC+1  j2nfRC +1
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_ 2 _ 2 _ o
b.
-1 27 fT
Ryy(r) = F{Seal )} = / T

Let : a= RC, v=2nf. Then :

J2

_ jut _ Y _—alr| _ U_ —|r|/RC
Ry(7) = 35 /_oo 2+ 02¢ W= g5pet 2RC*

where the last integral is evaluated in the same way as in problem P-2.9 . Finally :

0.2

E[Y?(t)] = Ryy(0) = 3RO

Problem 2.44

If Sx(f) = 0 for |f| > W, then Sx(f)e 72"/ is also bandlimited. The corresponding autocorrelation
function can be represented as (remember that Sx(f) is deterministic) :

sin 2rW (T — QL)

w
_ 1
(r—a) n_zjoo RX —a) 27 W (T — ﬁ) (1)
Let us define : - ( )
R n sin27W (t — 5%
XO= 2 Yo w =)

We must show that :

or

E

First we have :

Z n—m 81n27TW( 5 )

th—— n

E [(X(t) - f((t)) X(%)} )
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But the right-hand-side of this equation is equal to zero by application of (1) with a = m/2W.
Since this is true for any m, it follows that E [(X(t) - X(t)) X(t)} = 0. Also

£ (X0 50) 0] a0 3 a2 )
=T W

Again, by applying (1) with a =t anf 7 = ¢, we observe that the right-hand-side of the equation is
also zero. Hence (2) holds.

Problem 2.45

Q(z) = \/%7 .= e /24t = P[N > z], where N is a Gaussian r.v with zero mean and unit variance.
From the Chernoff bound :
PIN > ] < e ™E (ef’N) (1)
where © is the solution to :
E(Ne"™) —zE (e"N) =0 (2)
Now :
42
E (GUN) = 7 ffooo evte=t /2t
v2/2_1 —(t—v)%/2
vors e V24t
— e'u2/2
and J
E (Ne”N) =—F (e”N) = ve?’/?
dv
Hence (2) gives :
V=1

and then :

Problem 2.46

Since H(0) =Y. _h(n) =0=m, =mzH(0) =0
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The autocorrelation of the output sequence is

oo

Ryy(k) = " h(i)h(j)Raw(k — j +14) = 02 Y h(i)h(k + 1)
]

1=—00

where the last equality stems from the autocorrelation function of X (n) :

o, j=k+i
Res(k—j+i)=020(k—j+i)=4 = 7
0, o.w.

31

Hence, Ry, (0) = 602, Ry, (1) = Ryy(—1) = —402, Ry (2) = Ryy(—2) = 02, Ryy(k) = 0 otherwise.

Finally, the frequency response of the discrete-time system is :

H(f) = Y% h(n)e72min
= 1— 27727 4 e7i4nf

= (1 eY?
— eimf (ejfrf — efjﬂf)2
= —de I sin?nf

which gives the power density spectrum of the output :

Syy(f) = Sux(HIH(f)|? = 02 [165in ‘7 f] = 1607 sin*x f

Problem 2.47
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The power density spectrum is

S(f) = X o R(k)es2nik
- —k —jor 0 k —jor
= Yitow (3) T R (3) e

= Yoz + Y (e 1

1 1
R R we— L L

2—cos2mf 1
5/4—cos 2w f

3
5—4cos2nf

Problem 2.48

We will denote the discrete-time process by the subscript d and the continuous-time (analog) process
by the subscript a. Also, f will denote the analog frequency and f; the discrete-time frequency.

Ra(k) = E[X*(n)X(n+ k)
E[X*(nT)X(nT + kT)]
= Ra(kT)

Hence, the autocorrelation function of the sampled signal is equal to the sampled autocorrelation
function of X (t).

b.
Ra(k) = Ro(kT) = [, So(F)e* M df

(2+1)/2T & o
= X2 f21 5 )//2T o(F)e72m IR df
= X [ Salf + )T

= S (SR Salf + 4)] PR df
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Let fg = fT. Then :

1/2
Ry(k) = /1/2

We know that the autocorrelation function of a discrete-time process is the inverse Fourier transform

= 3 Sullfat D/T)| Py, (1)

l=—00

of its power spectral density

1/2 '
Ra(k) = Sa(fa)e’* ™ dfy (2)
~1/2
Comparing (1),(2) :
1 !
Sulf =7 3 s Q
l=—00
c. From (3) we conclude that :
Sulfa) = 28a(22)
T T

iff -
Sa(f)=0, V[f:|fl>1/2T

Otherwise, the sum of the shifted copies of S, (in (3)) will overlap and aliasing will occur.

Problem 2.49

u(t) = X cos 2w ft — Y sin 2m ft
Elu(t)] = E(X)cos2nft — E(Y)sin 27 ft

and :

Ruu(t,t+7) = E{[Xcos2nft—Y sin2nft][X cos2nf(t+7)—Ysin2nf(t+7)|}
= E(X?)[cos2nf(2t+7)+ cos2n fr] + E (Y?) [~ cos2nm f(2t 4+ T) + cos 27 f 7]

—E(XY)sin2nf(2t +7)

For u(t) to be wide-sense stationary, we must have : E [u(t)] =constant and Ry, (t,t+7) = Ry (7).
We note that if E(X) = E(Y) = 0, and E(XY) = 0 and E(X?) = E(Y?), then the above
requirements for WSS hold; hence these conditions are necessary. Conversely, if any of the above
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conditions does not hold, then either E [u(t)] #constant, or Ry, (t,t + 7) # Ry.(7). Hence, the
conditions are also necessary.

Problem 2.50

Ro(1) = [ Sa(f)e?*™I7df
— ffVW 6j27rf7—df

sin 27Wr
T

By applying the result in problem 2.21, we have

sin 2nW kT

Ra(k) = £u(kT) = 2

b. If T = ﬁ, then :

oW =1/T, k=0

Rq(k) =
0, otherwise

Thus, the sequence X(n) is a white-noise sequence. The fact that this is the minimum value of
T can be shown from the following figure of the power spectral density of the sampled process:

| |
_fS_W _fs _fs+W _W W fs_W fs fs+W

We see that the maximum sampling rate f, that gives a spectrally flat sequence is obtained when :

1
/ =/ = oW
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c. The triangular-shaped spectrum S(f) = 1 — |—V];/‘, |f| < W may be obtained by convolv-

ing the rectangular-shaped spectrum Si(f) = 1/VW, |f| < W/2. Hence, R(t) = Ri(r) =

1 (sin Wt
w T
with autocorrelation function :

R(k:)—i sinTtWkT 2—W sin 7k 2_ W, k=0
an kT a mk a 0, otherwise

)Q.Therefore, sampling X(t) at a rate % = W samples/sec produces a white sequence

Problem 2.51

Let’s denote : y(t) = fr(t)f;j(t). Then :

| aonoa= [ y0d =y

where Y'(f) is the Fourier transform of y(t). Since : y(t) = fi(t)f;(t) «— Y (f) = Fi(f) * F;(f).
But :

o0

_iom 1

Fi.(f) Z/ fe(t)e 92t qt = 77 j2m fk/2W
—0o0

Then : -
Yﬁﬁﬁﬂﬂﬂwﬂz/mﬂWHﬂU—@m
and at f=0:
Y(flj=o = Joo Fj(—a)da
= (2 e—i2ma(k—35)/2W 4,
1/2W k=j

k#j

Problem 2.52

Bu=g [ (P

For the filter shown in Fig. P2-12 we have G = 1 and

szé H(f)df = B
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For the lowpass filter shown in Fig. P2-16 we have

_ 1 2 _ 1
H{f) = 1+ j27fRC () 1+ (2nfRC)?
SoG =1 and
Beq = fooo ‘H |2df
2 f HIPdf
m

where the last integral is evaluated in the same way as in problem P-2.9 .

Problem 2.53

Elzt)z(t+7)] = E[{z(t+7)+7y(t + 1)} {=(t) + jy(t)}]
= Bzt +7)] - Ely)yt +7)] +jE [z()y(t + 7)]
E [y(t)l‘(t +7)]
= Roa(T) = Ryy(7) +J [Rya(7) + Ray(7)]
But Ry (7) = Ryy(7)and Ry, (7) = —Rgy (7). Therefore :

Elz(t)z(t+71)] =0

V= / s

E(V?) //E )] dadb =0

from the result in (a) above. Also :

EWv*) = [ [T E[2(a)2*(b)] dadb
= [ Ji Nod(a — b)dadb
=[] Noda = NoT
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Problem 2.54

Elz(t+71)x(t)] = A2Elsin(2nf.(t +7) + 0)sin (27 f.t + 0)]
= é coS 27 foT — é E[cos (2mf(2t + T) + 20)]

where the last equality follows from the trigonometric identity :
sin Asin B = 1 [cos(A — B) — cos(A + B)]. But :

Elcos (2mfe(2t +7) +20)] = [77 cos (2mfo(2t + T) + 26) p(6)df
o f027r cos (2mfo(2t + 1)+ 20)df =0

Hence :
2

Elzx(t+71)z(t)] = A? oS 27 foT

Problem 2.55

1) We have E[Z(t)] = E[X(t)] + jE[Y (t)] =0+ j0 =0 and

Rz(t+7,t)=E[(X({t+7)+5Y(+7))(X(#)—5Y ()]
= Rx(7) + Ry (1)
= 2Rx(7)

because E [X(t + 7)Y (t)] = E[Y(t+7)X(t)] = E[X(t + 7)]E[Y(t)] = 0 (by independence) and
therefore Z(t) is obviously stationary. We also note that Ry (7) = Ry (1) = F 1 [NOH (%)] =
9T N sinc(20Wr)

2) To compute the power spectral density of Z(t), we have Sz(f) = F[2Rx(7)] = 2Sx(f) =
2NoII (%) Note that II(¢) is a rectangular pulse defined as

1, Jt<1
) =93 =
0, otherwise.
3) E[Z [f Z(t )dt] = [ EIZ)|R;(t)dt = 0 since Z(t) is zero-mean. For the
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correlation we have

oo

B2,2] = E [ /_ T 2ersyds [ 200 dt]

—00

_ / Z /OO Z Ry(s — t)R: (s)Ry(t) dsdt
:/OO Re(t) UOO Ry(s — O)R:(s) ds} it ()

—00 —00

Using Parseval’'s Theorem, [*_x(t)y*(t)dt = [* X(f)Y*(f)df, we have (S;(f) is the Fourier
transform of R;(t)).

/OO Rz(s —t)R}(s)ds = /OO e 12Tt NoII (%) S;(f)df

W .
<9 /_ . Noe 7?™IS*(f) df

Lo / Noe 2Tt (f) df

where (a) is due to the fact that II (#) is zero outside the [, W] interval and (b) follows from
R;(t) being bandlimited to [-W, W]. From above we have

/ Z Ry(s — )R!(s) ds = 2Ny [ / it (f) df} )

—0o0

— AN R(1)
Substituting this result in equation (**) we have
e}
Bl2,27) =2 / NoR: (1) Ry(t) dt
— 00
2Ny, =k
0, J#k

This shows that Z;’s are Gaussian random variables (since they are the result of linear operation
on a Gaussian process) with mean zero and variance 2Ny, i.e., Z; ~ N(0,2Np). Also note that for
Jj # k, Zj and Zj, are independent since they are Gaussian and uncorrelated.

4) This is done similar to part 3 (lengthy but straightforward) and the result is that for any k, Zg,
and Zj; are zero-mean, independent Gaussian random variables with E(Z2 ) = E(Z?,) = Ny and
therefore the random vector (Z1,, Z1;, Zor, Zoi, -+ » Znr, Zni) is a 2n-dimensional Gaussian vector
with independent zero-mean components each having variance Ny. In standard notation

(Zrry Z1iy Zag, Z2is -+ s Zingy Zni) ~ N (0, NoI)

where 0 is a 2n-dimensional zero vector and I is a 2n X 2n identity matrix.
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5) We have

where we have used

Now we have

oo

ElZ()Z]] = E [Z(t) / 7*(5) Ri(s) ds}

—00
[e.o]

= / Ry (t — s)Ri(s)ds

—0o0

_ /OO Ri(s)Ry (s — 1) ds

= 2/_00 Si(f)e??™ NI (%) df

w
— / NSy (f)e?? It dt
-w

29N, / Se(f)er? It af

= 2Ny Ry (t)

(a): because Ry(t) is bandlimited to [-W, W].

A~

From above it follows that E[Z(t)Z;] =0 for all k = 1,2,--- , N. This means that the error term
is independent of the projections.

Problem 2.56

L Sg(f) =1 —jsen(f)I?Sx(f) = Sx(f), hence Rg(r) = Rx (7).
2. Sy (f) = Sx(f)(=jsgn(f))* = jsgn(f)Sx(f), therefore, Ry ¢ (1) = —Rx (7).

3. Ryz(1)=FE [(X(t +7) + X (t+ T)) (X(t) —jX(t))], expanding we have

Rz(1) = Rx(7) + Rg(1) = j [Rx (1) — Ry x(7)]
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Using R¢(7) = Rx(7), and the fact that RXX( T) = —RX(T) is an odd function (since it is
the HT of an even signal) we have R (1) = Ry ¢ (—7) = —R ¢(7), we have

Rz (1) = 2Rx(7) = j2Ry ¢ (1) = 2Rx () + j2Rx(7)
Taking FT of both sides we have

Sz(f) = 28x(f) + 72 (=jsgn(f)Sx (f)) = 2 (1 +sgn(f)) Sx (f) = 48x (fu-1(f)

4. We have

Ry (t+7,t)=F [Z(t n T)e—j2ﬂfo(t+T)Z*(t)ejgﬂfot]

e eijQﬂ-fOTRZ(T)
This shows that X;(t) is WSS (we already know it is zero-mean). Taking FT, we have
Sx,(f) =S8z(f — fo) =4Sx(f — fo)u—1(f — fo), this shows that X;(t) is lowpass. Also from

above Rx () = $Re[Rz(t)] = iRe [Rx,(7)e/?™7]. This shows that Rx,(r) is twice the LP
equivalent of Rx (7).

Problem 2.57

1) The power spectral density S,(f) is depicted in the following figure. The output bandpass
process has non-zero power content for frequencies in the band 49 x 10° < |f| < 51 x 10%. The
power content is

—49x106 o f 51x106 N f
P = / 10~ (1—1——) df—l—/ 10~ (1——) df
—51x106 108 49x%106 108

—49x%106 1 —49%106 51x10° 1 51x109
= 107 %z + 10*165932 +107 %z — 10*165932
—51x106 —51x106 49x106 49x106
= 2x1072
0—8
|
8
—5.107 5.107 10

2) The output process N (t) can be written as

N(t) = Ne(t) cos(2m50 x 10¢) — Ny (t)sin(2750 x 10%¢)
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where N (t) and Ns(t) are the in-phase and quadrature components respectively, given by

Ny(t) = N(t)cos(2m50 x 10°) + N () sin(2750 x 10¢)

Ny(t) = N(t)cos(2r50 x 10°t) — N (t) sin(2750 x 105¢)
The power content of the in-phase component is given by

E[IN.(t)]}] = E[N(t)]?]cos?(2r50 x 105¢) + E[|N (t)[?] sin?(2750 x 10%t)
= E[|N®)]=2x10"2

where v;e have used the fact that E[|N(t)[>] = E[|N(t)[?]. Similarly we find that E[|N,(t)|*] =
2 x 107=.

3) The power spectral density of N.(¢) and Ng(t) is

Sn(f — 50 x 10%) + Sy (f + 50 x 10) |f| <50 x 106

0 otherwise

Sn.(f) = Sn.(f) =
Sn,(f) is depicted in the next figure. The power content of Sy, (f) can now be found easily as

106
Py, = Py, = / 1078df =2 x 1072
—106

108

4) The power spectral density of the output is given by
Sy (f) = Sx(HIH(f)|? =1075(|f] — 49 x 10°)(1078 — 10716|f|) for 49 x 10° < |f| < 51 x 10°

Hence, the power content of the output is

—49x106

Py = 106(/51 L (f 9 10%)(107 + 107 £)df)

51x108
+106(/ (f —49 x 10%)(1078 — 10716 £)df)
49x106

4
= 10752 x 10* — 5102)
The power spectral density of the in-phase and quadrature components of the output process is
given by
Sy.(f) =Sv.(f) = 107°(((f +50 x 10°) — 49 x 10°) (107 — 107 '6(f + 50 x 10%)))
+107((—(f — 50 x 10°) — 49 x 10%) (107® + 107 *(f — 50 x 10%)))
= 107%(—2x 107102 4 107%)
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for |f| < 105 and zero otherwise. The power content of the in-phase and quadrature component is

106
Py, =Py, = 106/ (=2 x 10710 f2 + 10 %)df
—106
1 106 106
= 107%(—2x 10716- 3 +1072f] )
37 | _q0s —106

4
= 10752 x 10% — 3102) = Py
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