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CHAPTER 1 First-Order 
Differential Equations 

 
 
 

1.1 
 
Dynamical Systems: Modeling 

 

 
 

 Constants of Proportionality 

1. dA kA
dt

=  (k < 0)    2. dA kA
dt

=  (k < 0) 

3. (20,000 )dP kP P
dt

= −     4. dA kA
dt t

=  

5. dG kN
dt A

=  

 A Walking Model 

6. Because d t= υ  where d =  distance traveled, υ =  average velocity, and t =  time elapsed, we have 

the model for the time elapsed as simply the equation t d
=
υ

. Now, if we measure the distance 

traveled as 1 mile and the average velocity as 3 miles/hour, then our model predicts the time to be 

t d
= =
υ

1
3

hr , or 20 minutes. If it actually takes 20 minutes to walk to the store, the model is 

perfectly accurate. This model is so simple we generally don’t even think of it as a model. 

 A Falling Model 

7. (a) Galileo has given us the model for the distance s t( )a ball falls in a vacuum as a function 

of time t:  On the surface of the earth the acceleration of the ball is a constant, so 
d s
dt

g
2

2
= , where g ≈ 32 2.  ft sec2 .  Integrating twice and using the conditions s 0 0( ) = , 

ds
dt

0 0( )
= , we find  

s t gt( ) =
1
2

2 s t gt( ) =
1
2

2 . 



2     CHAPTER 1     First-Order Differential Equations 

(b) We find the time it takes for the ball to fall 100 feet by solving for t the equation 

100 1
2

1612 2= =gt t. , which gives t = 2 49. seconds. (We use 3 significant digits in the 

answer because g is also given to 3 significant digits.) 

 (c) If the observed time it takes for a ball to fall 100 feet is 2.6 seconds, but the model 
predicts 2.49 seconds, the first thing that might come to mind is the fact that Galileo’s 
model assumes the ball is falling in a vacuum, so some of the difference might be due to 
air friction. 

 The Malthus Rate Constant k 

8. (a) Replacing  

 e0 03 103045. .≈  

 in Equation (3) gives  

 y t= ( )0 9 103045. . ,  

 which increases roughly 3% per year.

 (b) 

18601820

4

1800

6

8

2

1840
t

y
10

1880

3

5

7

1

9 Malthus

World population

(c) Clearly, Malthus’ rate estimate was far too high. The world population indeed rises, as 
does the exponential function, but at a far slower rate.  

  If y t ert( ) = 0 9. , you might try solving y e r200 0 9 6 0200( ) = =. . for r. Then 

 200 6
09

1897r = ≈ln
.

.  

 so  

 r ≈ ≈
1897
200

00095. . , 

 which is less than 1%. 

 Population Update 

9. (a) If we assume the world’s population in billions is currently following the unrestricted 
growth curve at a rate of 1.7% and start with the UN figure for 2000, then  

 0.017
0 6.056kt ty e e= , 
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 and the population in the years 2010 t =( )10 , 2020 t =( )20 , and 2030 t =( )30 , would be, respec-

tively, the values 

 

( )

( )

( )

0.017 10

0.017 20

0.017 30

6.056 7.176

6.056 8.509

6.056 10.083.

e

e

e

=

≈

≈

 

  These values increasingly exceed the United Nations predictions so the U.N. is assuming 
a growth rate less than 1.7%. 

 (b) 2010: 106.056 6.843re =  

            

10 6.843 1.13
6.056

10 ln(1.13) 0.1222
1.2%

re

r
r

= =

= =
=

 

  2020:  106843 7568re =  

          

10 7.578 1.107
6.843

10 ln(1.107) 0.102
1.0%

re

r
r

= =

= =
=

 

  2030: 107.578 8.199re =  

            

10 8.199 1.082
7.578

10 ln(1.082) 0.079
0.8%

re

r
r

= =

= =
=

 

 

 The Malthus Model 

10. (a) Malthus thought the human population was increasing exponentially ekt , whereas the 
food supply increases arithmetically according to a linear function a bt+ . This means the 

number of people per food supply would be in the ratio e
a bt

kt

+( )
, which although not a 

pure exponential function, is concave up. This means that the rate of increase in the 
number of persons per the amount of food is increasing. 

(b) The model cannot last forever since its population approaches infinity; reality would 
produce some limitation. The exponential model does not take under consideration 
starvation, wars, diseases, and other influences that slow growth. 
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(c) A linear growth model for food supply will increase supply without bound and fails to 
account for technological innovations, such as mechanization, pesticides and genetic 
engineering. A nonlinear model that approaches some finite upper limit would be more 
appropriate. 

(d) An exponential model is sometimes reasonable with simple populations over short 
periods of time, e.g., when you get sick a bacteria might multiply exponentially until your 
body’s defenses come into action or you receive appropriate medication. 

 Discrete-Time Malthus 

11. (a) Taking the 1798 population as y0 0 9= .  (0.9 billion), we have the population in the years 

1799, 1800, 1801, and 1802, respectively 

 

y

y

y

y

1

2
2

3
3

4
4

103 0 9 0 927

103 09 0 956

103 09 0983

103 09 1023

= ( ) =

= ( ) ( ) =

= ( ) ( ) =

= ( ) ( ) =

. . .

. . .

. . .

. . . .

 

(b) In 1990 we have t = 192 , hence  

 y192
192103 0 9 262= ( ) ( ) ≈. . (262 billion). 

(c) The discrete model will always give a value lower than the continuous model. Later, 
when we study compound interest, you will learn the exact relationship between discrete 
compounding (as in the discrete-time Malthus model) and continuous compounding (as 
described by ′ =y ky). 

 Verhulst Model  

12. dy
dt

y k cy= −( ) . The constant k affects the initial growth of the population whereas the constant c 

controls the damping of the population for larger y. There is no reason to suspect the two values 
would be the same and so a model like this would seem to be promising if we only knew their 
values. From the equation ′ = −( )y y k cy , we see that for small y the population closely obeys 

′ =y ky , but reaches a steady state ′ =( )y 0  when y k
c

= . 

 Suggested Journal Entry 

13. Student Project 
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1.2 
 
Solutions and Direction Fields  

 

 Verification 

1. If y t= 2 2tan , then ′ =y t4 22sec . Substituting ′y  and y into ′ = +y y2 4  yields a trigonometric 

identity 

 4 2 4 2 42 2sec tant t( ) ≡ ( ) + . 

2. Substituting 

 
y t t

y t
= +
′ = +

3
3 2

2
 

 into ′ = +y
t

y t1  yields the identity  

 3 2 1 3 2+ ≡ + +t
t

t t ta f . 

3. Substituting 

 
y t t

y t t t
=
′ = +

2

2
ln
ln

 

 into ′ = +y
t

y t2  yields the identity  

 2 2 2t t t
t

t t tln ln+ ≡ +b g . 

4. If y e ds e e dss tt t st
= =− − −z z2

0
2 2

0

2 2 2 2b g , then, using the product rule and the fundamental theorem of 

calculus, we have  

 ′ = + = +− − −z zy e e te e ds te e dst t t st t st2 2 2 2
0

2 2
0

2 2 2 2 2 24 1 4 . 

 Substituting ′y  and y into ′ −y ty4  yields 

 1 4 42 2 2 2
00

2 2 2 2+ −− −zzte e ds te e dst s t stt
, 

 which is 1 as the differential equation requires. 
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 IVPs 

5. Here 

 
y e e

y e e

t t

t t

= −

′ = − +

− −

− −

1
2

1
2

3

3

3 .
 

 Substituting into the differential equation  

 ′ + = −y y e t3  

 we get 

 − +F
HG

I
KJ + −F
HG

I
KJ

− − − −1
2

3 3 1
2

3 3e e e et t t t ,  

 which is equal to e t−  as the differential equation requires. It is also a simple matter to see that 

y 0 1
2

( ) = − , and so the initial condition is also satisfied. 

6. Another direct substitution 

 Applying Initial Conditions 

7. If y cet= 2 , then we have ′ =y ctet2 2  and if we substitute y and ′y  into ′ =y ty2 , we get the 
identity 2 22 2cte t cet t≡ d i . If y 0 2( ) = , then we have ce c02 2≡ = . 

8. We have 

 
y e t ce

y e t e t ce

t t

t t t

= +

′ = − +

cos
cos sin

 

 and substituting y and ′y  into ′ −y y  yields  

 e t e t ce e t cet t t t tcos sin cos− + − +b g b g, 
 which is −e tt sin . If y 0 1( ) = − , then − = +1 00 0e cecos  yields c = −2 . 
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 Using the Direction Field 

9. ′ =y y2  

2–2

–2

2
y

t

 

Solutions are y ce t= 2 . 

10. ′ = −y t
y

 

–2

2
y

2–2
t

 

Solutions are y c t= − 2 . 

11. ′ = −y t y  

–2

2
y

2–2
t

 

Solutions are y t ce t= − + −1 . 

  

 Linear Solution 

12. It appears from the direction field that there is a straight-line solution passing through (0, –1) with 
slope 1, i.e., the line y t= −1. Computing ′ =y 1, we see it satisfies the DE ′ = −y t y  because 
1 1≡ − −( )t t . 
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 Stability 

13. 1 0y y′ = − =   

When y = 1, the direction field shows a stable equilibrium solution. 

For y > 1, slopes are negative; for y < 1, slopes are positive. 
 

            

14. ( 1) 0y y y′ = + =   

When y = 0, an unstable equilibrium solution exists, and when y = −1, a stable equilibrium 
solution exists. 

For  y = 3,  3(4) 12y′ = =  
 y = 1,  1(2) 2y′ = =  

 y = 1
2

− ,  1 1 1
2 2 4

y ⎛ ⎞⎛ ⎞′ = − = −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

 y = −2,  ( 2)( 1) 2y′ = − − =  
 y = 4,  ( 4)( 3) 12y′ = − − =  

  



SECTION 1.2     Solutions and Direction Fields     9 

 

15. 
2 2(1 )y t y′ = −  

Two equilibrium solutions: 
y = 1 is stable 
y = −1 is unstable 

Between the equilibria the slopes (positive) are shallower as they are located further from the 
horizontal axis. 

Outside the equilibria the slopes are negative and become steeper as they are found further from 
the horizontal axis.  

All slopes become steeper as they are found further from the vertical axis. 
 

   
 

 Match Game 

16. (C) Because the slope is always the same 

17. (D) Because the slope is always the value of y 

18. (F) Because F is the only direction field that has vertical slopes when t = 0 and zero slopes 
when y = 0 

19. (B) Because it is the only direction field that has all zero slopes when t = 0  

20. (E) The slope is always positive and equal to the square of the distance from the origin. 

21. (A) Because it is undefined when t = 0 and the directional field has slopes that are 
independent of y, with the same sign as that of t 
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 Concavity  

22. 
2 4y y′ = −  

2 2 ( 2)( 2)y yy y y y′′ ′= = + −  

When y = 0, we find inflection points for 
solutions. 
Equilibrium solutions occur when y = 2 (unstable) 
or when y = −2 (stable). 

Solutions are  
concave up for y > 2, and ( 2,0)y∈ − ; 
concave down for y < −2, and (0,2)y∈  

 
 

Horizontal axis is locus of inflection points; 
shaded regions are where solutions are 

concave down. 
 

23. 
2y y t′ = +  

22 2 0y y t y t t′′ ′= + = + + =  
When           2 2 ,         0,  soy t t y′′= − − =  

we have a locus of inflection points. 
Solutions are concave up above the parabola of 
inflection points, concave down below. 
 

 
Parabola is locus of inflection points; 

shaded regions are where solutions are 
concave down. 
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24. 
2y y t′ = −  

3

2 1

2 2 1 0

y yy

y yt

′′ ′= −

= − − =
 

When        
3

22 1 1 ,
2 2
yt y

y y
−

= = −  then  0y′′ =  

and we have a locus of inflection points. 
The locus of inflection points has two branches: 
Above the upper branch, and to the right of the 
lower branch, solutions are concave up. 
Below the upper branch but outside the lower 
branch, solutions are concave down. 
 

 
Bold curves are the locus of inflection 

points; shaded regions are where solutions 
are concave down. 

 

 Asymptotes 

25. 
2y y′ =  

Because y′  depends only on y, isoclines will be horizontal lines, and solutions will be horizontal 

translates. 

Slopes get steeper ever more quickly as distance from the x-axis increases. 

If the y-axis extends high enough, you may suspect (correctly) that undefined solutions will each 
have a (different) vertical asymptote.  When slopes are increasing quickly, it’s a good idea to 
check how fast. The direction field will give good intuition, if you look far enough.  
Compare with y y′ = for a case where the solutions do not have asymptotes. 
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26. 1y
ty

′ =  

The DE is undefined for t = 0 or y = 0, so solutions do not cross either axis.  

However, as solutions approach or depart from the horizontal axis, they asymptotically approach 
a vertical slope. 

  
       Every solution has a vertical asymptote  
          when it is close to the horizontal axis. 

27. 
2y t′ =  

There are no asymptotes.  

As t → ∞ (or t → −∞) slopes get steeper and steeper, but they do not actually approach vertical 
for any finite value of t. 

  
     No asymptote 

 

 



SECTION 1.2     Solutions and Direction Fields     13 

 

28. 2y t y′ = +  
Solutions to this DE have an oblique asymptote–

they all curve away from it as t → ∞, moving 

down then up on the right, simply down on the 

left. The equation of this asymptote can be at least 

approximately read off the graphs as y = −2t − 2. 

In fact, you can verify that this line satisfies the 

DE, so this asymptote is also a solution. 

 
 

Oblique Asymptote 
 

29. 2y ty t′ = − +  

Here we have a horizontal asymptote,  

at t = 1
2

. 

 
Horizontal asymptote 

 
30. 

2 1
tyy

t
′ =

−
 

At t = 1 and t = −1 the DE is undefined. The 
direction field shows that as y → 0 from either 
above or below, solutions asymptotically 
approach vertical slope. However, y = 0 is a 
solution to the DE, and the other solutions do not 
cross the horizontal axis for t ≠ ±1. (See Picard’s 
Theorem Sec. 1.5.) 

 
Vertical asymptotes for t → 1 or t → −1 
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 Isoclines 

31. ′ =y t .  

The isoclines are vertical lines t c= , as 
follows for c = 0, ±1, ±2  shown in the 
figure.  

  

–2

2
y

2–2
t

 
 

32. ′ = −y y .  

Here the slope of the solution is negative when 
y > 0 and positive for y < 0. The isoclines for 

c = −1, 0, 1 are shown in the figure. 

 
 

–2

2
y

2–2
t

slopes –1

slopes 0

slopes 1

 
 

33. ′ =y y2 .  

Here the slope of the solution is always ≥ 0.  

The isoclines where the slope is c > 0 are the 
horizontal lines y c= ± ≥ 0. In other words 
the isoclines where the slope is 4 are y = ±2. 

The isoclines for c = 0, 2, and 4 are shown in 
the figure. 

 
 

–2

2
y

2–2
t

slopes 4

slopes 4

slopes 2

slopes 0

slopes 2

 
 

34. ′ = −y ty .  

Setting − =ty c, we see that the points where the 

slope is c are along the curve y c
t

= − , t ≠ 0 or 

hyperbolas in the ty plane.  

For 1c = , the isocline is the hyperbola y
t

= −
1 . 

For 1c = − , the isocline is the hyperbola y
t

=
1. 

 
 

2–2
t

–2

2
y

slopes –1

slopes 0

slopes 1

slopes 1

slopes –1
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When t = 0 the slope is zero for any y; when y = 0 the slope is zero for any t, and y = 0 is in fact 

a solution. See figure for the direction field for this equation with isoclines for c = 0, ±1. 
  

35. ′ = −y t y2 . The isocline where ′ =y c  is the 
straight line y t c= −2 . The isoclines with slopes 

c = −4 , –2, 0, 2, 4 are shown from left to right 
(see figure). 

 

–2

2
y

2–2
t

 

36. ′ = −y y t2 . The isocline where ′ =y c  is a parab-

ola that opens to the right. Three isoclines, with 
slopes c = 2, 0, –2, are shown from left to right 
(see figure). 

 

–2

2
y

slopes –2

slopes 2

slopes 0

2–2
t

 

37. cosy y′ =  

    0 when y = odd multiples of 
2
π  

y c′ = =  1 when y = 0, 2π, 4π, … 

   −1 when y = π, 3π, … 
Additional observations: 
 1y′ ≤  for all y. 

When y = 
4
π , this information produces a slope 

field in which the constant solutions, at  

y = (2 1)
2

n π
+ , act as horizontal asymptotes. 
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38. siny t′ =  

   0  when t = 0, π, 2π, … 

y c′ = =  1 when t = 3 3, , ,...
2 2 2
π π π

−  

   −1 when t = 3, ,...
2 2
π π

−  

The direction field indicates oscillatory periodic 
solutions, which you can verify as y = −cost. 
 

 

 

 

39. cos( )y y t′ = −  

   0 when y − t = 3, , ,...
2 2 2
π π π

−   

        or y = t ± (2 1)
2

n π
+

y c′ = =  1 when y − t = 0, 2π, …   

     or y = t ± 2nπ
   −1 when y − t = −π, π, 3π, … 

       or y = t ± (2n + 1)π
 
All these isoclines (dashed) have slope 1, with 
different y-intercepts. 
The isoclines for solution slopes 1 are also 
solutions to the DE and act as oblique asymptotes 
for the other solutions between them (which, by 
uniqueness, do not cross. See Section 1.5). 
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 Periodicity  

40. cos10y t′ =  

 

   0 when 10t = (2 1)
2

n π⎛ ⎞± + ⎜ ⎟
⎝ ⎠

 

y c′ = =  1 when 10t = ±2nπ 

   −1 when 10t = ±(2n + 1)π 
y′  is always between +1 and −1. 

All solutions are periodic oscillations, with period 2
10
π . 

  
      Zooming in             Zooming out  
 

41. 2 siny t′ = −  
If t = nπ, then y′  = 2. 

If t = 3 5, , ,...,  then 1
2 2 2

yπ π π ′− = . 

All slopes are between 1 and 3. 
 
Although there is a periodic pattern to the 
direction field, the solutions are quite irregular 
and not periodic. 

If you zoom out far enough, the oscillations of 
the solutions look somewhat more regular, but 
are always moving upward. See Figures. 
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   Zooming out        Zooming further out 

42. cosy y′ = −  

If y = (2 1) ,   then 0 and
2

n yπ ′± + =  these horizontal lines are equilibrium solutions. 

For y = ±2nπ, y′  = −1 
For y = ±(2n + 1)π, y′  = 1. 

Slope y′  is always between −1 and 1, and solutions between the constant solutions cannot cross 

them, by uniqueness. 

To further check what happens in these cases we have added an isocline at y = 
4
π , where  

cos
4

y π⎛ ⎞′ = ⎜ ⎟
⎝ ⎠

 ≈ −0.7. 

Solutions are not periodic, but there is a periodicity to the direction field, in the vertical direction 
with period 2π. Furthermore, we observe that between every adjacent pair of constant solutions, 
the solutions are horizontal translates. 
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43. cos10 0.2y t′ = +  

For  10t = (2 1)
2

n π
± +  

 y′  = 0.2, t ≈ 0.157 ± 
10
nπ  

For  10t = ±2nπ, 

 y′  = 1.2, t ≈ ± 2
10
nπ  

For 10t = ±(2n + 1)π 

 y′  = −0.8, t ≈ 0.314 ± 2
10
nπ  

To get y′  = 0 we must have cos 10t = −0.2 

Or 10t = ±(1.77 + 2nπ) 

The solutions oscillate in a periodic fashion, but 
at the same time they move ever upward. Hence 
they are not strictly periodic. Compare with 
Problem 40. 

 

 
Direction field and solutions  

over a larger scale. 

  
 Direction field (augmented and improved in lower half), with rough sketch solution. 



20     CHAPTER 1     First-Order Differential Equations 

44. cos( )y y t′ = −  

 See Problem #39 for the direction field and sample solutions. 

 The solutions are not periodic, though there is a periodic (and diagonal) pattern to the overall 
direction field. 

45. (cos )y y t y′ = −  

Slopes are 0 whenever y = cos t or y = 0 

Slopes are negative outside of both these isoclines; 

Slopes are positive in the regions trapped by the two isoclines. 

If you try to sketch a solution through this configuration, you will see it goes downward a lot 
more of the time than upward. 

For y > 0 the solutions wiggle downward but never cross the horizontal axis—they get sent 
upward a bit first. 

For y < 0 solutions eventually get out of the upward-flinging regions and go forever downward. 

The solutions are not periodic, despite the periodic function in the DE. 
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46. sin 2 cosy t t′ = +  
If t = ±2nπ, then y′  = 0. 

If t = (2 1) ,  then 0
2

n yπ ′± + = . 

If t = ±(2n + 1)π,  then y′  = −1. 

Isoclines are vertical lines, and solutions are vertical translates. 

From this information it seems likely that solutions will oscillate with period 2π, rather like 
Problem 40. But beware—this is not the whole story. For y′  = sin 2t + cos t, slopes will not 

remain between ±1. 

e.g.,  

For  t = 9, ,...,
4 4
π π  y′  ≈ 1 + 0.7 = 1.7. 

For  t = 3 11, ,...,
4 4
π π  y′  ≈ −1 − 0.7 = −1.7. 

For  t = 5 13, ,...,
4 4
π π  y′  ≈ 1 − 0.7 = 0.3 

For  t = 7 15, ,...,
4 4
π π  y′  ≈ −1 + 0.7 = −0.3 

The figures on the next page are crucial to seeing what is going on. 

Adding these isoclines and slopes shows there are more wiggles in the solutions. 

There are additional isoclines of zero slope where  

Nsin 2
2sin cos

t
t t

 = −cos t, 

i.e., where sin t = 1
2

−  and  

t = 5 7 11, , , ...
6 6 6 6
π π π π

− −  

There is a symmetry to the slope marks about every vertical line where t = (2 1)
2

n π
± + ; these are 

some of the isoclines of zero slope. 

Solutions are periodic, with period 2π. 

See figures on next page. 
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(46.  continued) 
 

 
Direction field, sketched with ever increasing detail as you move down the graph. 

 

  

  Direction field and solutions by computer. 
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 Symmetry 

47. 
2y y′ =  

Note that y′  depends only on y, so isoclines are 

horizontal lines. 
Positive and negative values of y give the same slopes. 
Hence the slope values are symmetric about the 
horizontal axis, but the resulting picture is not. 
The figures are given with Problem 25 solutions. 

 

 The only symmetry visible in the direction field is point symmetry, about the origin (or any point 
on the t-axis). 

 
48. 

2y t′ =  
Note that y′  depends only on t, so isoclines are vertical lines. 

Positive and negative values of t give the same slope, so the slope values are repeated symmetrically 
across the vertical axis, but the resulting direction field does not have visual symmetry. 

  
 The only symmetry visible in the direction field is point symmetry through the origin (or any 

point on the y-axis). 
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49. y t′ = −  

Note that y′  depends only on t, so isoclines are vertical lines. 

For t > 0, slopes are negative; 
For t < 0, slopes are positive. 

The result is pictorial symmetry of the vector field about the vertical axis. 

    
 
50. y y′ = −  

Note that y′  depends only on y, so isoclines are horizontal lines. 

For y > 0, slopes are negative. 
For y < 0, slopes are positive. 

As a result, the direction field is reflected across the horizontal axis. 
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51. 
2

1
( 1)

y
t

′ =
+

 

Note that y′  depends only on t, so isoclines will be vertical lines. 

Slopes are always positive, so they will be repeated, not reflected, across t = −1, where the DE is 
not defined. 

If t = 0 or −2, slope is 1. 

If t = 1 or −3, slope is 1 .
4

 

If t = 2 or −4, slope is 1 .
9

 

The direction field has point symmetry through the point (−1, 0), or any point on the line t = −1. 

   
  

52. 
2yy

t
′ =  

Positive and negative values for y give the same slopes, 
2y

t
, so you can plot them for a single 

positive y-value and then repeat them for the negative of that y-value. 

Note: Across the horizontal axis, this fact does not give symmetry to the direction field or solutions. 

However because the sign of t gives the sign of the slope, 
2y

t
, the result is a pictorial symmetry 

about the vertical axis.  See figures on the next page. 

It is sufficient therefore to calculate slopes for the first quadrant only, that is, 
reflect them about the y-axis, repeat them about the t-axis. 

If y = 0, y′  = 0. 

If y = ±1, 1y
t

′ = . 

If y = ±2 4y
t

′ = . 
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 Second-Order Equations 

53. (a) Direct substitution of y, ′y , and ′′y  into the differential equation reduces it to an identity. 

(b) Direct computation 

(c) Direct computation 

(d) Substituting 

 
y t Ae Be

y t Ae Be

t t

t t

( ) = +

′( ) = −

−

−

2

22
 

 into the initial conditions gives 

 
y A B

y A B
0 2
0 2 5
( ) = + =
′( ) = − = − .

 

 Solving these equations, gives A = −1, B = 3, so y e et t= − +− −2 3 . 

 Long-Term Behavior 

54. y t y′ = +  

(a) There are no constant solutions; zero slope 
requires y = −t, which is not constant. 

(b) There are no points where the DE, or its 
solutions, are undefined. 

(c) We see one straight line solution that appears 
to have slope m = −1 and y-intercept b = −1. 
Indeed, y = −t − 1 satisfies the DE. 

(d) All solutions above y = −t − 1 are concave up; 
those below are concave down. This 
observation is confirmed by the sign of  

 1 1 .y y t y′′ ′= + = + +  

 
In shaded region, solutions are concave 
down. 
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(e) As t → ∞, solutions above y = −t − 1 approach 
∞; those below approach −∞. 

(f) As  t → −∞, going backward in time, all 
solutions are seen to emanate from ∞. 

(g) The only asymptote, which is oblique, appears 
if we go backward in time—then all solutions 
are ever closer to y = −t − 1. 

 There are no periodic solutions. 
 

 

55. y ty
y t
−′ =
+

 

(a) There are no constant solutions, but  
 solutions will have zero slope along y = t. 
(b) The DE is undefined along y = −t. 
(c) There are no straight line solutions. 

(d) 2
( )( 1) ( )( 1)

( )
y t y y t yy

y t
′ ′+ − − − +′′ =

+
 

 

2 2

3

2

Simplify using  1

2

and 1 ,  so that

( )2 .
( )

t
y t y ty

y t
y

y t y ty
y t

t yy
y t

−
− − −′ − =

+

− + +′ + =
+

+′′ = −
+


����


����

  

   Never zero 
 Hence y′′  is  < 0 for y + t > 0, so solutions are concave down for y > −t 

    > 0 for y + t < 0, so solutions are concave up for y < −t 
 

 (e) As t → ∞, all solutions approach y = −t. 

 (f) As t → −∞, we see that all solutions emanate from y = −t. 

 (g) All solutions become more vertical (at both ends) as they approach y = −t. 

  There are no periodic solutions. 

 

In shaded region, solutions are concave 
down. 
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56. 1y
ty

′ =  

(a) There are no constant solutions, or even 

zero slopes, because 1
ty

 is never zero. 

(b) The DE is undefined for t = 0 or for y = 0, 
so solutions will not cross either axis. 

(c) There are no straight line solutions. 
(d) Solutions will be concave down above the 

t-axis, concave up below the t-axis. 

 From 1y
ty

′ = , we get 

 2 2
1 1 .y y

ty t y
−′′ ′= −  

 This simplifies to 

  ( )2
2 3
1 1 ,y y

t y
′′ = − +  which is never zero, 

so there are no inflection points. 

 
In shaded region, solutions are concave 
down. 

 

 (e) As t → ∞,  solutions in upper quadrant →∞  
    solutions in the lower quadrant →−∞ 
 (f) As t → −∞, we see that solutions in upper quadrant emanate from +∞, those in lower 

quadrant emanate from −∞. 
 (g) In the left and right half plane, solutions asymptotically approach vertical slopes as y → 0. 
   There are no periodic solutions. 

 

57. 1y
t y

′ =
−

 

(a) There are no constant solutions, nor even any 
point with zero slope. 

(b) The DE is undefined along y = t. 
(c) There appears to be one straight line solution 

with slope 1 and y-intercept −1; indeed y = t − 1 
satisfies the DE. 

 
 y′ = 1 when y = t − 1.   Straight line solution  

In shaded region, solutions are concave down. 
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 (d) 2 3
(1 ) ( 1)
( ) ( )

y y ty
t y t y

′− − −′′ = − =
− −

 

 y′′> 0 when y > t − 1 and y< t 

 
0 when 1 and 

                 1 and 
y y t y t

y t y t
′′ < < − > ⎫

⎬> − > ⎭

 

Solutions concave up 

Solutions concave down 

 (e) As t → ∞,  solutions below y = t − 1 approach ∞; 

    solutions above y = t − 1 approach y = t ever more vertically. 

 (f) As t → −∞,  solutions above y = t emanate from ∞; 

    solutions below y = t emanate from −∞. 

 (g) In backwards time the line y = t − 1 is an oblique asymptote. 

  There are no periodic solutions. 
 

58. 
2

1y
t y

′ =
−

 

(a) There are no constant solutions. 
(b) The DE is undefined along the parabola  
 y = t2, so solutions will not cross this locus. 
(c) We see no straight line solutions.  
(d) We see inflection points and changes in 

concavity, so we calculate 

 2 2
(2 )
( )

t yy
t y

′−′′ = −
−

 = 0 when 2y t′ =  

 From DE 2
1 2y t

t y
′ = =

−
 when 

2 1
2

y t
t

= − , drawn as a thicker dashed 

curve with two branches.  

 
In shaded region, solutions are concave 

down.  The DE is undefined on the 
boundary of the parabola. The dark curves 

are not solutions, but locus of inflection 
points  

  Inside the parabola 2y t> , so 0y′ <  and solutions are decreasing, concave down for solutions 
below the left branch of 0y′′ = . 

 Outside the parabola 2y t< , 0y′ > , solutions are increasing; and concave down below the right 
branch of 0.y′′ =  

(e) As t → ∞, slopes → 0 and solutions → horizontal asymptotes. 
(f) As  t → −∞, solutions are seen to emanate from horizontal asymptotes. 
(g) As solutions approach y = t2, their slopes approach vertical. 
There are no periodic solutions. 
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59. 
2

1yy
t

′ = −  

(a) There are no constant solutions. 
(b) The DE is not defined for t = 0; solutions 

do not cross the y-axis. 
(c) The only straight path in the direction 

field is along the y-axis, where t = 0. But 
the DE is not defined there, so there is  no 
straight line solution.  

(d) Concavity changes when 

 
2

2
2 2

2 (2 2 ) 0,yy t y yy y y t
t t
′ −′′ = = − − =  

that is, when y = 0 or along the parabola 
21 1

16 4
t y⎛ ⎞ ⎛ ⎞− = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 (obtained by solving the second factor of 
y′′  for t and completing the square). 

 

 
In shaded region, solutions are concave 

down. The horizontal axis is not a solution, 
just a locus of inflection points. 

 (e) As t → ∞, most solutions approach −∞. However in the first quadrant solutions above the 
parabola where 0y′′ =  fly up toward +∞. The parabola is composed of two solutions that 

act as a separator for behaviors of all the other solutions. 
(f) In the left half plane solutions emanate from ∞. 
 In the right half plane, above the lower half of the parabola where 0y′′ = , solutions seem 

to emanate from the upper y-intercept of the parabola; below the parabola they emanate 
from −∞. 

(g) The negative y-axis seems to be an asymptote for solutions in the left-half-plane, and in 
backward time for solutions in the lower right half plane. 

 There are no periodic solutions. 
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 Logistic Population Model 

60. We find the constant solutions by setting ′ =y 0 
and solving for y. This gives ky y1 0−( ) = , hence 
the constant solutions are y t( ) ≡ 0, 1. Notice from 

the direction field or from the sign of the 
derivative that solutions starting at 0 or 1 remain 
at those values, and solutions starting between 0 
and 1 increase asymptotically to 1, solutions 
starting larger than 1 decrease to 1 asymptoti-
cally. The following figure shows the direction 
field of ′ = −( )y y y1  and some sample solutions. 

 

 30
t0

2
y

1 stable equilibrium

unstable equilibrium

 

Logistic model 

 Autonomy 

61. (a) Autonomous: 

 

2

#9 2
#13 1
#14 ( 1)
#16 1
#17
#32
#33
#37 cos

y y
y y
y y y
y
y y
y y
y y
y y

′ =
′ = −
′ = +
′ =
′ =
′ = −

′ =
′ =

 

 The others are nonautonomous. 

(b) Isoclines for autonomous equations consist of horizontal lines. 

 Comparison 

62. (i) ′ =y y2  

 
–2

2
y

semistable equilibrium

2–2
t
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 (ii) ′ = +( )y y 1 2 

 
–2

2
y

2–2
t

semistable equilibrium

 
 

 (iii) ′ = +y y2 1 

 –2

2
y

2–2
t

  Equations (a) and (b) each have a 
constant solution that is unstable for higher 
values and stable for lower y values, but these 
equilibria occur at different levels. Equation (c) 
has no equilibrium at all. 

 All three DEs are autonomous, so 
within each graph solutions from left to right 
are always horizontal translates. 

(a) For y > 0 we have  

 y y y2 2 21 1< + < +( ) .  

 For the three equations ′ =y y2 , ′ = +y y2 1, and ′ = +( )y y 1 2, all with y 0 1( ) = ; 
the solution of ′ = +( )y y 1 2 will be the largest and the solution of ′ =y y2  will be 

the smallest. 

(b) Because y t
t

( ) =
−
1

1
 is a solution of the initial-value problem ′ =y y2 , y 0 1( ) = , 

which blows up at t = 1. We then know that the solution of ′ = +y y2 1, y 0 1( ) =  

will blow up (approach infinity) somewhere between 0 and 1. When we solve 
this problem later using the method of separation of variables, we will find out 
where the solution blows up. 
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 Coloring Basins 

63. ′ = −( )y y y1 . The constant solutions are found by 
setting ′ =y 0, giving y t( ) ≡ 0, 1. Either by look-

ing at the direction field or by analyzing the sign 
of the derivative, we conclude the constant solu-
tion y t( ) ≡ 1 has a basin of attraction of 0,  ∞( ), 
and y t( ) ≡ 0 has a basin attraction of the single 

value {0}. When the solutions have negative in-
itial conditions, the solutions approach –∞.  
 

 

–1

2
y

4
t

 

64. ′ = −y y2 4. The constant solutions are the (real) 
roots of y2 4 0− = , or y = ±2. For y > 2, we have 

′ >y 0. We, therefore, conclude solutions with 

initial conditions greater than 2 increase; for 
− < <2 2y  we have ′ <y 0, hence solutions with 

initial conditions in this range decrease; and for 
y < 0, we have ′ >y 0, hence solutions with 

initial conditions in this interval increase.  

 

3
t

–3

3
y

 

We can therefore, conclude that the constant solution y = 2  has a basin of attraction of the single 
value {2}, whereas the constant solution y = −2  has the basin of attraction of −∞( ),  2  

 

65. ′ = −( ) −( )y y y y1 2 . Analyzing the sign of the 
derivative in each of the intervals −∞( ),  0 , 0 1,  ( ) , 
1 2,  ( ) , 2,  ∞( ) , we conclude that the constant 

solutions y t( ) ≡ 0, 1, 2 have the following basins 
of attraction: y t( ) ≡ 0 has the single point {0} 
basin of attraction; y t( ) ≡ 1 has the basin of at-
traction 0 2,  ( ); and y t( ) ≡ 2 has the single value 

{2} basin of attraction. 

 

–1

3
y

2
t
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66. ′ = −( )y y1 2. Because the derivative ′y  is always 

zero or positive, we conclude the constant solu-
tion y t( ) ≡ 1 has basin of attraction the interval 
−∞( ,  1 . 

 

2
t0

2
y

 

 Computer or Calculator 

The student can refer to Problems 69–73 as examples when working Problems 67, 68, and 74. 

67. ′ =y y
2

. Student Project 68. ′ = +y y t2 . Student Project 

69. ′ =y ty . The direction field shows one constant 
solution y t( ) ≡ 0, which is unstable (see figure). 

For negative t solutions approach zero slope, and 
for positive t solutions move away from zero 
slope. 

 

–2

2
y

2–2
tunstable equilibrium

 

70. ′ = +y y t2 . We see that eventually all solutions 

approach plus infinity. In backwards time most 
solutions approach the top part of this parabola.  

There are no constant or periodic solutions to this 
equation. You might also note that the isocline 
y t2 0+ =  is a parabola sitting on its side for 

t < 0 . In backwards time most solutions approach 
the top part of this parabola. 

 

–2

2
y

2–2
t

 

71. ′ =y tcos2 . The direction field indicates that the 

equation has periodic solutions with the period 
roughly 3. This estimate is fairly accurate be-

cause y t t c( ) = +
1
2

2sin  has period π. 

 

–2

2
y

2–2
t
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72. ′ = ( )y tysin . We have a constant solution y t( ) ≡ 0

and there is a symmetry between solutions above 
and below the t-axis. Note: This equation does 
not have a closed form solution. 

 

–2

2
y

4–4
t

 
 

73. ′ = −y ysin . We can see from the direction field 
that y = ± ±0 2, , ,   π π … are constant solutions 
with 0 2 4, , ,   ± ±π π … being stable and 

± ±π π, ,  3 … unstable. The solutions between 

the equilibria have positive or negative slopes 
depending on the y interval. From left to right 
these solutions are horizontal translates. 

 

–5

5

y

5–5
t

unstable equilibrium

unstable equilibrium

stable equilibrium

stable equilibrium

stable equilibrium

 

74. ′ = +y y t2 . Student Project 

 Suggested Journal Entry I 

75. Student Project 

 Suggested Journal Entry II 

76. Student Project 
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1.3 
 
Separation of Variables: Quantitative Analysis 

 

 
 

 Separable or Not 

1. ′ = +y y1 . Separable; dy
y

dt
1+

= ; constant solution y ≡ −1. 

2. ′ = −y y y3 . Separable; dy
y y

dt
−

=
3

; constant solutions y t( ) ≡ ±0 1, . 

3. ′ = +( )y t ysin . Not separable; no constant solutions. 

4. ′ = ( )y tyln . Not separable; no constant solutions. 

5. ′ =y e et y . Separable; e dy e dty t− = ; no constant solutions. 

6. ′ =
+

+y y
ty

y1 . Not separable; no constant solutions. 

7. ′ =
+

y e e
y

t y

1
. Separable; e y dy e dty t− +( ) =1 ; no constant solutions. 

8. ′ = + = +( )y t y t t ytln ln2 2 2 2 1b g . Separable; dy
y

t dt
2 1

2
ln +

= ; constant solution y t e( ) ≡ −1 2 . 

9. ′ = +y y
t

t
y

. Not separable; no constant solutions. 

10. ′ =
+y y
t

1 2
. Separable; dy

y
dt t

1 2+
= ; no constant solution. 

 Solving by Separation 

11. ′ =y t
y

2
. Separating variables, we get y dy t dt= 2 . Integrating each side gives the implicit solution 

 1
2

1
3

2 3y t c= + .  

 Solving for y yields branches so we leave the solution in implicit form. 

12. ty y′ = −1 2 .   The equilibrium solutions are 1y = ± . 

 Separating variables, we get  

 dy

y

dt
t1 2−

= . 

 Integrating gives the implicit solution  

 sin ln− = +1 y t c.  

 Solving for y gives the explicit solution  

 y t c= +( )sin ln . 
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13. ′ =
+
−

y t
y y

2

4 3
7

4
. Separating variables we get the equation  

 y y dy t dt4 3 24 7− = +b g b g .  

 Integrating gives the implicit solution  

 1
5

1
3

75 4 3y y t t c− = + + .  

 We cannot find an explicit solution for y. 

14. ty y′ = 4 .  The equilibrium solution is y = 0. 

 Separating variables we get  

 dy
y

dt
t

= 4 .  

 Integrating gives the implicit solution  

 ln lny t c= +4 .  

 Solving for y gives the explicit solution  

 y Ct= 4  

 where C is an arbitrary constant. 

15. cosdy y t
dt

=  y = 0 is an equilibrium solution. 

 For y ≠ 0, cos  dy t dt
y
=∫ ∫  

 ln y  = sin t + c1 

 1ln siny cte e e= , so that  sin ty Ce= , where 1cC e= ± . 

16. 4t dy = (y2 + ty2)dt  y(1) = 1 

 2
1 14 1 dy tdt dt

t ty
+

= = +∫ ∫ ∫   

 −4y−1 = ln t  + t + C 

 For y(1) = 1, we obtain C = −5, so that  

 y = 4
ln 5t t

−
+ −
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17. ′ =
−y t
y

1 2 , y 1 2( ) = − . Separating variables gives  

 y dy t dt= −( )1 2 .  

 Integrating gives the implicit solution 

 1
2

2 2y t t c= − + .  

 Substituting in the initial condition y 1 2( ) = −  gives c = 2. Hence, the implicit solution is given by 

 y t t2 22 2 4= − + .  

 Solving for y we get  

 y t t t( ) = − − + +2 2 42 .  

 Note that we take the negative square root so the initial condition is satisfied. 

 

18. ′ = −y y2 4 , y 0 0( ) = . Separating variables gives 

 dy
y

dt
2 4−

= .  

 Rewriting this expression as a partial fraction decomposition (see Appendix PF), we get 

 1
4 2

1 1
4 2y y

dy dt
−( )

−
+( )

L
NM

O
QP = .  

 Integrating we get  

 ln lny y t c− − + = +2 2 4   

 or 

 y
y

e ec t−
+

=
2
2

4 . 

 Hence, the implicit solution is 

 y
y

e e kec t t−
+

= ± =
2
2

4 4  

 where k is an arbitrary constant. Solving for y, we get the general solution  

 y t
ke

ke

t

t( ) =
+
−

2 1
1

4

4
b g . 

 Substituting in the initial condition y 0 0( ) =  gives k = −1. 
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19. ′ =
+

y t
y

2
1 2

, y 2 0( ) = . Separating variables  

 1 2 2+( ) =y dy t dt .  

 Integrating gives the implicit solution  

 y y t c+ = +2 2 .  

 Substituting in the initial condition y 2 0( ) =  gives c = −4 . Solving for y the preceding quadratic 

equation in y we get 

 y t
=
− + + −1 1 4 4

2

2a f . 

20. ′ = −
+
+

y y
t

1
1

2

2
, y 0 1( ) = − . Separating variables, we get the equation 

 dy
y

dt
t1 12 2+

= −
+

. 

 Integrating gives  

 tan tan− −= − +1 1y t c.  

 Substituting in the initial condition y 0 1( ) = −  gives c = −( ) = −−tan 1 1
4
π . Solving for y gives 

 y t= − −F
H

I
K−tan tan 1

4
π . 

 Integration by Parts 

21. ′ =y y tcos ln2b g .   The equilibrium solutions are (2 1)
2

y n π
= + . 

 Separating variables we get  

 dy
y

tdt
cos

ln2 = .  

 Integrating, we find 

 

dy
y

t dt c

y dy t dt c

y t t t c
y t t t c

cos
ln

sec ln

tan ln
tan ln .

2

2

1

z z
z z

= +

= +

= − +

= − +( )−
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22. ′ = −y t t2 5 2b gcos . Separating variables we get  

 dy t t dt= −2 5 2b gcos .  

 Integrating, we find 

 

y t t dt c

t t dt t dt c

t t t t t c

= − +

= − +

= − + − +

z
z z

2

2

2

5 2

2 5 2

1
4

2 1 2 1
2

2 5
2

2

b g

b g

cos

cos cos

sin cos sin .

 

23. ′ = +y t ey t2 2 . Separating variables we get 

 dy
e

t e dty
t= 2 2 . 

 Integrating, we find 

 

e dy t e dt c

e t t e e c

e t t e e c

y t

y t t

y t t

−

−

−

z z= +

− = − + +

= − − + +L
NM

O
QP

2 2

2 2 2

2 2 2

1
2

1
4

1
2

1
4

b g

b g .

 

 Solving for y, we get  

 y t t e e ct t= − − − −L
NM

O
QPln 1

2
1
4

2 2 2b g . 

24. ′ = −y t ye t .   The equilibrium solution is y = 0. 

 Separating variables we get 

 dy
y

te dtt= − . 

 Integrating, we find 

 

dy
y

te dt c

y te e c

y Qe

t

t t

t e t

z z= +

= − − +

=

−

− −

− +( ) −

ln

.1

 

 

 Equilibria and Direction Fields 

25. (C) 26. (B) 27. (E) 28. (F) 29. (A) 30. (D) 
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 Finding the Nonequilibrium Solutions 

31. ′ = −y y1 2  

 We note first that y = ±1 are equilibrium solutions. To find the nonconstant solutions we divide 
by 1 2− y  and rewrite the equation in differential form as  

 dy
y

dt
1 2−

= . 

 By a partial fraction decomposition (see Appendix PF), we have 

 dy
y y

dy
y

dy
y

dt
1 1 2 1 2 1−( ) +( )

=
−( )

+
+( )

= . 

 Integrating, we find  

 − − + + = +
1
2

1 1
2

1ln lny y t c   

 where c is any constant. Simplifying, we get 

 

− − + + = +

+
−

= +

+( )
−( )

=

ln ln

ln

1 1 2 2
1
1

2 2

1
1

2

y y t c
y
y

t c

y
y

ke t

 

 where k is any nonzero real constant. If we now solve for y, we find  

 y ke
ke

t

t=
−
+

2

2
1
1

. 

32. ′ = −y y y2 2  

 We note first that y = 0, 2 are equilibrium solutions. To find the nonconstant solutions, we divide 
by 2 2y y−  and rewrite the equation in differential form as  

 dy
y y

dt
2 −( )

= . 

 By a partial fraction decomposition (see Appendix PF),  

 dy
y y

dy
y

dy
y

dt
2 2 2 2−( )

= +
−( )

= . 

 Integrating, we find  

 1 1ln ln 2
2 2

y y t c− − = +   
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 where c is any real constant. Simplifying, we get  

 

( ) 2

ln ln 2 2 2

ln 2 2
2

2 t

y y t c

y t c
y

y y Ce

− − = +

= +
−

− =

 

 where C is any positive constant. 

 2

2
ty ke

y
=

−
  

 where k is any nonzero real constant. If we solve for y, we get  

 y ke
ke

t

t=
+
2

1

2

2 . 

 
33. ′ = −( ) +( )y y y y1 1  

 We note first that y = 0, ±1 are equilibrium solutions. To find the nonconstant solutions, we 
divide by y y y−( ) +( )1 1  and rewrite the equation in differential form as  

 dy
y y y

dt
−( ) +( )

=
1 1

. 

 By finding a partial fraction decomposition, (see Appendix PF) 

 dy
y y y

dy
y

dy
y

dy
y

dt
−( ) +( )

= − +
−( )

+
+( )

=
1 1 2 1 2 1

.  

 Integrating, we find  

 
− + − + + = +

− + − + + = +

ln ln

ln ln ln

y y y t c

y y y t c

1
2

1 1
2

1

2 1 1 2 2
 

 or 

 
ln

.

y y
y

t c

y y
y

ke t

−( ) +( )
= +

−( ) +( )
=

1 1 2 2

1 1

2

2
2

 

 Multiplying each side of the above equation by y2 gives a quadratic equation in y, which can be 

solved, getting  

 y
ke t

= ±
+

1
1 2a f . 

 Initial conditions will tell which branch of this solution would be used. 
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34. ′ = −( )y y 1 2 
 We note that y = 1 is a constant solution. Seeking nonconstant solutions, we divide by y −( )1 2 

getting dy
y

dt
−( )

=
1 2 . This can be integrated to get 

 

−
−

= +

− =
− +

= +
− +

1
1

1 1

1 1

y
t c

y
t c

y
t c

.

 

 
 Help from Technology 

35. ′ =y y , y 1 1( ) = , y −( ) = −1 1 

The solution of ′ =y y , y 1 1( ) =  is y et= −1. The 
solution of ′ =y y , y −( ) = −1 1 is y et= − +1. These 

solutions are shown in the figure. 

 

2
t

–3

3
y

–2

 

36. ′ =y tcos , y 1 1( ) = , y −( ) = −1 1 

The solution of the initial-value problem  

′ =y tcos , y 1 1( ) =  

is y t t( ) = + − ( )sin sin1 1 . The solution of  

′ =y tcos , y −( ) = −1 1 

is y t= − + −( )sin sin1 1 . The solutions are shown 

in the figure. 

 

–2

2
y

6–6
t
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37. dy
dt

t
y t

=
+2 21

, y 1 1( ) = , y −( ) = −1 1 

Separating variables and integrating we find the 
implicit solution 

y dy t
t

dt c2
21z z=

+
+   

or 
1
3

13 2y t c= + + . 

 

–2

2
y

2–2
t

 

′ =
+

y t
y t2 21

 

 Subsituting y 1 1( ) = , we find c = −
1
3

2 . For y −( ) = −1 1 we find c = − −
1
3

2 . These two curves 

are shown in the figure. 

38. ′ =y y tcos , y 1 1( ) = , y −( ) = −1 1 

Separating variables we get 
dy
y

t dt= cos .  

Integrating, we find the implicit solution  

ln siny t c= + . 

 

–8

2
y

6–6
t

 

 With y 1 1( ) = , we find c = − ( )sin 1 . With y −( ) = −1 1, we find c = ( )sin 1 . These two implicit solu-

tion curves are shown imposed on the direction field (see figure). 

39. ′ =
+( )

y t y
y

2 1 , y 1 1( ) = , y −( ) = −1 1 

Separating variables and assuming y ≠ −1, we 

find 
y

y
dy t dt

+
=

1
2  

or  
y

y
dy t dt c

+
= +z z1

2 . 

 

–2

2
y

2–2
t

 

′ =
+( )y t y

y
2 1  

 Integrating, we find the implicit solution  

 y y t c− + = +ln 1 2 .  

 For y 1 1( ) = , we get 1 2 1− = +ln c or c = − ln2 . For y −( ) = −1 1 we can see even more easily that 
y ≡ −1 is the solution. These two solutions are plotted on the direction field (see figure). Note that 
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the implicit solution involves branching. The initial condition y 1 1( ) =  lies on the upper branch, 

and the solution through that point does not cross the t-axis. 

40. ′ = ( )y tysin , y 1 1( ) = , y −( ) = −1 1 

This equation is not separable and has no closed 
form solution. However, we can draw its direc-
tion field along with the requested solutions (see 
figure). 

 

6–6
t

–2

2
y

 

 Making Equations Separable 

41. Given  

 ′ =
+

= +y y t
t

y
t

1 ,  

 we let yv
t

=  and get the separable equation 1dvv t v
dt

+ = + . Separating variables gives  

 dt dv
t
= . 

 Integrating gives  

 lnv t c= +  

 and 

 y t t ct= +ln . 

42. Letting yv
t

= , we write 

 
2 2 1y t y ty v
yt t y v
+′ = = + = + .  

 But y tv=  so y v tv′ ′= + . Hence, we have  

 1v tv v
v

′+ = +   

 or  

 1tv
v

′ =  

 or  

 dtv dv
t

= .  
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 Integrating gives the implicit solution  

 21 ln
2

v t c= +   

 or  

 2lnv t c= ± + .  

 But yv
t

= , so  

 y t t c= ± +2ln .  

 The initial condition y 1 2( ) = −  requires the negative square root and gives c = 4. Hence, 

 y t t t( ) = − +2 4ln . 

43. Given 

 
4 4 3

3 3 3
2 2 12y t y ty v

tty y v
+′ = = + = + . 

 with the new variable yv
t

= . Using y v tv′ ′= +  and separating variables gives  

 4
3

3
41 1v

v

dt dv dvv
t v+
= =

+
. 

 Integrating gives the solution  

 ( )41ln ln 1
4

t v c= + +   

 or  

 ln lnt y
t

c= F
H
I
K +
L
NM

O
QP
+

1
4

1
4

. 

44. Given 

 
2 2 2

2
2 2 1 1y ty t y yy v v

tt t
+ +′ = = + + = + +  

 with the new variable yv
t

= . Using y v tv′ ′= + and separating variables, we get  

 2 1
dv dt

tv
=

+
. 

 Integrating gives the implicit solution  

 1ln tant v c−= + .  

 Solving for v  gives ( )tan lnv t c= + . Hence, we have the explicit solution  

 y t t c= +( )tan ln . 
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 Another Conversion to Separable Equations 

45. 2( )y y t′ = +  Let u = y + t. Then 

2
2       1 1,   and  ,

1
du dy duu dt
dt dt u

= + = + =
+∫ ∫  so  

   

1tan
tan( )
tan( )  so  tan( )

u t c
u t c

y t t c y t c t

− = +
= +

+ = + = + −
 

46. 1 1t ydy e
dt

+ −= −   Let u = t + y − 1. Then 

      1 1 1,   and  ,u udu dy e e du dt
dt dt

−= + = + − =∫ ∫  so 

−e−u + c = t ,    or    t + e−t−y+1 = c. 

 Thus, 1 ln ,   and  1 ln .t y c t y t c t− − + = − = − − −  

 Autonomous Equations 

47. (a) Problems 1, 2 and 18 are autonomous: 

 3

2

#1 1
#2
#18 4

y y
y y y
y y

′ = +
′ = −
′ = −

 

 All the others are nonautonomous. 

(b) The isoclines of an autonomous equation are horizontal lines (i.e., if you follow along a 
horizontal line y k=  in the ty plane, the slopes of the line elements do not change). 
Another way to say this is that solutions for y t( )  through any y all have the same slope. 

 Orthogonal Families 

48. (a) Starting with f x y c,  ( ) = , we differentiate implicitly getting the equation  

 ∂
∂

+
∂
∂

=
f
x

dx f
y

dy 0 

 Solving for ′ =y dy
dx

, we have 

 dy
dx

f
x
f
y

= −
∂
∂
∂
∂

. 

 These slopes are the slopes of the tangent lines. 
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(b) Taking the negative reciprocal of the slopes of the tangents, the orthogonal curves satisfy 

 dy
dx

f
y
f
x

=
∂
∂
∂
∂

. 

(c) Given f x y x y,  ( ) = +2 2 , we have  

 ∂
∂

=
f
y

y2  and ∂
∂

=
f
x

x2 , 

 so our equation is dy
dx

y
x

= . Hence, from part (b) the orthogonal trajectories satisfy the 

differential equation  

 dy
dx

f
f

y
x

y

x
= = ,  

 which is a separable equation having solution y kx= . 

 More Orthogonal Trajectories 

49. For the family y cx= 2 we have f x y y
x

,  ( ) = 2  so  

 f y
xx = −
2

3 , f
xy =
1
2 ,  

 and the orthogonal trajectories satisfy 

 dy
dx

f
f

x
y

y

x
= = −

2
 

 or 

 2y dy x dx= − . 

 

x

1

y

3–3

2

3

–1
–2
–3

–1–2 1 2

 

Orthogonal trajectories 

 Integrating, we have  

 y x K2 21
2

= − +  

 or  
 x y C2 22+ = . 

 Hence, this last equation gives a family of ellipses that are all orthogonal to members of the 
family  y cx= 2. Graphs of the orthogonal families are shown in the figure. 
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50. For the family y c
x

= 2  we have f x y x y,  ( ) = 2  so 

 f xyx = 2 , f xy = 2  

 and the orthogonal trajectories satisfy 

 dy
dx

f
f

x
y

y

x
= =

2
 

 or, in differential form, 2y dy x dx= . Integrating, 

we have 

 y x C2 21
2

= +  or 2 2 2y x K− = .  

 

x

1

y

3–3

2

3

–1
–2
–3

–1–2 1 2

 

Orthogonal trajectories 

 Hence, the preceding equations give a family of hyperbolas that are orthogonal to the original 

family of hyperbolas y c
x

= 2 . Graphs of the two orthogonal families of hyperbolas are shown. 

 
51. xy c= . Here f x y xy,  ( ) =  so f yx = , f xy = . The 

orthogonal trajectories satisfy  

 dy
dx

f
f

x
y

y

x
= =   

 or, in differential form, y dy x dx= . Integrating, 

we have the solution  

 y x C2 2− = . 

 Hence, the preceding family of hyperbolas are 
orthogonal to the hyperbolas xy c= . Graphs of 

the orthogonal families are shown. 

 

t

5
y

5–5

–5  

Orthogonal hyperbolas 

 Calculator or Computer 

52. y c= . We know the orthogonal trajectories of 

this family of horizontal lines is the family of 
vertical lines x C=  (see figure). 

 

x

1

y

3–3

2

3

–1
–2
–3

–1–2 1 2

 

Orthogonal trajectories 
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53. 4 2 2x y c+ = . Here  

 f x y x y,  ( ) = +4 2 2 

 and f xx = 8 , f yy = 2 , so the orthogonal trajecto-

ries satisfy 

 dy
dx

f
f

y
x

y
x

y

x
= = =

2
8 4

 

 or 4dy
y

dx
x

= , which has the implicit solution the 

family y Cx4 =  where C is any constant different 

from zero. These orthogonal families are shown 
in the figure. 

 

x

1

y

2–2

2

–1

–2

–1 1

 

Orthogonal trajectories 

54. x cy2 34= . Here  

 f x y x
y

,  ( ) =
2

34
 

 and f x
yx = 2 3 , f x

yy = −
3
4

2

4 . The differential equa-

tion of the orthogonal family is 

 dy
dx

f
f

x
y

y

x
= =

−3
2

 

 

x

1

y

2–2

2

–1

–2

–1 1

 

Orthogonal trajectories 

or 2 3y dy x dx= − , which has the general solution 2 32 2y x C+ = , where C is any real constant. 

These orthogonal families are shown in the figure. 

55. x y cy2 2+ = . Here f x y x y
y

,  ( ) =
+2 2

, so  

 f x
yx =

2 , f y x
yy =
−2 2

2 . 

 The differential equations of the orthogonal family are  

 dy
dx

f
f

y x
xy

y

x

y x
y

x
y

= = =
−

−2 2

2

2

2 2

2
. 

 We are unable to solve this equation analytically, so we use a different approach inspired by 
looking at the graph of the original family, which consists of circles passing through the origin 
with centers on the y-axis. 
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  Completing the square of the original equation, we can write x y cy2 2+ =  as 

x y c c2
2 2

2 4
+ −FH

I
K = , which confirms the description and locates the centers at 0

2
,  cF
H
I
K .  

  We propose that the orthogonal family to the original family consists of another set of 

circles, x C y C
−FH
I
K + =

2 4

2
2

2
 centered at C

2
0,  FH
I
K  and passing through the origin. 

  To verify this conjecture we rewrite this 
equation for the second family of circles as 

x y Cx2 2+ = , which gives C g x y x y
x

= ( ) =
+,  

2 2
 

or g x y
xx =
−2 2

2 , g y
xy =

2 . Hence the proposed 

second family satisfies the equation 

dy
dx

g
g

xy
x y

y

x
= =

−
2

2 2 , 

 

x

y

2

–2

–2 2

 

Orthogonal circles 

 which indeed shows that the slopes are perpendicular to those of the original family derived 
above. Hence the original family of circles (centered on the y-axis) and the second family of 
circles (centered on the x-axis) are indeed orthogonal. These families are shown in the figure. 

 The Sine Function 

56. The general equation is  

 y y2 2 1+ ′( ) =   

 or  

 
dy
dx

y= ± −1 2 .  

 Separating variables and integrating, we get  

 ± = +−sin 1 y x c  or y x c x c= ± + = ± +sin sinb gc h b g .  

 This is the most general solution. Note that cos x is included because cos sinx x= −FH
I
K

π
2

. 
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 Disappearing Mothball 

57. (a) We have dV
dt

kA= − , where V is the volume, t is time, A is the surface area, and k is a 

positive constant. Because V r=
4
3

3π  and A r= 4 2π , the differential equation becomes 

 4 42 2π πr dr
dt

k r= −   

 or  

 dr
dt

k= − . 

 Integrating, we find r t kt c( ) = − + . At t = 0, r = 1
2

; hence c = 1
2

. At t = 6, r = 1
4

; hence 

k =
1

24
, and the solution is 

 r t t( ) = − +
1

24
1
2

,  

 where t is measured in months and r in inches. Because we can’t have a negative radius 
or time, 0 12≤ ≤t . 

(b) Solving − + =
1

24
1
2

0t  gives t = 12 months or one year. 

 Four-Bug Problem 

58. (a) According to the hint, the distance between the bugs is shrinking at the rate of 1 inch per 
second, and the hint provides an adequate explanation why this is so. Because the bugs 
are L inches apart, they will collide in L seconds. Because their motion is constantly 
towards each other and they start off in symmetric positions, they must collide at a point 
equidistant from all the bugs (i.e., the center of the carpet). 

(b) The bugs travel at 1 inch per second for L seconds, hence the bugs travel L inches each. 

 (c)  

rd θ 

0 

Q 

r P 

A 

r , θ r dr+ 

dr 
B 

 

 This sketch of text Figure 1.3.8(b) shows a typical bug at 
P r= ( ),  θ  and its subsequent position A r dr dx + +( ),  θ θ

as it heads toward the next bug at Q r= +F
H

I
K,  θ π

2
. Note 

that dr is negative, and consider that dθ  is a very small 
angle, exaggerated in the drawing. 
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 Consider the small shaded triangle ABP. For small dθ : 

• angle BAP is approximately a right angle, 

• angle APB OQP= =angle π
4

, 

• side BP lies along QP.  

  Hence triangle ABP is similar to triangle OQP, which is a right isosceles triangle, 
so − ≈dr rdθ . 

  Solving this separable DE gives r ce= −θ , and the initial condition r 0 1( ) =  gives 

c = 1. Hence our bug is following the path r e= −θ , and the other bugs’ paths simply shift 

θ by π
e

 for each successive bug. 

 Radiant Energy 

59. Separating variables, we can write dT
T M

kdt4 4−
= − . We then write 

 1 1 1
2

1
24 4 2 2 2 2 2 2 2 2 2T M T M T M M T M M T M−

=
+ −

=
−

−
+2b gb g b g b g . 

 Integrating 

 1 1 22 2 2 2
2

T M T M
dT kM dt

−
−

+
RST

UVW = − ,  

 we find the implicit solution 

 1
2

1 21 2
M

M T
M T M

T
M

kM t cln tan−
+

− F
H
I
K = − +−  

 or in the more convenient form 

 ln arctanM T
M T

T
M

kM t C+
−

+ F
H
I
K = +2 4 3 . 

 Suggested Journal Entry 

60. Student Project 
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1.4 
 
Euler’s Method: Numerical Analysis 

 

 
 

 Easy by Calculator ty
y

′ = , ( )0 1y =  

1. (a) Using step size 0.1 we enter 0t  and 0y , then calculate row by row to fill in the following 

table: 

  Euler’s Method ( )= 0.1h  

  n 1n nt t h−= +  1 1n n ny y hy− −′= +  n
n

n

ty
y

′ =  

  0 0 1 0 0
1
=  

  1 0.1 1 0.1 0.1
1

=  

  2 0.2 1.01 0.2 0.1980
1.01

=  

  3 0.3 1.0298 0.3 0.2913
1.0298

=  

 The requested approximations at 0.2t =  and 0.3t =  are ( )2 0.2 1.01y ≈ , 

( )3 0.3 1.0298y ≈ . 

(b) Using step size 0.05, we recalculate as in (a), but we now need twice as many steps. We 
get the following results. 

  Euler’s Method ( )= 0.05h  

  n nt  ny  ny′  

  0 0 1 0 

  1 0.05 1 0.05 

  2 0.1 1.0025 0.0998

  3 0.15 1.0075 0.1489

  4 0.2 1.0149 0.1971

  5 0.25 1.0248 0.2440

  6 0.3 1.03698 0.2893

 The approximations at 0.2t =  and 0.3t =  are now ( )4 0.2 1.0149y ≈ , ( )6 0.3 1.037y ≈ . 
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(c) Solving the IVP ty
y

′ = , ( )0 1y =  by separation of variables, we get y dy t dt= . 

Integration gives 

 2 21 1
2 2

y t c= + .  

 The initial condition ( )0 1y =  gives 1
2

c =  and the implicit solution 2 2 1y t− = . Solving 

for y gives the explicit solution  

 ( ) 21y t t= + .  

 To four decimal place accuracy, the exact solutions are ( )0.2 1.0198y =  and 

( )0.3y = 1.0440. Hence, the errors in Euler approximation are 

 

( ) ( )
( ) ( )
( ) ( )
( ) ( )

2

3

4

6

0.1:  error 0.2 0.2 1.0198 1.0100 0.0098,
error 0.3 0.3 1.0440 1.0298 0.0142,

0.05 :  error 0.2 0.2 1.0198 1.0149 0.0050,
error 0.3 0.3 1.0440 1.0370 0.007 

h y y
y y

h y y
y y

= = − = − =
= − = − =

= = − = − =
= − = − =

 

 Euler approximations are both high, but the smaller stepsize gives smaller error. 

 Calculator Again y ty′ = , ( )0 1y =  

2. (a) For each value of h we calculate a table as in Problem 1, with y ty′ = . The results are 

summarized as follows. 

  Euler’s Method 
Comparison of Step Sizes 

  = 1h  = 0.5h  = 0.25h  = 0.125h  

  t y ≈ t y ≈ t y ≈ t y ≈ 

  0 1 0 1 0 1 0 1 

  1 1 0.5 1 0.25 1 0.125 1 

    1 1.25 0.50 1.062 0.250 1.0156 

      0.75 1.195 0.375 1.0474 

      1 1.419 0.50 1.0965 

        0.625 1.1650 

        0.750 1.2560 

        0.875 1.3737 

        1 1.5240 
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(b) Solve the IVP y ty′ = , ( )0 1y =  by separating variables to get dy tdt
y
= . Integration yields 

2

ln
2
ty c= + , or 

2 2ty Ce= . Using the initial condition ( )0 1y =  gives the exact solution 

( ) 2 / 2ty t e= , so ( ) 1 21 1.6487y e= ≈ . Comparing with the Euler approximations gives 

 

1:  error 1.6487 1 0.6487
0.5 : error 1.6487 1.25 0.3987
0.25 :  error 1.6487 1.419 0.2297
0.125 : error 1.6487 1.524 0.1247

h
h
h
h

= = − =
= = − =
= = − =
= = − =

 

 Computer Help Advisable 

3. 23y t y′ = − , ( )0 1y = ; [ ]0,  1 . Using a spreadsheet and Euler’s method we obtain the following 

values: 

 Spreadsheet Instructions for Euler’s Method 

  A B C D 

 1 n nt  1 1n n ny y hy− −′= +  23 n nt y−  

 2 0 0 1 3 2 ^ 2t B C= ∗ ∗ −

 

 3 2 1A= +  2 .1B= +  2 .1 2C D= + ∗   

 Using step size 0.1h =  and Euler’s method we obtain the following results. 

 Euler’s Method ( )= 0.1h  

 t y ≈ t y ≈ 

 0 1 0.6 0.6822 

 0.1 0.9 0.7 0.7220 

 0.2 0.813 0.8 0.7968 

 0.3 0.7437 0.9 0.9091 

 0.4 0.6963 1.0 1.0612 

 0.5 0.6747   

 Smaller steps give higher approximate values ( )n ny t . The DE is not separable so we have no 

exact solution for comparison. 
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4. 2 yy t e−′ = + , ( )0 0y = ; [ ]0,  2  

 Using step size 0.01h = , and Euler’s method we obtain the following results. (Table shows only 

selected values.) 

 Euler’s Method ( )= 0.01h  

 t y ≈ t y ≈ 

 0 0 1.2 1.2915 

 0.2 0.1855 1.4 1.6740 

 0.4 0.3568 1.6 2.1521 

 0.6 0.5355 1.8 2.7453 

 0.8 0.7395 2.0 3.4736 

 1.0 0.9858   

 Smaller steps give higher approximate values ( )n ny t . The DE is not separable so we have no 

exact solution for comparison. 

5. y t y′ = + , ( )1 1y = ; [ ]1,  5  

 Using step size 0.01h =  and Euler’s method we obtain the following results. (Table shows only 

selected values.) 

 Euler’s Method ( )= 0.01h  

 t y t y 

 1 1 3.5 6.8792 

 1.5 1.8078 4 8.5696 

 2 2.8099 4.5 10.4203 

 2.5 3.9942 5 12.4283 

 3 5.3525   

 Smaller steps give higher ( )n ny t . The DE is not separable so we have no exact solution for 

comparison. 
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6. 2 2y t y′ = − , ( )0 1y = ; [ ]0,  5  

 Using step size 0.01h =  and Euler’s method we obtain following results. (Table shows only 

selected values.) 

 Euler’s Method ( )= 0.01h  

 t y t y 

 0 1 3 2.8143 

 0.5 0.6992 3.5 3.3464 

 1 0.7463 4 3.8682 

 1.5 1.1171 4.5 4.3843 

 2 1.6783 5 4.8967 

 2.5 2.2615   

 Smaller steps give higher approximate values ( )n ny t . The DE is not separable so we have no 
exact solution for comparison. 

 

7. y t y′ = − , ( )0 2y =  

 Using step size 0.05h =  and Euler’s method we obtain the following results. (Table shows only 

selected values.) 

 Euler’s Method ( )= 0.05h  

 t y ≈ t y ≈ 

 0 2 0.6 1.2211 

 0.1 1.8075 0.7 1.1630 

 0.2 1.6435 0.8 1.1204 

 0.3 1.5053 0.9 1.0916 

 0.4 1.3903 1 1.0755 

 0.5 1.2962   

 Smaller steps give higher ( )n ny t . The DE is not separable so we have no exact solution for 

comparison. 
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8. ty
y

′ = − , ( )0 1y =  

 Using step size 0.1h =  and Euler’s method we obtain the following results.  

 Euler’s Method ( )= 0.1h  

 t y ≈ t y ≈ 

 0 1 0.6 0.8405 

 0.1 1.0000 0.7 0.7691 

 0.2 0.9900 0.8 0.6781 

 0.3 0.9698 0.9 0.5601 

 0.4 0.9389 1 0.3994 

 0.5 0.8963   

 The analytical solution of the initial-value problem is  

 ( ) 21y t t= − , 

 whose value at 1t =  is ( )1 0y = . Hence, the absolute error at 1t =  is 0.3994. (Note, however, that 

the solution to this IVP does not exist for 1.t > ) You can experiment yourself to see how this 

error is diminished by decreasing the step size or by using a more accurate method like the 
Runge-Kutta method. 

9. sin yy
t

′ = , ( )2 1y =  

 Using step size 0.05h =  and Euler’s method we obtain the following results. (Table shows only 

selected values.) 

 Euler’s Method ( )= 0.05h  

 t y ≈ t y ≈ 

 2 1 2.6 1.2366 

 2.1 1.0418 2.7 1.2727 

 2.2 1.0827 2.8 1.3079 

 2.3 1.1226 2.9 1.3421 

 2.4 1.1616 3 1.3755 

 2.5 1.1995   

 Smaller stepsize predicts lower value. 
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10. y ty′ = − , 0 1y =  

 Using step size 0.01h =  and Euler’s method we obtain the following results. (Table shows only 

selected values.) 

 Euler’s Method ( )= 0.01h  

 t y ≈ t y ≈ 

 0 1 0.6 0.8375 

 0.1 0.9955 0.7 0.7850 

 0.2 0.9812 0.8 0.7284 

 0.3 0.9574 0.9 0.6692 

 0.4 0.9249 1 0.6086 

 0.5 0.8845   

 Smaller step size predicts lower value. The analytical solution of the initial-value problem is  

 ( ) 2 2ty t e−=  

 whose exact value at 1t =  is ( )1 0.6065y = . Hence, the absolute error at 1t =  is  

error 0.6065 0.6086 0.0021= − = . 



SECTION 1.4     Euler’s Method: Numerical Analysis     61 

 Stefan’s Law Again ( )4 40.05 3dT T
dt

= − , ( )0 4T = . 

11. (a) Euler’s Method 

  = 0.25h   = 0.1h  

  n nt  nT   n nt  nT  

  0 0.00 4.0000  0 0.00 4.0000 

  1 0.25 1.8125  1 0.10 3.1250 

  2 0.50 2.6901  2 0.20 3.0532 

  3 0.75 3.0480  3 0.30 3.0237 

  4 1.00 2.9810  4 0.40 3.0107 

      5 0.50 3.0049 

      6 0.60 3.0023 

      7 0.70 3.0010 

      8 0.80 3.0005 

      9 0.90 3.0002 

      10 1.00 3.0001 
 

(b) The graph shows that the larger step
approximation (black dots) overshoots
the mark but recovers, while the smaller
step approximation (white dots) avoids
that problem. 

(c) There is an equilibrium solution at 3T = , 

which is confirmed both by the direction

field and the slope dT
dt

. This is an exact 

solution that both Euler approximations
get very close to by the time 1t = . 

 

 10
t1

5
T

3
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 Nasty Surprise 

12. 2y y′ = , ( )0 1y =  

 Using Euler’s method with 0.25h =  we obtain the following values. 

 Euler’s Method ( )= 0.25h  

 t y ≈ ′ 2y = y  

 0 1 1 

 0.25 1.25 1.5625 

 0.50 1.6406 2.6917 

 0.75 2.3135 5.3525 

 1.00 3.6517  

 Euler’s method estimates the solution at 1t =  to be 3.6517, whereas from the analytical solution 

( ) 1
1

y t
t

=
−

, or from the direction field, we can see that the solution blows up at 1. So Euler’s 

method gives an approximation far too small. 

 Approximating e 

13. y y′ = , ( )0 1y =  

 Using Euler’s method with different step sizes h, we have estimated the solution of this IVP at 
1t = . The true value of ty e=  for 1t =  is 2.7182818e ≈ …  . 

 Euler’s Method  

 h ( )1y  ≈ ( )− 1e y  

 0.5 2.25 0.4683 

 0.1 2.5937 0.1245 

 0.05 2.6533 0.0650 

 0.025 2.6850 0.0332 

 0.01 2.7048 0.0135 

 0.005 2.7115 0.0068 

 0.0025 2.7149 0.0034 

 0.001 2.7169 0.0013 
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 We now use the fourth-order Runge-Kutta method with the same values of h, getting the 
following values. 

 Runge-Kutta Method 

 h y(1) ( )− 1e y  

 0.5 2.717346191 0.00093 

 0.1 2.718279744 50.21 10−×  

 0.05 2.718281693 60.13 10−×  

 0.025 2.718281820 80.87 10−×  

 0.01 2.718281828 110.22 10−×  

 Note that even with a large step size of 0.5h =  the Runge-Kutta method gives ( )1y  correct to 

within 0.001, which is better than Euler’s method with stepsize 0.001h = . 

 Double Trouble or Worse 

14. 1 3y y= , ( )0 0y =  

(a) The solution starting at the initial point ( )0 0y =  never gets off the ground (i.e., it returns 
all zero values for ny ). For this IVP, ( )6 0ny = . 

(b) Starting with ( )0 0.01y = , the solution increases. We have given a few values in the 
following table and see that ( )6 7.9134ny ≈ . 

  Euler’s Method ′ = 1 3y y , ( ) =0 0.01y  ( = 0.1h ) 

  t y t y 

  0 0.01 3.5 3.5187 

  0.5 0.2029 4 4.3005 

  1 0.5454 4.5 5.1336 

  1.5 0.9913 5 6.0151 

  2 1.5213 5.5 6.9424 

  2.5 2.1241 6 7.9134 

  3 2.7918   
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 (c) The direction field of 1 3y y′ =  for  
 0 6t≤ ≤ , 0 10y≤ ≤  

 confirms the values found in (b). 

 

0

10
y

60
t

3y y′ =  

 Roundoff Problems 

15. If a roundoff error of ε  occurs in the initial condition, then the solution of the new IVP y y′ = , 
( )0y A ε= +  is 

 ( ) ( ) t t ty t A e Ae eε ε= + = + .  

 The difference between this perturbed solution and tAe  is teε . This difference at various 

intervals of time will be 

 10

20

1 difference

10 difference 22,026

20 difference 485,165,195 .

t e

t e

t e

ε

ε ε

ε ε

= ⇒ =

= ⇒ = ≈

= ⇒ = =

 

 Hence, the accumulate roundoff error grows at an exponential rate. 

 Think Before You Compute 

16. Because 2y = and 2y = −  are constant solutions, any initial conditions starting at these values 
should remain there. On the other hand, a roundoff error in computations starting near 2y = −  is 
not as serious as near 2y = , because near 2y = −  the perturbed solution will move towards the 

stable solution –2. 
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 Runge-Kutta Method 

17. ,y t y′ = +  y(0) = 0, h = 1 

 (a) By Euler’s method, 

  y1 = y0 + 0 0( ) 0h t y+ =  

  By 2nd order Runge Kutta 

  y1 = y0 + hk02,  

   k01 = t0 + y0 = 0 

   k02 = 0 0 012 2
h ht y k⎛ ⎞ ⎛ ⎞+ + +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

        = 1 0
2
+  

  y1 = 0 + 1 1
2 2
⎡ ⎤ =⎢ ⎥⎣ ⎦

 = 0.5 

  By 4th order Runge Kutta. 

  y1 = y0 + ( )01 02 03 042 2
6
h k k k k+ + +  

  k01 = t0 + y0 = 0 

  k02 = 0 0 01
1

2 2 2
h ht y k⎛ ⎞ ⎛ ⎞+ + + =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

  k03 = 0 0 02
1 1 1 3

2 2 2 2 2 4
h ht y k⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + + = + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

  k04 = (t0 + h) + 0 03
1 31

2 2 4
hy k⎛ ⎞ ⎛ ⎞⎛ ⎞+ = +⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
 = 1.375 

  y`1 = 0 + 1 1 30 2 2 1.375
6 2 4
⎛ ⎞⎛ ⎞ ⎛ ⎞+ + +⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
 = 1 (3.875)

6
 ≈ 0.646 

 (b)  Second-order Runge Kutta is much better than Euler for a single step approximation, but 
fourth-order RK is almost right on (slightly low). 

 (c) If  y(t) = −t − 1 + et, 

  then y(1) = −2 + e ≈ 0.718. 
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18. ,y t y′ = +  y(0) = 0, h = −1 

 (a) By Euler’s method, 

  y1 = y0 + 0 0( ) 0h t y+ =  

  By 2nd order Runge Kutta 

  y1 = y0 + hk02,  

   k01 = t0 + y0 = 0 

   k02 = 0 0 012 2
h ht y k⎛ ⎞ ⎛ ⎞+ + +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 = 1

2
−  

  y1 = y0 − 11
2

⎛ ⎞−⎜ ⎟
⎝ ⎠

 = 0.5 

  By 4th order Runge Kutta. 

  y1 = y0 + ( )01 02 03 042 2
6
h k k k k+ + +  

  k01 = t0 + y0 = 0 

  k02 = 0 0 01
1

2 2 2
h ht y k⎛ ⎞ ⎛ ⎞+ + + = −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 = − 0.5 

  k03 = 0 0 02
1 1 1 1 0.25

2 2 2 2 2 4
h ht y k⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞+ + + = − + − − = − = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠
 

  k04 = (t0 + h) + 0 03
1 1 71 0.875

2 2 4 8
hy k⎛ ⎞ ⎛ ⎞⎛ ⎞+ = − + − − = − = −⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
  

  y`1 = 0 + 1 1 1 70 2 2
6 2 4 8
⎛ ⎞⎛ ⎞ ⎛ ⎞− + − + − + −⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
 = 1 ( 2.375)

6
− −  ≈ 0.396 

 (b)  Second-order Runge Kutta is high though closer than Euler. Fourth order R-K is very 
close. 

 (c) If  y(t) = −t − 1 + et, 

  then y(−1) = e−1 ≈ 0.368. 
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 Runge-Kutta vs. Euler 

19. 23y t y′ = − , ( )0 1y = ; [0, 1] 

 Using the fourth-order Runge-Kutta method and 0.1h =  we arrive at the following table of 

values. 

 Runge-Kutta Method, ′ = −23y t y , ( ) =0 1y  

 t y t y 

 0 1 0.6 0.7359 

 0.1 0.9058 0.7 0.7870 

 0.2 0.8263 0.8 0.8734 

 0.3 0.7659 0.9 0.9972 

 0.4 0.7284 1.0 1.1606 

 0.5 0.7173   

 We compare this with #3 where Euler’s method gave ( )1 1.0612y ≈  for 0.1h = . Exact solution 

by separation of variables is not possible. 

20. y t y′ = − , ( )0 2y =  

 Using the fourth-order Runge-Kutta method and 0.1h =  we arrive at the following table of 

values.  

 Runge-Kutta Method, ′ = −y t y , ( ) =0 2y  

 t y t y 

 0 2 0.6 1.2464 

 0.1 1.8145 0.7 1.1898 

 0.2 1.6562 0.8 1.148 

 0.3 1.5225 0.9 1.1197 

 0.4 1.4110 1.0 1.1036 

 0.5 1.3196   

 We compare this with #7 where Euler’s method gives ( )1 1.046y ≈  for step 0.1h = ; 

( )1 1.07545y ≈  for step 0.05h = . Exact solution by separation of variables is not possible. 

 

 



68     CHAPTER 1     First-Order Differential Equations 

21. ty
y

′ = − , ( )0 1y =  

 Using the fourth-order Runge-Kutta method and 0.1h =  we arrive at the following table of 

values. 

 Runge-Kutta Method, ′ = −
ty
y

, ( ) =0 1y  

 t Y t y 

 0 1 0.6 0.8000 

 0.1 0.9950 0.7 0.7141 

 0.2 0.9798 0.8 0.6000 

 0.3 0.9539 0.9 0.4358 

 0.4 0.9165 1.0 0.04880 

 0.5 0.8660   

 We compare this with #8 where Euler’s method for step 0.1h =  gave ( )1 0.3994y ≈ , and the 

exact solution ( ) 21y t t= −  gave ( )1 0y = . The Runge-Kutta approximate solution is much 

closer to the exact solution. 

22. y ty′ = − , ( )0 1y =  

 Using the 4th-order Runge Kutta method and 0.01h =  to arrive at the following table. (Table 

shows only selected values.) 

 Runge-Kutta Method,  
y′ = −y t , ( ) =0 1y  

 t y t y 

 0 1 0.6 0.8353 

 0.1 0.9950 0.7 0.7827 

 0.2 0.9802 0.8 0.7261 

 0.3 0.9560 0.9 0.6670 

 0.4 0.9231 1 0.6065 

 0.5 0.8825   

 We compare this with #10 where Euler’s method for step 0.1h =  gave ( )1 0.6086y ≈ , and the 

exact solution ( ) 2 2ty t e−=  gave ( )1 0.6065y = . The Runge-Kutta approximate solution is exact 

within given accuracy. 
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 Euler’s Errors 

23. (a) Differentiating ( ),  y f t y′ =  gives 

 t y t yy f f y f f f′′ ′= + = + . 

 Here we assume tf , yf  and y f′ =  are continuous, so y′′  is continuous as well. 

(b) The expression  

 ( ) ( ) ( ) ( )* 21
2n n n ny t h y t y t h y t h′ ′′+ = + +   

 is simply a statement of Taylor series to first degree, with remainder. 

(c) Direct computation gives  

 
2

1 2n
he M+ ≤ . 

(d) We can make the local discretization error ne  in Taylor’s method less than a preassigned 

value E by choosing h so it satisfies 
2

2n
Mhe E≤ ≤ , where M is the maximum of the 

second derivative of y′′  on the interval [ ]1,n nt t + . Hence, if 2Eh
M

≤ , we have the 

desired condition ne E≤ . 

 Three-Term Taylor Series 

24. (a) Starting with ( ),y f t y′ = , and differentiating with respect to t, we get 

 ( ) ( ) ( ) ( ) ( ), , , , ,t y t yy f t y f t y y f t y f t y f t y′′ ′= + = + . 

 Hence, we have the new rule  

 ( ) ( ) ( ) ( )2
1

1, , , , .
2n n n n t n n y n n n ny y hf t y h f t y f t y f t y+ ⎡ ⎤= + + +⎣ ⎦  

(b) The local discretization error has order of the highest power of h in the remainder for the 
approximation of 1ny + , which in this case is 3. 

(c) For the equation ( ), ty f t y
y

′ = =  we have ( ) 1,tf t y
y

= , ( ) 2,y
tf t y
y

= −  and so the 

preceding three-term Taylor series becomes 

 
2

2
1 3

1 1
2

n n
n n

n n n

t ty y h h
y y y+

⎡ ⎤⎛ ⎞
= + + −⎜ ⎟ ⎢ ⎥

⎝ ⎠ ⎣ ⎦
. 

 Using this formula and a spreadsheet we get the following results. 
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  Taylor’s Three-Term Series  

Approximation of ′ =
ty
y

, ( ) =0 1y  

  t y t y 

  0 1 0.6 1.1667 

  0.1 1.005 0.7 1.2213 

  0.2 1.0199 0.8 1.2314 

  0.3 1.0442 0.9 1.3262 

  0.4 1.0443 1.0 1.4151 

  0.5 1.1185   

 The exact solution of the initial-value problem ty
y

′ = , ( )0 1y =  is ( ) 21y t t= + , so we 

have ( )1 2 1.4142y = ≈ … . Taylor’s three-term method gave the value 1.4151, which 

has an error of  

 2 1.4151 0.0009− ≈ . 

(d) For the differential equation ( ),y f t y ty′ = =  we have ( ),tf t y y= , ( ),yf t y t= , so the 

Euler three-term approximation becomes  

 2 2
1

1
2n n n n n n ny y ht y h y t y+ ⎡ ⎤= + + −⎣ ⎦ .  

 Using this formula and a spreadsheet, we arrive at the following results. 

  Taylor’s Three-Term Series  
Approximation of ′ =y ty , ( ) =0 1y  

  t Y t y 

  0 1 0.6 1.1962 

  0.1 1.005 0.7 1.2761 

  0.2 1.0201 0.8 1.3749 

  0.3 1.0458 0.9 1.4962 

  0.4 1.1083 1.0 1.6444 

  0.5 1.1325   

 The solution of y ty′ = , ( )0 1y =  is ( ) 2 2ty t e= , so ( )1 1.649y e= ≈ … . Hence the error 

at 1t =  using Taylor’s three-term method is  

 1.6444 0.0043e − ≈ . 
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 Richardson’s Extrapolation 

Sharp eyes may have detected the elimination of absolute value signs when equation (7) is rewritten as 
equation (9). This is legitimate with no further argument if y′  is positive and monotone increasing, as is 

the case in the suggested exercises. 

25. y y′ = , ( )0 1y = . 

 Our calculations are listed in the following table. Note that we use ( )R 0.1y  as initial condition 
for computing ( )R 0.2y . 

 

  One-step EulerTwo-step 
Euler 

Richardson 
approx. ( )∗ =Ry t  

Exact solution

 
∗t  ( )∗ ,y t  h  ( )∗ ,y t  h  ( ) ( )∗ ∗−2 , ,y t  h y t  h  = ty e  

 0.1 1.1 1.1025 1.1050 0.1 1.1052e =  

 0.2 1.2155 1.2183 1.2211 0.2 1.2214e =  

 
26. y ty′ = , ( )0 1y = . 

 Our calculations are listed in the following table. Note that we use ( )R 0.1y  as initial condition 
for computing ( )R 0.2y . 

  One-step EulerTwo-step 
Euler 

Richardson 
approx. ( )∗ =Ry t  

Exact solution

 
∗t  ( )∗ ,y t  h  ( )∗ ,y t  h  ( ) ( )∗ ∗−2 , ,y t  h y t  h  =

2ty e  

 0.1 1.0 1.0025 1.005 0.01 1.0101e =  

 0.2 1.01505 1.0176 1.02005 0.04 1.0408e =  

 
27. 2y y′ = , ( )0 1y = . 

 Our calculations are listed in the following table (on the next page). Note that we use ( )R 0.1y  as 
initial condition for computing ( )R 0.2y . 
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  One-step Euler Two-step 
Euler 

Richardson 
approx. ( )∗ =Ry t  

Exact solution 

 ∗t  ( )∗ ,y t  h  ( )∗ ,y t  h  ( ) ( )∗ ∗−2 , ,y t  h y t  h  ( )= −1 1y t  

 0.1 1.1 1.1051 1.1102 1.1111 

 0.2 1.2335 1.2405 1.2476 1.2500 

 
28. ( )siny ty′ = , ( )0 1y = . 

 Our calculations are listed in the following table. Note that we use ( )R 0.1y  as initial condition 
for computing ( )R 0.2y . 

  One-step Euler Two-step 
Euler 

Richardson 
approx. ( )∗ =Ry t  

Exact solution 

 
∗t  ( )∗ ,y t  h  ( )∗ ,y t  h  ( ) ( )∗ ∗−2 , ,y t  h y t  h  no formula 

 0.1 1.1 1.0025 1.0050  

 0.2 1.0150 1.0176 1.0201 1.02013 by 
Runge-Kutta 

 Integral Equation 

29. (a) Starting with  

 ( ) ( )( )
0

0 ,
t

t
y t y f s y s ds= + ∫   

 we differentiate respect to t, getting ( )( ),y f t y t′ = . We also have ( )0 0y t y= . 

 Conversely, starting with the initial-value problem 

 ( )( ),y f t y t′ = , ( )0 0y t y=   

 we integrate getting the solution  

 ( ) ( )( )
0

,
t

t
y t f s y s ds c= +∫ .  

 Using the initial condition ( )0 0y t y= , gives the constant 0c y= . Hence, the integral 

equation is equivalent to IVP. 



SECTION 1.4     Euler’s Method: Numerical Analysis     73 

(b) The initial-value problem, ( )y f t′ = , ( ) 00y y= , is transformed into the integral equation 

 ( ) ( )0 0

t
y t y f s ds= + ∫ .  

 To find the approximate value of the solution at t T= , we evaluate the preceding integral 
at t T=  using the Riemann sum with left endpoints, getting 

 
( ) ( )

( ) ( ) ( )
0 0

0 0 .

T
y T y f s ds

y h f f h f T h

= +

⎡ ⎤≈ + + + + −⎣ ⎦

∫
…

 

 If we, however, write the expression as 

 

( ) ( ) ( ) ( )
( ) ( )
( ) ( )
( ) ( ) ( )

( )

0

1

2

3 1

1

0

2

3

.

n

n

n

y T y h f f h f T h

y hf h hf T h

y hf h hf T h

y hf h hf T h y hf T h

y h T h
y

−

−

⎡ ⎤= + + + + −⎣ ⎦
= + + + −

= + + + −

= + + + − + + −

= + −

=

…

…

…

…
… …

 

 we get the desired conclusion. 

(c) The Riemann sum only holds for integrals of the form ( )
b

a
f t dt∫ . 

 Computer Lab: Other Methods 

30. Sample study of different numerical methods.  We solve the IVP of Problem 5 y t y′ = + , 

( )1 1y =  by several different methods using step size 0.1h = . The table shows a printout for 

selected values of y using one non-Euler method. 

  Fourth Order Runge-Kutta Method 

  t Y t y 

  1 1 3.5 6.8910 

  1.5 1.8100 4 8.5840 

  2 2.8144 4.5 10.4373 

  2.5 4.0010 5 12.4480 

  3 5.3618   
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We can now compare the following approximations for Problem 5: 

 Euler’s method 0.1h =  ( )5 12.2519y ≈

 (answer in text)   

 Euler’s method 0.01h =  ( )5 12.4283y ≈

 (solution in manual)   

 Runge-Kutta method 0.1h =  ( )5 12.4480y ≈

 (above)   

We have no exact solution for Problem 5, but you might use step 0.1h =  to approximate ( )5y  

by other methods (for example Adams-Bashforth method or Dormand-Prince method) then 
explain which method seems most accurate. A graph of the direction field could give insight. 

 Suggested Journal Entry I 

31. Student Project 

 Suggested Journal Entry II 

32. Student Project 
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1.5 
 
Picard’s Theorem: Theoretical Analysis  

 Picard’s Conditions 

1. (a) ( ), 1y f t y ty′ = = − , ( )0 0y =  

 Hence yf t= − . The fact that f is

continuous for all t tells us a solution
exists passing through each point in the ty
plane. The further fact that the derivative

yf  is also continuous for all t and y tells

us that the solution is unique. Hence,
there is a unique solution of this equation
passing through ( )0 0y = . The direction

field is shown in the figure. 

 

3–3
t

–3

3
y

 

(b) Picard’s conditions hold in entire ty plane. 

(c) Not applicable - the answer to part (a) is positive. 

2. (a) 2 yy
t
−′ = , ( )0 1y =  

 Here ( ) 2, yf t y
t
−

= , 1
yf

t
= − . The functions f and yf  are continuous for 0t ≠ , so 

there is a unique solution passing through any initial point ( )0 0y t y=  with 0 0t ≠ . When 

0 0t =  the derivative y′  is not only discontinuous, it isn’t defined. No solution of this DE 
passes through points ( )0 0,t y  with 0 0t = . In particular the DE with IC ( )0 1y =  does 

not make sense.  

(b) Uniqueness/existence in either the right half plane 0t >  or the left half plane 0t < ; any 
rectangle that does not include 0t =  will satisfy Picard’s Theorem. 

(c) If we think of DEs as models for physical 
phenomena, we might be tempted to
replace 0t  in the IC by a small number

and examine the unique solution, which
we know exists. It would also be useful
to draw the direction field of this equa-
tion and see the big picture. The direction 
field is shown in the figure. 

 

3
t

–2

6
y
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3. (a) 4 3y y′ = , ( )0 0y =  

 Here 

 
( ) 4 3

1 3

,
4 .
3y

f t y y

f y

=

=
 

–4

4
y

4–4
t

 
 Here f and yf  are continuous for all t and y, so by Picard’s theorem we conclude that the 

DE has a unique solution through any initial condition ( )0 0y t y= . In particular, there 
will be a unique solution passing through ( )0 0y = , which we know to be ( ) 0y t ≡ . The 

directions field of the equation is shown in the figure. 

(b) Picard’s conditions hold in entire ty plane. 

(c) Not applicable - the answer to part (a) is positive. 

4. (a) t yy
t y
−′ =
+

, ( )0 1y = −  

 Here both 

 
( )

( )2

,

2
y

t yf t y
t y

tf
t y

−
=

+

= −
+

 

–4

4
y

4–4
t

 

 are continuous for t and y except when y t= − . Hence, there is a unique solution passing 
through any initial condition ( )0 0y t y=  as long as 0 0y t≠ − . When y t= −  the derivative 

y′  is not only discontinuous but also not even defined, so there is really no need to resort 

to Picard’s theorem to conclude there is no solution passing through such points.  

(b), (c) Picard’s conditions hold for the entire ty plane except the line y t= − , so any rectangle 
that does not include any part of y t= −  satisfies Picard’s Theorem. 
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5. (a) 2 2
1y

t y
′ =

+
, ( )0 0y =  

 Here both  

 

( )

( )
( )

2 2

22 2

1,

2,y

f t y
t y

yf t y
t y

=
+

= −
+

 

–2

2
y

2–2
t

 

 are continuous for all t and y except at the point 0y t= = . Hence, there is a unique 
solution passing through any initial point ( )0 0y t y=  except ( )0 0y = . In this case f does 

not exist, so the IVP does not make sense. The direction field of the equation illustrates 
these ideas (see figure). 

(b) Picard’s Theorem gives existence/uniqueness for any rectangle that does not include the 
origin. 

(c) It may be useful to replace the initial condition ( )0 0y =  by ( ) 00y y= with small but 

nonzero 0y . 

6. (a) tany y′ = , ( )0
2

y π
=  

 Here  

 
( )

2

, tan

secy

f t y y

f y

=

=
 

 are both continuous except at the points  

 3, ,
2 2

y π π
= ± ± …  . 

2–2
t

–3  /2

y

π

3  /2π

 

 Hence, there exists a unique solution passing through ( )0 0y t y=  except when  

 3, ,
2 2

y π π
= ± ± …  . 

 The IVP problem passing through 
2
π  does not have a solution. It would be useful to look 

at the direction field to get an idea of the behavior of solutions for nearby initial points. 
The direction field of the equation shows that where Picard’s Theorem does not work the 
slope has become vertical (see figure). 
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(b) Existence/uniqueness conditions are satisfied over any rectangle with y-values between 

two successive odd multiples of 
2
π . 

(c) There are no solutions going forward in time from any points near 0,  
2
π⎛ ⎞

⎜ ⎟
⎝ ⎠

. 

7. (a) ln 1y y′ = − , ( )0 2y =  

 Here 

 
( ), ln 1

1
1y

f t y y

f
y

= −

=
−

 

 are both continuous for all t and y as long 
as 

 1y ≠ , 

–4

4
y

4–4
t

 

 where neither is defined. Hence, there is a unique solution passing through any initial 
point ( )0 0y t y=  with 0 1y ≠ . In particular, there is a unique solution passing through 

( )0 2y = . The direction field of the equation illustrates these ideas (see figure). 

(b), (c) The Picard Theorem holds for entire ty plane except the line 1y = . 

8. (a) yy
y t

′ =
−

, ( )1 1y =  

 Here 

 
( )

( )2

,

y

yf t y
y t

tf
y t

=
−

= −
−

 

–4

4
y

4–4
t

 
 are continuous for all t and y except when y t≠  where neither function exists. Hence, we 

can be assured there is a unique solution passing through ( )0 0y t y=  except when 

0 0t y= . When 0 0t y=  the derivative isn’t defined, so IVP problems with these IC does 
not make sense. Hence the IVP with ( )1 1y =  is not defined. See figure for the direction 

field of the equation. 

(b) The Picard Theorem holds for the entire ty plane except the line y t= , so it holds for any 

rectangle that does not include any part of y = t. 
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(c) It may be useful to replace the initial condition ( )1 1y =  by ( )1 1y ε= + . However, you 

should note that the direction field shows that 0ε >  will send solution toward ∞, 0ε <  

will send solution toward zero. 

 Linear Equations 

9. ( ) ( )y p t y q t′ + =  

 For the first-order linear equation, we can write ( ) ( )y q t p t y′ = −  and so 

 
( ) ( ) ( )
( ) ( )

,

, .y

f t y q t p t y

f t y p t

= −

= −
 

 Hence, if we assume ( )p t  and ( )q t  are continuous, then Picard’s theorem holds at any point 

( )0 0y t y= . 

 Eyeballing the Flows 

For the following problems it appears from the figures given in the text that: 

10. A unique solution will pass through each point A, B, C, and D and the solutions appear to exist 
for all t. 

11. A unique solution passes through A and B defined for negative t; no unique solution passes 
through C where the derivative is not uniquely defined; a unique solution passes through D for 
positive t. 

12. Unique solutions exist passing through points B and C on intervals until the solution curve 
reaches the t-axis, where finite slope does not exist. Nonunique solutions at A; possibly unique 
solutions at D where 0t y= = . 

13. A unique solution will pass through each of the points A, B, C, and D. Solutions appear to exist 
for all t. 

14. A unique solution will pass through each of the points A, B, C, and D. Solutions appear to exist 
for all t. 

15. A unique solution will pass through each of the points B, C, and D. Solutions exist only for At t>  
or At t<  because all solutions appear to leave from or go toward A, where there is no unique 

slope. 

16. Unique solutions will pass through each of the points A, B, C, and D. Solutions appear to exist for 
all t. 



80     CHAPTER 1     First-Order Differential Equations 

17. A unique solution will pass through each of the points A, B, C, and D. Solutions appear to exist 
for all t. 

18. A unique solution will pass through each of the points A, B, C, and D. Solutions appear to exist 
for all t. 

 Local Conclusions 

19. (a) ( ) 2,f t y y= , 2yf y= , ( )0 1y =  

 are both continuous for all t, y so by
Picard’s theorem there is a unique
solution passing through any point t, y.
Hence the existence and uniqueness
conditions hold for any initial
condition in the entire ty plane. 
However, this example exhibits an 

 (b) 

–3 3
t

–3

3
y t = 1

Solution of 2y y′ = , ( )0 1y =  

 important weakness of Picard’s Theorem: For any particular initial condition, the solution 
may not exist over the entire plane. In the given IVP the solution exists only for 1t < . 

(c) The separated equation is 2y dy dt− = . Integrating gives the result 1y t c−− = +  and 

solving for y, we get 1
t c

−
+

. Substituting the initial condition ( )0 1y = , gives 1c = − . 

Hence, we have ( ) 1
1

y t
t

=
−

, 1t < , 0y > . The interval over which this solution is 

defined cannot pass through 1t = , and the solution with IC ( )0 1y =  exists on the interval 

( ), 1−∞ . 

(d) Because Picard’s theorem holds for all t, y we conclude there exists a unique solution to 
2y y′ = , ( )0 0y t y=  for any ( )0 0,t y . To find the size of the interval of existence, we 

must solve the IVP, getting  

 ( )
0

1
0

1

y

y t
t t

= −
− −

. 

 Hence, the interval over which this solution is defined cannot pass through 0
0

1t t
y

= + , 

which implies an interval of  

 0
0

1, t
y

⎛ ⎞
−∞ +⎜ ⎟
⎝ ⎠

 

 for positive 0y  and 
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 0
0

1 ,t
y

⎛ ⎞
− ∞⎜ ⎟⎜ ⎟

⎝ ⎠
 

 for negative 0y . 

 Nonuniqueness 

20. 1 3y y′ = , ( )0 0y =  

 Because 1 3f y=  is continuous for all ( ),t y , Picard’s theorem says that there exists a solution 

through any point ( )0 0y t y= . However, 2 31
3yf y−=  is not continuous when 0y =  so Picard’s 

theorem does not guarantee a unique solution through any point where 0y = . 

  In fact we can find an infinite number of solutions passing through the origin. We first 
separate variables, getting 1 3y dy dt− = , and integrating gives 

 2 33
2

y t c= + .  

 Picking the initial condition ( )0 0y = , we find 0c = . Hence, we have found one solution of the 

initial-value problem as 

 ( )
3 2

3 22
3

y t t⎛ ⎞= ±⎜ ⎟
⎝ ⎠

. 

 But clearly, ( ) 0y t ≡  is another solution. In fact,

we can paste these solutions together at 0t = . 
Futhermore, we can also paste together 0y =

with infinitely many additional solutions, using
any 0c < , getting an infinite number of solutions

to the initial-value problem as  

 ( )
( )

3 2
3 2

0

2
3

t c
y t

t c t c

⎧ <
⎪

= ⎨ ⎛ ⎞± + ≥⎪ ⎜ ⎟
⎝ ⎠⎩

 

for any 0c ≤ . A few of these solutions are

plotted (see figure). 

 

t

y

1

3

–3

2 3 4

c = 0 c = –1

c = –2

c = –2
c = –1c = 0

y = 0

 

Nonuniqueness of solutions through 
( )0 0y =  
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 More Nonuniqueness 

21. y y′ = , ( )0 0y = , 0 0t >  

 For 0t t< , the solution is ( ) 0y t ≡ .  For 0t t> , we have ( )2
0

1
4

y t t= − .  

 At 0t t=  the left-hand derivative of ( ) 0y t ≡  is 0, and the right-hand derivative of 

( ) ( )2
0

1
4

y t t t= −  is 0, so they agree. 

 Seeing vs. Believing 

22. No, the solution does not “merge” with y = −1. 

 Consider 23 (1 ) ( , ).y t y f t y′ = + =   Note that y = −1 is an equilibrium solution. 

 We observe: 

  1.  f(t, y) is continuous for all t and y. 

  2.  f
y
∂
∂

 = 3t2 is continuous for all t and y 

 By Picard’s Theorem, we know there is a unique solution through any initial point. Because the 
line y = −1 passes through every point with y-coordinate = 1, no other solution can merge with  

 y = −1 and can only approach y = −1 asymptotically. 

 Converse of Picard’s Theorem Fails 

23. (a) Note that ( , )dy y f t y
dt

= = , so that 
0

( , )
0

y y
f t y

y y
− <⎧

= ⎨ ≥⎩
 

  has a partial derivative 
1 0

1 0,
yf
yy

− <⎧∂
= ⎨ >∂ ⎩

 

 that is not continuous at y = 0.  Consequently the hypothesis of Picard’s Theorem is not 
fulfilled by the DE in any region containing points on the x-axis. 

(b) Note that y ≡ 0 is a solution of the IVP 

 dy y
dt

=  y(0) = 0 

 When y < 0, the DE becomes ,y y′ = −  which has the general solution y = Ce−t.  

 When y ≥ 0, the DE becomes ,y y′ =  which has general solution y = Cet.  

 Note that the only solution that satisfies the IVP occurs when C = 0, which is precisely 
the function y ≡ 0, so that is a unique solution. 
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 Hubbard’s Leaky Bucket 

24. dh k h
dt

= −  

(a) ( ),f t h k h= − , 
2

f k
h h
∂

= −
∂

 

 Because f
h
∂
∂

 is not continuous at 0h = , we cannot be sure of unique solutions passing 

through any points where ( ) 0h t = . 

 (b) Let us assume the bucket becomes empty 
at 0t T t= < . Solving the IVP with
( ) 0h T = , we find an infinite number of

solutions. 

( ) ( )

( )

21 for 
4
0 for .

h t kT kt t T

h t t T

= − <

= >
 

 

t
t0

h  t(  )

h0

various     valuesT  

 Each one of these functions describes the bucket emptying. Hence, we don’t know when 
the bucket became empty. We show a few such solutions for 0T t< . 

(c) If we start with a full bucket when 0t = , then (b) gives 

 ( ) 2 2
0

10
4

h k T h= = . 

 Hence the time to empty the bucket is 

 0
2T h
k

= . 

 The Melted Snowball 

25. (a) We are given dV kA
dt

= − , where A is the surface area of the snowball and 0k >  is the 

rate at which the snowball decreases in volume. Given the relationships between the 

volume of the snowball and its radius r, which is 34
3

V rπ= , and between the surface 

area of the snowball and its radius, given by 24A rπ= , we can relate A and V by  

 
2 3

2 3 2 3334 36
4

A V Vπ π
π

⎛ ⎞= =⎜ ⎟
⎝ ⎠

. 
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(b) Here  

 
( ) 2 3

1 3

,
2 .
3

f t V kV
f kV
V

−

= −

∂
= −

∂

 

 Because the uniqueness condition for Picard’s theorem does not hold when 0V = , we 

cannot conclude that the IVP  

 2 3dV kV
dt

= − , ( )0 0V t =   

 has a unique solution. Hence, we cannot tell when the snowball melted; the backwards 
solution is not unique. 

 (c) Separating 2 3dV kV
dt

= −  where 0k > , 

we have 

 2 3V dV kdt− = − . 

 Integrating, we find  

 1 33V kt c= − + . 

 Let 0T t<  be the time the snowball

melted. Then using the initial condition
( ) 0V T =  we find  

 ( )
3

3
t TV t K −⎛ ⎞= − ⎜ ⎟

⎝ ⎠
 

 

t

y
20

10

2–3
t0

various     valuesT  

2 3dV kV
dt

= − . Solutions with ( )0 0y t = . 

 for 3K k=  and t T< . But we know ( ) 0V t ≡  is also is a solution of this initial-value 

problem, so we can piece together the nonzero solutions with the zero solution and get 
for 0T t<  the infinite family of solutions 

 ( )
3

3
0 .

t TK t TV t
t T

⎧ −⎛ ⎞− <⎪ ⎜ ⎟= ⎨ ⎝ ⎠
⎪ ≥⎩

 

(d) The function ( ) 2 3,f t V V=  does not satisfy the uniqueness condition of Picard’s 

theorem when 0V = . 
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 The Accumulating Raindrop 

26. (a) We are given dV kA
dt

= , where A is the surface area of the raindrop and 0k >  is the rate 

at which the raindrop increases in volume. We substitute into dV kA
dt

=  the relationships  

 34
3

V rπ= , 24A rπ=  

 for the volume V and area A of a raindrop in terms of its radius r, getting 

 
2 3

2 3 2 3334 36
4

A V Vπ π
π

⎛ ⎞= =⎜ ⎟
⎝ ⎠

. 

 Hence 

 2 3dV kV
dt

= . 

(b) Separating variables in the above DE, we have 

 2 3V dV kdt− = . 

 Integrating, we find 

 1 33V kt c= + . 

 Using the initial condition ( )0 0V t = , we get the relation 0c kt= − , and hence  

 ( )
3

0

3
t tV t K −⎛ ⎞= ⎜ ⎟

⎝ ⎠
  

 where 3K k= . 

 But clearly, ( ) 0V t ≡  is also a solution of this initial-value problem, so we can piece 

together the nonzero solutions with the zero solution, to get the infinite family of 
solutions 

 ( )
0

3
0

0

0

3

t t
V t t tK t t

<⎧
⎪= ⎨ −⎛ ⎞ ≥⎪ ⎜ ⎟

⎝ ⎠⎩
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 Different Translations 

27. (a) y y′ =  has an infinite family of solution of the form y = Cet. 
  (To check:  ( ) .t ty Ce Ce y′ ′= = =  

  Note that for any real number a,  
  y = t a te Ce− =  is a solution for every a ∈ R. 

 (b) Differentiating s(t) = 
2

0
( )

t a
t a t a

<⎧
⎨

− ≥⎩
 

  we obtain a continuous derivative 

   
0

( )
2( )

t a
s t

t a t a
<⎧′ = ⎨ − ≥⎩

 

  Note that 2s s′ =  for both parts of the curve. 

 (c)  

   

 

 

 

 

 

 

 

 

 

  For (a), with y y′ = , solutions y = Cet gradually approach zero as t → −∞. 

  For (b), with 2 ,s s′ =  solutions 
2

0  for 
( )  for 

t a
y

t a t a
<⎧

= ⎨
− ≥⎩

 go to zero at t → a. 
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 Picard Approximations 

28. ( )

( ) ( ) ( )

( )

( )

0

2
1 00 0

2 3 2
2 0

3 2 4 3 2
3 0

1
11 1 1 1
2

1 11 1 1
2 6

1 1 11 1 1
6 24 3

t t

t

t

y t

y t s y ds s ds t t

y t s s s ds t t t

y t s s s s ds t t t t

=

= + − = + − = + −

⎧ ⎫⎛ ⎞= + − + − = − + − +⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

⎧ ⎫⎡ ⎤= + − − + − + = − + − +⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭

∫ ∫

∫

∫

 

29. ( )

( ) ( ) ( )

( ) ( )

( ) ( )

0

1 00 0

2 0

2
3 0

1

1 1 1 1

1 1 1

1 1 1

t t

t

t

y t t

y t s y ds s s ds t

y t s s ds t

y t s s ds t t

= −

⎡ ⎤= + − = + − − = +⎣ ⎦

⎡ ⎤= + − + = − +⎣ ⎦

⎡ ⎤= + − − = − +⎣ ⎦

∫ ∫

∫

∫

 

30. ( )

( ) ( ) ( )

( )

( )

0

2
1 00 0

2 3 2
2 0

3 2 4 3 2
3 0

11 1
2

1 1 11
2 6 2

1 1 1 1 11
6 2 24 6 2

t

t t s t

t s t

t s t

y t e

y t s y ds s e ds e t

y t s e s ds e t t

y t s e s s ds e t t t

−

− −

− −

− −

=

= + − = + − = +

⎡ ⎤⎛ ⎞= + − + = − +⎜ ⎟⎢ ⎥
⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞= + − − + = + − +⎜ ⎟⎢ ⎥
⎝ ⎠⎣ ⎦

∫ ∫

∫

∫

 

31. ( )

( ) ( ) ( )

( ) ( )( )

( ) ( )

0

1 00 0
0

2
2 0

2 3 2
3 0

1

1 1 1 1 1

1 1 1

11 1 1
3

t
t t

t

t

y t t

y t s y ds s s ds ds t

y t s s ds t t

y t s s s ds t t t

= +

⎡ ⎤= + − = + − + = + − = −⎣ ⎦

= + − − = − +

⎡ ⎤= + − − + = − + − +⎣ ⎦

∫ ∫ ∫

∫

∫
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 Computer Lab 

32. (a) We show how the computer algebra system Maple can be used to estimate the solution of 
#29 y t y′ = − , ( )0 1y =  with starting function ( )0 1y t t= − . We leave for the reader the 

other starting functions for #28, 30, and 31. In Maple open a new window and type the 
int() command. In this problem, because ( ),f t y t y= − , ( )0 1y = , we can find the 

sequence of approximations 

 ( ) ( )( ) ( )( )1 0 0 0
, 1

t t

n n ny t y f s y s ds s y s ds+ = + = + −∫ ∫  

 by typing 

( )
( )
( )
( )
( )
( )

0

1 0

2 1

3 2

4 3

5 4

6 5

1;
1 int , ;
1 int , ;
1 int , ;
1 int , ;
1 int , ;
1 int , .

y t
y t y t
y t y t
y t y t
y t y t
y t y t
y t y t

= −
= + −
= + −
= + −
= + −
= + −
= + −

 

 If you then hit the enter key you will see displayed 

    

0

1

2
2

3

3 2
4

4 3 2
5

5 4 3 2
6

1
1

1

1
1 1
3

1 1 1
12 3

1 1 1 1
60 12 3

y t
y t
y t

y t t

y t t t

y t t t t

y t t t t t

= −
= +
= − +

= − +

= − + − +

= − + − +

= − + − + − +

 

    Of course you can find more iterates in the same way. E.g., if  
   you type  

     y7 = 1 + int(t − y6, t),  
    then hit Enter, you will see 

    6 5 4 3 2
7

1 1 1 1  = 1
360 60 12 3

y t t t t t t− − + − + − +  
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  To get a plot of 6y  and the solution  

( ) 2 1ty t e t−= + −  

(see part (b)) as shown (see figure), type 
the Maple command 

plot({2*exp(–t)+t–1, y6}, 

t=0..4, y=0..2). 

 

 

31

0.8

0

1.2

1.6

0.4

2
t

y
2

4

0.6

1

1.4

0.2

1.8

Picard Approximation

 

Picard’s sixth approximation to  

y t y′ = − , ( )0 1y =  

(b) If you recall the Maclaurin series ( ) ( )2 32 1 11 2 2 2
2 3!

te t t t− ≈ − + − + − +…  and carry out a 

little algebra, you will convince yourself that these Picard’s approximations are 
converging to the analytical solution ( ) 2 1ty t e t−= + − . For most initial-value problems, 

however, such a nice identification is not possible. 

 Calculator or Computer 

33. ( ) 1 4

3 4

,
1
4

y f t y y
f y
y

−

′ = =

∂
=

∂

 

Note the direction field is only defined when
0y ≥ . Picard’s theorem guarantees existence

through any point ( )0 0y t y= , but not uniqueness 
for points ( )0 0y t y=  when 0 0y = . The direction 

field shown illustrates these ideas. 

 

–3 3
t

2
y

 
1 4y y′ = ; DE does not exist for 0y < . 

34. ( ) ( )

( )

, sin

cos

y f t y ty
f t ty
y

′ = =

∂
=

∂

 

Picard’s theorem guarantees both existence and 
uniqueness for any point ( )0 0,t y . The direction 

field shown also indicates these ideas. 

 

5–5
t

–2

2
y
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35. ( ) 5 3

2 3

,
5
3

y f t y y
f y
y

′ = =

∂
=

∂

 

Picard’s theorem guarantees existence and 
uniqueness for all initial conditions ( )0 0y t y= . 

The direction field shown also illustrates this
fact. 

 

2–2

–2

2
y

t

 

36. ( ) ( )

( )

1 3

2 3 1/ 3 2 /3

,
1 1
3 3

y f t y ty
f ty t t y
y

− −

′ = =

∂
= =

∂

 

The function f is continuous for all ( ),t y , but 

yf  is not continuous when 0y = . Hence, we are

not guaranteed uniqueness through points
( )0 0,t y  when 0y  is zero. See figure for this

direction field. 

 

3
t

–3

3
y

 

37. ( ) ( )

( )

1 3

2 3

,
1
3

y f t y y t
f y t
y

−

′ = = −

∂
= −

∂

 

The function f is continuous for all ( ),t y , but 

yf  is not continuous when y t= (it doesn’t 

exist). Hence, the DE has a solution through
every point ( )0 0,t y but Picard’s theorem does

not guarantee uniqueness through points for
which 0 0y t= . See figure for this direction field. 

 

4
t

–4

4
y

–4
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38. ( ) 2 3, 6

3

y f t y t y
t

f
y t

′ = = −

∂
= −

∂

 

The function f is continuous except when 0t = , 

hence there exists a solution through all points
( )0 0,t y  except possibly when 0 0t = . Also yf is 

continuous except when 0t = , and so the DE has 

a unique solution for all initial conditions except
possibly when 0 0t = . The direction field of the 

equation as shown indicates that no solutions
pass through initial points of the form ( )00, y . 

 

–1

1
y

1–1
t
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