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CHAPTER 1

Dynamical Systems: Modeling

Constants of Proportionality
dA

— =kA k<0
pm (k<0)
d_P: kP (20,000 - P)
dt

46 _kN

dt A

A Walking Model

First-Order
Differential Equations

dA

2. — =kA k<0
pm (k<0)
. Ak
' dt  t

Because d = ot where d = distance traveled, v = average velocity, and t = time elapsed, we have

. . . d . .
the model for the time elapsed as simply the equation t = —. Now, if we measure the distance
19

traveled as 1 mile and the average velocity as 3 miles/hour, then our model predicts the time to be

v

t= 9 = %hr, or 20 minutes. If it actually takes 20 minutes to walk to the store, the model is

perfectly accurate. This model is so simple we generally don’t even think of it as a model.

A Falling Model

@ Galileo has given us the model for the distance s(t)a ball falls in a vacuum as a function

of time t: On the surface of the earth the acceleration of the ball is a constant, so

d?2s

— =, wWhere g~322 ft/secz. Integrating twice and using the conditions s(0)=0,

dt?

w: 0, we find
dt

1 1
s(t) == gt2s(t) == gt2.
=790 =29
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(b) We find the time it takes for the ball to fall 100 feet by solving for t the equation
100=%gt2 =16.1t%, which gives t =249seconds. (We use 3 significant digits in the

answer because g is also given to 3 significant digits.)

(c) If the observed time it takes for a ball to fall 100 feet is 2.6 seconds, but the model
predicts 2.49 seconds, the first thing that might come to mind is the fact that Galileo’s
model assumes the ball is falling in a vacuum, so some of the difference might be due to
air friction.

The Malthus Rate Constant k

(@)  Replacing (b) y

[ ]
e003 ~ 103045 91 Malthus

7,, °
in Equation (3) gives

y = 09(103045)!, 4 .

population (in billions)
ol
[ ]

2l ° * World population

1y $ o oo’

1800 1820 1840 1860 1880

which increases roughly 3% per year.
o O

(© Clearly, Malthus’ rate estimate was far too high. The world population indeed rises, as
does the exponential function, but at a far slower rate.
If y(t)=09e", you might try solving y(200) = 0.9¢2%" = 6.0for r. Then

200r = Ini ~ 1897
09

SO
r=~ 128(?07 ~ 0.0095,
which is less than 1%.
Population Update
@ If we assume the world’s population in billions is currently following the unrestricted

growth curve at a rate of 1.7% and start with the UN figure for 2000, then
y,e“ =6.056e"""",



SECTION 1.1 Dynamical Systems: Modeling 3

and the population in the years 2010 (t =10), 2020 (t = 20), and 2030 (t = 30), would be, respec-

tively, the values

(b)

6.056e>°7) —7.176
6.056e"°"(*) ~ 8,509
6.056e""7Y) £10.083.

These values increasingly exceed the United Nations predictions so the U.N. is assuming

a growth rate less than 1.7%.

2010: 6.056€"" =6.843

Q07 _ 6.843 6843 14
6.056
10r =In(1.13) =0.1222
r=12%
2020: 6843¢™" =7568
e’ = 7578 ———=1.107
6.843
10r =In(1.107) = 0.102
r=1.0%
2030: 7.578¢"" =8.199
e = 8.199 ———=1.082
7.578
10r =In(1.082) = 0.079
r=0.8%

[ | The Malthus Model

10. @

(b)

Malthus thought the human population was increasing exponentially ek, whereas the
food supply increases arithmetically according to a linear function a +bt. This means the

kt
number of people per food supply would be in the ratio e—b)’ which although not a

(a+ht
pure exponential function, is concave up. This means that the rate of increase in the

number of persons per the amount of food is increasing.

The model cannot last forever since its population approaches infinity; reality would
produce some limitation. The exponential model does not take under consideration
starvation, wars, diseases, and other influences that slow growth.
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11.

12.

13.

(c) A linear growth model for food supply will increase supply without bound and fails to
account for technological innovations, such as mechanization, pesticides and genetic
engineering. A nonlinear model that approaches some finite upper limit would be more
appropriate.

(d) An exponential model is sometimes reasonable with simple populations over short
periods of time, e.g., when you get sick a bacteria might multiply exponentially until your
body’s defenses come into action or you receive appropriate medication.

Discrete-Time Malthus

()  Taking the 1798 population as y, =09 (0.9 billion), we have the population in the years
1799, 1800, 1801, and 1802, respectively
y; =103(0.9) = 0927
y, = (103)°(09) = 0.956
ys = (103)*(0.9) = 0.983
ys = (103)*(09) = 1023,

(b) In 1990 we have t =192, hence
Y10 = (103)1%2(0.9) ~ 262 (262 billion).

© The discrete model will always give a value lower than the continuous model. Later,
when we study compound interest, you will learn the exact relationship between discrete

compounding (as in the discrete-time Malthus model) and continuous compounding (as
described by y’ = ky).

Verhulst Model

3—{ = y(k —cy). The constant k affects the initial growth of the population whereas the constant ¢

controls the damping of the population for larger y. There is no reason to suspect the two values

would be the same and so a model like this would seem to be promising if we only knew their
values. From the equation y’ = y(k —cy), we see that for small y the population closely obeys

y’ =ky, but reaches a steady state (y’' =0) when y = %

Suggested Journal Entry

Student Project
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Soluions and Diection Fieds I

Verification
If y=2tan2t, then y’ =4sec?2t. Substituting y’ and y into y’ = y? + 4 yields a trigonometric
identity

4sec?(2t)=4tan?(2t)+ 4.

Substituting

y=3t+t2
y'=3+2t
into y’ :%y+t yields the identity
1
3+2t z¥(3t +12)+t.
Substituting
y=t2Int
y' =2tInt+t

into y’ =—f y + 1t yields the identity
2 (12
2tint+t= ; (t?Int) +t.

If y= j(: g 25" )gs = g2t? J'; e~25ds, then, using the product rule and the fundamental theorem of
calculus, we have

y =e2’e 2 4 age?t” J(; e 25"ds = 1+ 4te?” j; e 25°ds.
Substituting y" and y into y’ — 4ty yields

t t
1+4te?t* [ e2ds — 4te?” | e72ds,

which is 1 as the differential equation requires.
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| IVPs
5. Here
1
_ et _gBt
y 2
y'=—=et+3e
Substituting into the differential equation
y' +3y=et

we get

(—le‘t + 3e‘3‘j + 3(3 et — e“’“) ,
2 2

which is equal to et as the differential equation requires. It is also a simple matter to see that

y(0) = —%, and so the initial condition is also satisfied.

6. Another direct substitution
[ | Applying Initial Conditions
7. If y =cet’, then we have y’ = 2ctet” and if we substitute y and y’ into y’ = 2ty, we get the

identity 2cte!” = 2t(ce'”). If y(0) = 2, then we have ce®” =c=2.

8. We have
y = et cost + ce'
y’ =etcost —etsint + cet

and substituting y and y’ into y’ —y yields
(etcost —etsint +cet) — (e cost + ce'),

which is —etsint. If y(0)=—1, then —1=¢%cos0+ ce? yields c=-2.
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Using the Direction Field
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9.

Solutions are y

=ce?t,

Solutions are y
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Solutions are y =t —1+cet.

Linear Solution

It appears from the direction field that there is a straight-line solution passing through (0, —1) with

12.

1, we see it satisfies the DE y’ =t —y because

ing y’

the line y =t —1. Comput

ie.,

slope 1

t—(t—1).

1=
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m Stability

13, y'=1-y=0
Wheny = 1, the direction field shows a stable equilibrium solution.

Fory > 1, slopes are negative; for y < 1, slopes are positive.
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4. Y'=y(y+)=0
When y = 0, an unstable equilibrium solution exists, and when y = —1, a stable equilibrium
solution exists.
For y=3, y'=3(4)=12
y=1, y'=142)=2

-4

y=-2,  y=(2()=2
y=4, y'=(-4)(-3)=12
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15,y =t’1-y?)
Two equilibrium solutions:
y = 1is stable
y = —1is unstable

Between the equilibria the slopes (positive) are shallower as they are located further from the
horizontal axis.

Outside the equilibria the slopes are negative and become steeper as they are found further from
the horizontal axis.

All slopes become steeper as they are found further from the vertical axis.
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16. © Because the slope is always the same

17. (D) Because the slope is always the value of y

18. (F Because F is the only direction field that has vertical slopes when t =0 and zero slopes
when y=0

19. (B) Because it is the only direction field that has all zero slopes when t = 0

20. (E) The slope is always positive and equal to the square of the distance from the origin.

21. (A) Because it is undefined when t=0 and the directional field has slopes that are

independent of y, with the same sign as that of t
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Horizontal axis is locus of inflection points;

shaded regions are where solutions are

concave down.

y'=y+t’

23.

=0

y' =y +2t=y+t>+2t

y"=0, so

)

y=—t -2t

When

we have a locus of inflection points.

Solutions are concave up above the parabola of

inflection points, concave down below.

Parabola is locus of inflection points;
shaded regions are where solutions are

concave down.



24.

25.

yl: y2 —t
y":2yyl_1
=2y’ -2yt-1=0
3_
When t:M:yZ_i, then y"=0
2y 2y

and we have a locus of inflection points.

The locus of inflection points has two branches:
Above the upper branch, and to the right of the
lower branch, solutions are concave up.

Below the upper branch but outside the lower
branch, solutions are concave down.

Asymptotes
yr — yZ

Because Yy’ depends only on'y, isoclines will be horizontal lines, and solutions will be horizontal

translates.
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Solutions and Direction Fields
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Bold curves are the locus of inflection
points; shaded regions are where solutions

are concave down.

Slopes get steeper ever more quickly as distance from the x-axis increases.

If the y-axis extends high enough, you may suspect (correctly) that undefined solutions will each
have a (different) vertical asymptote. When slopes are increasing quickly, it’s a good idea to

check how fast. The direction field will give good intuition, if you look far enough.
Compare with y’ =y for a case where the solutions do not have asymptotes.
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0, so solutions do not cross either axis.

First-Order Differential Equations
The DE is undefined fort =0 ory
However, as solutions approach or depart from the horizontal axis, they asymptotically approach

a vertical slope.
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Every solution has a vertical asymptote
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There are no asymptotes.
for any finite value of t.
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y'=2t+y

28.

Solutions to this DE have an oblique asymptote—

they all curve away from it as t — <o, moving

down then up on the right, simply down on the

left. The equation of this asymptote can be at least

approximately read off the graphs as y = -2t — 2.

you can verify that this line satisfies the

In fact

DE, so this asymptote is also a solution.

Obligue Asymptote

y'=-2ty +t

29.

Here we have a horizontal asymptote,

— | N
1

Horizontal asymptote
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Att =1 and t = -1 the DE is undefined. The

direction field shows that as y — 0 from either

asymptotically

solutions

or below,

above

approach vertical slope. However, y = 0 is a

solution to the DE, and the other solutions do not

cross the horizontal axis for t = +1. (See Picard’s

Theorem Sec. 1.5.)

Vertical asymptotes fort > 1ort— -1



First-Order Differential Equations

14 CHAPTER1

Isoclines
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2 shown in the

t

The isoclines are vertical lines t =c, as
follows for c=0, +1,

figure.

Here the slope of the solution is negative when
y >0 and positive for y < 0. The isoclines for

c=-1, 0, 1 are shown in the figure.

Here the slope of the solution is always > 0.

The isoclines where the slope is ¢ > 0 are the

In other words

>0.

=+Jc
the isoclines where the slope is 4 are y = +2.

horizontal lines y

The isoclines for ¢ =0, 2, and 4 are shown in

the figure.
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—ty.

34.

c, we see that the points where the

Setting -ty

,t=0or

__L
t

slope is ¢ are along the curve y

hyperbolas in the ty plane.

1, the isocline is the hyperbola y

For c

For ¢ =-1, the isocline is the hyperbola y
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When t =0 the slope is zero for any y; when y = 0 the slope is zero for any t, and y =0 is in fact

a solution. See figure for the direction field for this equation with isoclines for ¢ =0, +1.

35. '=2t—vy. The isocline where y’ =c is the Yoo
y=amy e Y=o E DUIN IR S
straight line y = 2t —c. The isoclines with slopes IAR2NNINNE AN NN A

\'&) \\\\\/\\\\7‘//// /7
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36. y’ =y —t. The isocline where y’ = is a parab- oy |ope52;/}¢/
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37.  Yy'=cosy H
) T gl o bt o
0 when y = odd multiples of > R
y'=c= 1wheny=0,2rx 4r, ...

—1lwheny=7r3r, ...

Additional observations:
ly'|<1 forally.

Wheny = % , this information produces a slope

field in which the constant solutions, at

y=(2n +1)% , act as horizontal asymptotes.
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38.

39.

First-Order Differential Equations

y' =sint
0 whent=0, 7, 27, ...
, 3r & 37
y'=c= lwhent= ——,— —,...
2 2 2
—-1whent= —1,3—”,...
2 2

The direction field indicates oscillatory periodic
solutions, which you can verify as y = —cost.

y'=cos(y —t)
4 Owheny—t=—£,£,3—”,-
2 2 2
ory=t+ (2n+1)—
y'=c= < lwheny-t=0, 27, ...
ory=t+2nz
-lwheny—-t=-zx, 7, 37, ...

\ ory=t+x(@2n+ 1)z

All these isoclines (dashed) have slope 1, with
different y-intercepts.

The isoclines for solution slopes 1 are also
solutions to the DE and act as oblique asymptotes
for the other solutions between them (which, by
uniqueness, do not cross. See Section 1.5).
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41.

Periodicity
y' =cos10t

0 when 10t = +(2n+1) [%j

1 when 10t = +2n7x

—1when10t=+(2n + 1)~z
is always between +1 and —1.

!

y

All solutions are periodic oscillations, with period i—g :
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Zooming in
y'=2-sint
Ift=nx, then y' =2.
Ift= —37”%57” theny'=1.

All slopes are between 1 and 3.

Although there is a periodic pattern to the
direction field, the solutions are quite irregular
and not periodic.

If you zoom out far enough, the oscillations of
the solutions look somewhat more regular, but
are always moving upward. See Figures.
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42.

First-Order Differential Equations
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Zooming out

y'=-cosy

Ify=+(2n +1)%, theny' =0 and

Fory=+2nz, y' =-1
Fory=+(2n+ 17z, y' =1.

Zooming further out

these horizontal lines are equilibrium solutions.

Slope y' is always between —1 and 1, and solutions between the constant solutions cannot cross

them, by uniqueness.

To further check what happens in these cases we have added an isocline aty = % , Where

y'= Cos[%} ~-0.7.

Solutions are not periodic, but there is a periodicity to the direction field, in the vertical direction
with period 2. Furthermore, we observe that between every adjacent pair of constant solutions,

the solutions are horizontal translates.
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Solutions and Direction Fields

SECTION 1.2

Direction field and solutions

=co0s10t +0.2

y!

43.

+(2n +1)%

For 10t

nz

+
10

y' =0.2,t~0.157

=+42nr,

For 10t

2nr
10

+ —

y =12, t~

*@2n+1)x
y' =-0.8,t~0.314

For 10t

2nr

+ ——

10

To get y" =0 we must have cos 10t = -0.2

Or 10t

over a larger scale.

+(1.77 + 2n7)

The solutions oscillate in a periodic fashion, but

at the same time they move ever upward. Hence

they are not strictly periodic. Compare with

Problem 40.

& - sadars

7' sadars

-
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7' sadofs ./. / /. _/._ _/. / _../ _/. _/ _/._
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e O T N S I e A 4

& - sadars

G0='0

LSS S S S S S
7' sadogs /.. /.. /... _/. _/ _/ / _/.. _/ _/...

5840 = 02715

Zhsedor  NONCNONONONN NN NN N NN e -

zosadops NN\ _/ _/ _/ _/ _/ _/
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Direction field (augmented and improved in lower half), with rough sketch solution.
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44,

45,

y'=cos(y -t)
See Problem #39 for the direction field and sample solutions.

The solutions are not periodic, though there is a periodic (and diagonal) pattern to the overall

direction field.

y'=y(cost—y)
Slopes are 0 whenevery =costory =0

Slopes are negative outside of both these isoclines;
Slopes are positive in the regions trapped by the two isoclines.

If you try to sketch a solution through this configuration, you will see it goes downward a lot

more of the time than upward.

For y > 0 the solutions wiggle downward but never cross the horizontal axis—they get sent

upward a bit first.

For y < 0 solutions eventually get out of the upward-flinging regions and go forever downward.

The solutions are not periodic, despite the periodic function in the DE.
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SECTION 1.2  Solutions and Direction Fields

y' =sin 2t + cost
Ift=+2nz, then y" =0.

Ift= +(2n +1)%, theny' =0
Ift=+(2n+ 1)z then y" =-1.
Isoclines are vertical lines, and solutions are vertical translates.

From this information it seems likely that solutions will oscillate with period 27, rather like
Problem 40. But beware—this is not the whole story. For y’ =sin 2t + cos t, slopes will not

remain between +1.

e.g.,

For t= 297 . y ~1+07=17.
4" 4

For t= 3—7[& y =-1-07=-17.
4" 4

For t= 5—”13—7[ y ~1-0.7=0.3
4" 4

For t= 12 % v 1+07=-03
4 4

The figures on the next page are crucial to seeing what is going on.
Adding these isoclines and slopes shows there are more wiggles in the solutions.

There are additional isoclines of zero slope where

sin2t = -—cost,
bf-‘
2sintcost

i.e., wheresint= —% and

21

There is a symmetry to the slope marks about every vertical line where t = £(2n +1)%; these are

some of the isoclines of zero slope.
Solutions are periodic, with period 27.

See figures on next page.
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(46. continued)

slopes +0.3
slopes - 0.3
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Direction field and solutions by computer.



47,

48.

SECTION 1.2  Solutions and Direction Fields 23

Symmetry

y'=y?

Note that y" depends only ony, so isoclines are

horizontal lines.

Positive and negative values of y give the same slopes.

Hence the slope values are symmetric about the

horizontal axis, but the resulting picture is not.

The figures are given with Problem 25 solutions.

The only symmetry visible in the direction field is point symmetry, about the origin (or any point
on the t-axis).

y'=t?

Note that y" depends only on t, so isoclines are vertical lines.

Positive and negative values of t give the same slope, so the slope values are repeated symmetrically
across the vertical axis, but the resulting direction field does not have visual symmetry.

A A Wk
/ / s / / tor oo
/§ T 7 7 J j o

[ ) F / ; 0%

, / / ¥ . / / 4 1ttt
| / T- Ve / / .t ! R AXY
w7y T T P4 T 7 / 7 Yy : T T T4
, / / S e / t ¢ ::::::
1 // 4 / / t e AR IR
/ P / / t? t 1t t 9

/ . L \ t ot (SEEREE B

l // //——;/ ; - Son] RS
v 7 7 ‘e prurfond
BV L L

The only symmetry visible in the direction field is point symmetry through the origin (or any
point on the y-axis).



First-Order Differential Equations
For t > 0, slopes are negative;

For t <0, slopes are positive.
The result is pictorial symmetry of the vector field about the vertical axis.

Note that y" depends only on t, so isoclines are vertical lines.
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1
(t+1)°
Note that y' depends only on t, so isoclines will be vertical lines.

51. y'

Slopes are always positive, so they will be repeated, not reflected, across t = —1, where the DE is

not defined.
Ift=0o0r-2,slopeis 1.

Ift=1o0r-3, slope is %

If t =2 or -4, slope is %

The direction field has point symmetry through the point (-1, 0), or any point on the line t = —1.

/ / I — #
o/ -
/ / 2 :
e / ] P /"7
- / 5
P -
AR E
7 8 g
Ve A
L X ,8 - - t
-4 _ 9 A/ _ 4
- é g -
- 7 0 - —
7 0 71
> 7 2 1 =
- 0 4 ;
7 / [a) 2 2
<~/ 8 14
v 7 0 L —
2
52. Y
=

2

Positive and negative values for y give the same slopes, yT so you can plot them for a single

positive y-value and then repeat them for the negative of that y-value.

Note: Across the horizontal axis, this fact does not give symmetry to the direction field or solutions.
2

However because the sign of t gives the sign of the slope, yT the result is a pictorial symmetry

about the vertical axis. See figures on the next page.

It is sufficient therefore to calculate slopes for the first quadrant only, that is,
reflect them about the y-axis, repeat them about the t-axis.
Ify=0, y =0.

Ify=+1, y'=

—~ P

Ify=+42 y'=

:—rl_b
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53.

54.

CHAPTER 1  First-Order Differential Equations

\

Second-Order Equations

(a)
(b)
(©)
(d)

Direct substitution of y, y’, and y” into the differential equation reduces it to an identity.
Direct computation
Direct computation

Substituting
y(t)= Ae? + Be™
y'(t)=2Ae? — Be™

into the initial conditions gives
y(0)=A+B=2
y'(0)=2A-B=-5.

Solving these equations, gives A=-1, B=3,s0 y=-e2' +3et.

Long-Term Behavior

y'=t+y :
@ There are no constant solutions; zero slope ; ;
requires y = —t, which is not constant.
(b) There are no points where the DE, or its Y
solutions, are undefined. . :
(©) We see one straight line solution that appears
to have slope m = —1 and y-intercept b = —1. .
Indeed, y = —t — 1 satisfies the DE. .
(d) All solutions above y = —t — 1 are concave up;

those below are concave down. This k

observation is confirmed by the sign of In shaded region, solutions are concave
y'=1+y' =1+t+y. down.
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)] As t — oo, solutions above y = —t — 1 approach
oo; those below approach —oo.

(j)] As t — —0, going backward in time, all
solutions are seen to emanate from co.

(9) The only asymptote, which is oblique, appears
if we go backward in time—then all solutions
are ever closertoy = -t — 1.
There are no periodic solutions.

<
|
<
+
—
=

@ There are no constant solutions, but

solutions will have zero slope along y = t.
(b) The DE is undefined along y = —t.

PR

c ere are no straight line solutions. N NN
Th traight line solut (2NN
@ =000 D=0+ S SN
v+ }f:‘:::.:::
—2t AR SR T
o —t-y—t VRSN RS
Simplify using y’—1=¥ VAN MR O
y—|—t (!!(!’?Il:::
2y s ! rr oot 1
y—t+y+t In shaded region, solutions are concave
and y'+1=T, so that down.
o, E+Y)
(y+t)°
Never zero

Hence y" is < <0 fory+t>0,sosolutions are concave down for y > —t

>0 fory +t <0, so solutions are concave up fory < —t

©) As t — oo, all solutions approach y = —t.
()] As t — —oo, we see that all solutions emanate fromy = —t.
(9) All solutions become more vertical (at both ends) as they approach y = —t.

There are no periodic solutions.
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1
56. ==
y ty

@ There are no constant solutions, or even

1 .
zero slopes, because t_ IS never zero.
y

(b) The DE is undefined for t = 0 or fory = 0,
so solutions will not cross either axis.

(© There are no straight line solutions.

(d) Solutions will be concave down above the

t-axis, concave up below the t-axis.

From vy’ :E , We get In shaded region, solutions are concave
e 1 y 1 down.
ty?”  t?y

This simplifies to

"

— 1 2 - .
y Ty (1+y ) which is never zero,

so there are no inflection points.

©) Ast— oo, solutions in upper guadrant —oo
solutions in the lower quadrant ——oo
()] As t — —oo, we see that solutions in upper quadrant emanate from +oo, those in lower
quadrant emanate from —oo.
(0) In the left and right half plane, solutions asymptotically approach vertical slopes asy — 0.

There are no periodic solutions.

, 1
57. y' =——

@) There are no constant solutions, nor even any
point with zero slope.

(b) The DE is undefined along y = t.

(©) There appears to be one straight line solution

[ o o T T A SR Y

with slope 1 and y-intercept —1; indeedy =t -1
satisfies the DE.

L T T T T T T T N
[

B I T T T T T Y

y'=1wheny=t-1. Straight line solution

In shaded region, solutions are concave down.



(d)

(€)

(f)

(9)

58. y’

(@)
(b)

(©)
(d)

SECTION 1.2

Solutions and Direction Fields 29

Solutions concave up

} Solutions concave down

solutions above y =t — 1 approach y = t ever more vertically.

concavity, so we calculate

" (Zt - y,) 1
=—————2%2 =0Qwhen y'=2t
ey g
From DE y' = z ! =2t when
-y

y=t2—%, drawn as a thicker dashed

curve with two branches.

W:_G—W)ZV—G—D
t-y)?* -y
y">0wheny>t-1landy<t
y"<0Owheny<t—landy >t
y>t-landy>t
Ast— o, solutions below y =t — 1 approach oo;
Ast— —o, solutions above y = t emanate from oo;
solutions below y = t emanate from —co.
In backwards time the line y =t — 1 is an oblique asymptote.
There are no periodic solutions.
1
=7 ;
There are no constant solutions.
The DE is undefined along the parabola
y = t%, so solutions will not cross this locus.
We see no straight line solutions.
We see inflection points and changes in

In shaded region, solutions are concave
down. The DE is undefined on the
boundary of the parabola. The dark curves
are not solutions, but locus of inflection
points

Inside the parabola y >t?, so y'<0 and solutions are decreasing, concave down for solutions

below the left branch of y"=0.

Outside the parabola y <t*, y'>0, solutions are increasing; and concave down below the right

branch of y"=0.

©) Ast — oo, slopes — 0 and solutions — horizontal asymptotes.

()] As t — —oo, solutions are seen to emanate from horizontal asymptotes.

(9) As solutions approach y = t%, their slopes approach vertical.

There are no periodic solutions.
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@ There are no constant solutions.
(b) The DE is not defined for t = 0; solutions
do not cross the y-axis.

- e e e e = e e e

(© The only straight path in the direction
field is along the y-axis, where t = 0. But
the DE is not defined there, so there is no
straight line solution.

e )

(d) Concavity changes when

2yy't—y* i i
=27 L2y —y-2t)=0 In shaded region, solutions are concave
y 3 -2y -y , J L. .
t t down. The horizontal axis is not a solution,

that is, when y = 0 or along the parabola Just a locus of inflection points.

(s3]

(obtained by solving the second factor of
y” for t and completing the square).

(e) As t — oo, most solutions approach —co. However in the first quadrant solutions above the
parabola where y”" =0 fly up toward +o0. The parabola is composed of two solutions that
act as a separator for behaviors of all the other solutions.

()] In the left half plane solutions emanate from oo.

In the right half plane, above the lower half of the parabola where y” =0, solutions seem
to emanate from the upper y-intercept of the parabola; below the parabola they emanate
from —co.

(9) The negative y-axis seems to be an asymptote for solutions in the left-half-plane, and in
backward time for solutions in the lower right half plane.

There are no periodic solutions.
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61.

62.

Logistic Population Model

We find the constant solutions by setting y'=0
and solving for y. This gives ky(1—y) =0, hence
the constant solutions are y(t)=0, 1. Notice from
the direction field or from the sign of the
derivative that solutions starting at 0 or 1 remain
at those values, and solutions starting between 0
and 1 increase asymptotically to 1, solutions
starting larger than 1 decrease to 1 asymptoti-

cally. The following figure shows the direction
field of y' = y(1—y) and some sample solutions.

Autonomy

@ Autonomous:

SECTION 1.2  Solutions and Direction Fields

Logistic model

#9 y' =2y
#13 y'=1-y
#14 y' =y(y+1)
#16 y'=1
#17 y'=y
#32  y'=-y
#33  y'=y?
#37  y'=cosy
The others are nonautonomous.
(b) Isoclines for autonomous equations consist of horizontal lines.

Comparison

(i)

31
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(i)

(iii)

First-Order Differential Equations

y = (y+1)?

O NN

NS~ o~ ———

NNy

NN N NN N -
NN N —— —
NN - ===
N~~~ ~—— —
NS~ ———
NSNS NN~ ———

N NN
NN NN N N - — — —

y' =y?+1

Equations (a) and (b) each have a

/
/
/
/
/
/
/
7
7
/g
2
/
/
/
/,

R A N N A\ .

NN R R

constant solution that is unstable for higher

values and stable for lower y values, but these
equilibria occur at different levels. Equation (c)

NSNS NN - ——
NONN N NN~

has no equilibrium at all.

LY LS N NN .
NN N I S\ O

All
within each graph solutions from left to right

three DEs are autonomous, SO

R Y . N
EERANENENA R AN

———u NN

are always horizontal translates.

(b)

For y >0 we have
y2<y2 +1<(y+1)>.

For the three equations y' =y2, y'=y2+1, and y' =(y+1)?, all with y(0)=1;
the solution of y’ = (y+1)2 will be the largest and the solution of y’ = y2 will be

the smallest.
Because y(t):l—lt is a solution of the initial-value problem y’ =y?, y(0)=1,

which blows up at t =1. We then know that the solution of y'=y2 +1, y(0)=1
will blow up (approach infinity) somewhere between 0 and 1. When we solve
this problem later using the method of separation of variables, we will find out
where the solution blows up.
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Coloring Basins

y’ = y(1-y). The constant solutions are found by Z‘yi VYT I i
setting y’ =0, giving y(t)=0, 1. Either by look- SOOI U I W
ing at the direction field or by analyzing the sign -
of the derivative, we conclude the constant solu- ; ;2; ; g g i ; ; g 52 ; ;
tion y(t) =1 has a basin of attraction of (0, ), o Eggit
and y(t) =0 has a basin attraction of the single N ii\;i SIINI oY \§ R
value {0}. When the solutions have negative in- 4 k\ BRRRRRR
itial conditions, the solutions approach —oo.
y' = y2 — 4. The constant solutions are the (real) 3 yi R oY
roots of y2 -4 =0, or y =+2. For y> 2, we have :::::::::::::::::
y' > 0. We, therefore, conclude solutions with RS
NN NN NN NN NNENENINRY
initial conditions greater than 2 increase; for R e N e !
—2<y<2 we have y’ <0, hence solutions with i;;i;;;i;;i;;;i;;if
initial conditions in this range decrease; and for -
y <0, we have y’' >0, hence solutions with 3 7§//77/777§77/77//'§77

initial conditions in this interval increase.

We can therefore, conclude that the constant solution y =2 has a basin of attraction of the single
value {2}, whereas the constant solution y = -2 has the basin of attraction of (-0, 2)

y' = y(y—1)y - 2). Analyzing the sign of the
derivative in each of the intervals (-, 0), (0, 1),

4, 2), (2, «), we conclude that the constant

solutions y(t)=0, 1, 2 have the following basins
of attraction: y(t) =0 has the single point {0}

basin of attraction; y(t) =1 has the basin of at-

traction (0, 2); and y(t) = 2 has the single value

{2} basin of attraction.
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66.

y' =(1- y)2. Because the derivative y’ is always

zero or positive, we conclude the constant solu-
tion y(t) =1 has basin of attraction the interval
(=0, 1].

Computer or Calculator

P S A P A Y

T+t

2

The student can refer to Problems 69-73 as examples when working Problems 67, 68, and 74.

67.

69.

70.

71.

y' = % Student Project 68.

y’' =ty. The direction field shows one constant
solution y(t) =0, which is unstable (see figure).
For negative t solutions approach zero slope, and
for positive t solutions move away from zero

slope.

y' = y2 +t. We see that eventually all solutions

approach plus infinity. In backwards time most
solutions approach the top part of this parabola.

There are no constant or periodic solutions to this

equation. You might also note that the isocline
y2 +t =0 is a parabola sitting on its side for

t < 0. In backwards time most solutions approach
the top part of this parabola.
y’ =cos2t. The direction field indicates that the

equation has periodic solutions with the period
roughly 3. This estimate is fairly accurate be-

cause y(t)= %sin 2t +c has period 7.

y' =2y +t. Student Project

PPy
)/ Sy

~ unstable equilibrium

VAV SN~
VUNN N SN~




72.

73.

74.

75.

76.

y’ =sin(ty). We have a constant solution y(t)=0
and there is a symmetry between solutions above
and below the t-axis. Note: This equation does
not have a closed form solution.

y’' =—siny. We can see from the direction field
that y=0, +xz, +2, ... are constant solutions
with 0, +27z, +4r, ... being stable and

+m, +37, ... unstable. The solutions between

the equilibria have positive or negative slopes
depending on the y interval. From left to right
these solutions are horizontal translates.

y' =2y +t. Student Project
Suggested Journal Entry |
Student Project

Suggested Journal Entry 11

Student Project

SECTION 1.2  Solutions and Direction Fields

e - -

s s~

=
unstable equilibrium |~ ~ 2

— —

- _

35
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1.3  Separation of Variables: Quantitative Analysis _

[ | Separable or Not
1. y'=1+y. Separable; 1d_y = dt ; constant solution y =—1.
+y
2. y' =y —y3. Separable; d—y3 = dt; constant solutions y(t)=0, +1.
y-y
3. y’ =sin(t + y). Not separable; no constant solutions.
4. y’ =In(ty). Not separable; no constant solutions.
5. y' =e'eY. Separable; e~Ydy = e'dt; no constant solutions.
6. y' = yt_+l+ y. Not separable; no constant solutions.
y
eley i
7. y' = s Separable; e7Y(y + 1)dy = etdt ; no constant solutions.
+
8. y' =tIn(y?)+t2 =t2(2Iny +1). Separable; dy _ t2dt ; constant solution y(t)=e %2,
2Iny+1
9. y' =%+l. Not separable; no constant solutions.
y
2
10. y' = 1+y . Separable; ld_y2 = dt/t; no constant solution.
+y
u Solving by Separation

2
11. y' = t—. Separating variables, we get ydy = t2dt. Integrating each side gives the implicit solution
y

1, 1
—y?==t3+c.
2y 3

Solving for y yields branches so we leave the solution in implicit form.

12. ty’ =4/1—y2. The equilibrium solutions are y =+1.

Separating variables, we get

Integrating gives the implicit solution
sinty =Int| +c.
Solving for y gives the explicit solution

y =sin(Inft| + ¢).



13.

14.

15.

16.

SECTION 1.3  Separation of Variables: Quantitative Analysis

y' = —+473 Separating variables we get the equation
y

(y*—4y3)dy = (t2+7)dt.

Integrating gives the implicit solution

1, ., 1
Sy —yt==t34+Tt+c.
5y y 3

We cannot find an explicit solution for y.
ty’ =4y. The equilibrium solution isy = 0.

Separating variables we get

dy _,dt
y t
Integrating gives the implicit solution
Inly|=4Injt| +c.
Solving for y gives the explicit solution
y = Ct*

where C is an arbitrary constant.

o ycost  y=0isan equilibrium solution.

dt

Fory =0, J-d—}ilzjcost dt

In|y| =sint+c

"V = g5Me% o that y=Ce"™, where C = +e%.
dtdy = (y* +ty?)dt  y(1)=1

j4%: iidtzj%ﬂ dt

—4y™ = Inft| +t+C

For y(1) = 1, we obtain C = -5, so that
-4

- Injt|+t-5

37
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17. y' = ﬂ, y(1) = —2. Separating variables gives
y

ydy = (1-2t)dt.
Integrating gives the implicit solution
1 2
=—y?=t-t?+c.
> y
Substituting in the initial condition y(1) = -2 gives ¢ = 2. Hence, the implicit solution is given by

y2=2t-2t2+4.

Solving for y we get

y(t)=—v-2t>+2t+4.

Note that we take the negative square root so the initial condition is satisfied.

18. y'=y2 -4, y(0)=0. Separating variables gives

Rewriting this expression as a partial fraction decomposition (see Appendix PF), we get

[ 1 1 }dy:dt.
Ay-2) Ay+2)

Integrating we get
Iny—2/—Inly+2/=4t+c
or

y-2
y+2

— eCe4t .

Hence, the implicit solution is

V=2 ecett — et
y+2
where k is an arbitrary constant. Solving for y, we get the general solution
2(1+ keXt
=22
1-ke*t

Substituting in the initial condition y(0) =0 gives k = -1.
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2t

=———, y(2)=0. Separating variables
1+2y

y!
(1+2y)dy =2tdt.

Integrating gives the implicit solution

y+y2=t2+c.

Substituting in the initial condition y(2) =0 gives ¢ = —4. Solving for y the preceding quadratic

equation in y we get

y- —1+4/1+4(t? - 4)

2
;o 14y? : . :
y' =-— e y(0) = —1. Separating variables, we get the equation
dy _ dt
1+y2  14+t2

Integrating gives

tanly=—tan~1t +c.

Substituting in the initial condition y(0) = -1 gives ¢ = tan~(~1) = —%. Solving for y gives

=tan —tan‘lt—z).

y -ttt
Integration by Parts

y’ =(cos? y)Int. The equilibrium solutions are y =(2n +1)%.

Separating variables we get

dy
cos?y

=Intdt.

Integrating, we find

d
jcoszy:‘[lntduc

[sec?ydy = [Intdt+c
tany=tint—t+c
y=tan~(tInt -t +c).

39
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22.

23.

24.

25.

y’ =(t? —5)cos2t. Separating variables we get
dy = (t2 —5)cos2tdt.
Integrating, we find

y = j(t2 —~5)cos2tdt + ¢
- jtz cos2tdt — 5Jc052t dt +c

=1(2t2 —1)sin2t + Ltcosat— 2sin2t +c.
4 2 2

y' =t2e¥+2t Separating variables we get

dy =t2e2lqt,
ey

Integrating, we find
J'e‘ydy = jtZetht +cC
-6V = 1(t2 —t)e?t + Len,c
2 4
ey = —F(t2 —t)e?t + Lea, c}.
2 4

Solving for y, we get

1 1
=—In| = (t—t2)e? — =g —c}.
y [2( ) 4

y’=tye~t. The equilibrium solution isy = 0.
Separating variables we get

%y =tetdt.
y

Integrating, we find
_[d—y = J'te‘tdt +C
y

Inly|=-te"t—et+c
y = Qe-(t+De "

Equilibria and Direction Fields

() 26 (B 27. (B 28. (F) 29. (A) 30

(D)



31.

32.

SECTION 1.3  Separation of Variables: Quantitative Analysis 41
Finding the Nonequilibrium Solutions
y'=1-y2
We note first that y = +1 are equilibrium solutions. To find the nonconstant solutions we divide

by 1— y? and rewrite the equation in differential form as

dy

oy

By a partial fraction decomposition (see Appendix PF), we have

vy A by
A-y)d+y) 20-y) 2Q+y)

Integrating, we find

1 1
——Inl-y|+=Inl+y|=t+c
o L=yl + 2 InfL+y]

where c is any constant. Simplifying, we get

—Inl—y|+Inl+y/=2t+2c
1ty
1-y
Y| e
a-y)

In =2t+2c

where k is any nonzero real constant. If we now solve for y, we find
ke?t —1
Y="or 1
kest +1
y'=2y-y?
We note first that y =0, 2 are equilibrium solutions. To find the nonconstant solutions, we divide

by 2y — y2 and rewrite the equation in differential form as

&y g
y2-y)

By a partial fraction decomposition (see Appendix PF),

dy _dy,  dy _
y2-y) 2y 22-y)

Integrating, we find

1 1
Eln|y|—§ln|2—y|_t+c



42 CHAPTER1 First-Order Differential Equations

where c is any real constant. Simplifying, we get

In|y|-In|2-y|=2t+2c

In y ‘ =2t+2c
2-y
ly(2-y) =Ce”
where C is any positive constant.
y — ke2t
2-y

where k is any nonzero real constant. If we solve for y, we get

 2ke?t
T 1+ke2t’

33y =y(y-Dy+D
We note first that y =0, £1 are equilibrium solutions. To find the nonconstant solutions, we
divide by y(y —1)(y +1) and rewrite the equation in differential form as
dy _
yy-y+D
By finding a partial fraction decomposition, (see Appendix PF)

d—y:_d_y+ dy + dy :dt
y(y-D(y+1) y 2(y-1) 2(y+1)

Integrating, we find
—In|y|+%|n|y—]1+%|y+]1 =t+c
=2Inly|+Inly=1+Iny+1=2t+2c

or

In‘w =2t+2c
y

DD e

y
Multiplying each side of the above equation by y? gives a quadratic equation in 'y, which can be
solved, getting

1

S
Y= W ket

Initial conditions will tell which branch of this solution would be used.
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(y-17°

y!
We note that y

34.

1 is a constant solution. Seeking nonconstant solutions, we divide by (y — 1)?

dt. This can be integrated to get

y

d
(y-1?

getting

Help from Technology

SANANNAN Y

VAV e ad
1/ S
117/ 7rss
/1S s
/) SS s
I A e

//////////
A N N N U VAT
LSS ST S S

~ NN N~

L7
NANNN NN

o
/
/
/
/
/
\\\\\\\\\
/
/
/
/
/
/
/
/
/
/
/

SUNNNNN AN P R
LTV % ////////// %
6//////// NNN N NN NN NNy
SANANNAN LY [ /]
NANNNNAN Y P s
AR RN (N7 Yl B B B~
AN N RN N 4 I I~
SNNNNAN LY S S s s ST SIS SIS
S~ sy | AN AN N WA NAY
SONNNN AN IRV EA T NN O~~~ NN NN~
/////////,T NI I RSN - ESSS NN

[<5]
n
[<5] [<5]
= O
F
S
R £ 4
[<5] [} o o
T = S
> Il m = —
2 > g s < 5 |
o e = @ Il [} Il
S 3 - 32 a 2 4o
= X 2 7
~~ Y > ~
7 1(v,\. I @ A
~ [+ - -
— = — — n ~

M < 1 < _ 2 9 D g

T = = = £ ¢ £ g

= J = S oe 0w
A > ﬂ/ MW I = > 1r <

Y— Y
ﬂ_ o ' & S © +
c > Qo = c =

2 S % = -8 =

s 5 %) - =
S 2 e < 1723 = I

> o © ©° w Q [y

== @ =
Il m = 5 Il m >

< () o <

> F o & > ol 2

o) ©

™ o

sint —1+sin(-1). The solutions are shown

isy=

in the figure.
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-1

t
Y21+ t2

Separating variables and integrating we find the

dy

37.

YD =1, y(-1)

dt

implicit solution

dt+c

t
V1412

[yxdy=]

or

t
y21+t?

1+12 +c.

13_
3V

V2 . These two curves

1
3

V2 . For y(-D)=-1wefind ¢

_1
3

1, we find ¢

Subsituting y(1)

are shown in the figure.

-1

ycost, y(1)=1, y(-1)
Separating variables we get

y/

38.

costdt.

Integrating, we find the implicit solution

Inly|=sint+c.

sin(1). These two implicit solu-

1, we find ¢ = —sin(2). With y(-1) = -1, we find ¢

With y(1)

imposed on the direction field (see figure).
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y+1

we find the implicit solution

Integrating,

y—Iny+1=t%+c.

=—In2. For y(-1) = —1 we can see even more easily that

l+corc

1, wegetl-In2=

For y(1)

1 is the solution. These two solutions are plotted on the direction field (see figure). Note that

y=-
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the implicit solution involves branching. The initial condition y(1) =1 lies on the upper branch,

and the solution through that point does not cross the t-axis.
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Making Equations Separable

Given
y+t y
"= =1+=,
y t t
y . dv . . i
we let v= n and get the separable equation v+ IE =1+V. Separating variables gives
a =dv
t
Integrating gives
v=Inlt|+c
and
y =tIn[t| +ct.
Letting v= Ty , We write
2 2
y’=—y it =l+£=v+—
yt t oy v

But y=tv so y'=v+tv'. Hence, we have
, 1
V+V =v+—
v

or

or
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Integrating gives the implicit solution

lv2=In|t|+c
2
or
v=4_r,/2ln|t|+c .
Butv:l,so
t

y =tty2Inft|+c.

The initial condition y(1) = —2 requires the negative square root and gives ¢ = 4. Hence,

y(t) =—ty2Injt| + 4.

43. Given
4 4 3
y’=2y—:t=ﬂ+t—3:2v+i3.
ty t y v
with the new variable v =% .Using y'=v-+tv' and separating variables gives

d dv 5 dv

—= =V

SRACE B VAR |

Integrating gives the solution

In|t|=%ln(v4 +1)+c

or
Int| = %In[(%T +1} +C.
44, Given
'=%:¥—:+%+1=v2 +v+1

with the new variable v =% . Using y’'=v-+tv"and separating variables, we get

Integrating gives the implicit solution
In|t|=tan"v+c.

Solving for v gives v=tan (In|t| + c) . Hence, we have the explicit solution

y = ttan(Inft| +c).
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Another Conversion to Separable Equations
y'=(y+t)> Letu=y+t Then

d—uzﬂJrlzuerl, and J.
dt dt

du
=|dt, so
u?+1 j

tanu=t+c
u=tan(t+c)
y+t=tan(t+c) so y=tan(t+c)—t

z_i’ze”y‘l—l Letu=t+y-1.Then

d_“=1+ﬂ=1+eu_1, and je‘“du:J.dt, S0
dt dt
—eY+c=t, or t+e=c.

Thus, t—y+1=Injc—t|, and y=1-t—In[c—t].

Autonomous Equations

@) Problems 1, 2 and 18 are autonomous:
#1 y'=1+y
#2 y'=y-y’
#18 y' =y*-4

All the others are nonautonomous.

(b) The isoclines of an autonomous equation are horizontal lines (i.e., if you follow along a
horizontal line y=k in the ty plane, the slopes of the line elements do not change).
Another way to say this is that solutions for y(t) through any y all have the same slope.

Orthogonal Families

(@) Starting with f(x, y) = c, we differentiate implicitly getting the equation

idx+idy=0
OX oy
Solving for y’ :d_y’ we have
dx
of
dy __x
=2
dx £

These slopes are the slopes of the tangent lines.
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49.

(b) Taking the negative reciprocal of the slopes of the tangents, the orthogonal curves satisfy

of
ay_ v
o
dx o
(c) Given f(x, y)=x2 +y?2, we have
i=2y andi:ZX,
oy 0

SO our equation is ﬂzl. Hence, from part (b) the orthogonal trajectories satisfy the

dx X
differential equation

d_yzfy y

dx f,  x’

X

which is a separable equation having solution y = kx.

More Orthogonal Trajectories

For the family y = cx? we have f(x, y)=l2 o) y
X
2y 1
= e

and the orthogonal trajectories satisfy

@ _fy__x
dx f, 2y
or
2ydy = —xdx. Orthogonal trajectories

Integrating, we have

yzz—%x2+K

or
x2+2y2=C.

Hence, this last equation gives a family of ellipses that are all orthogonal to members of the
family y = cx2. Graphs of the orthogonal families are shown in the figure.
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SECTION 1.3
For the family y =% we have f(x, y)=x2y so
X
fy =2xy, f,=x?

and the orthogonal trajectories satisfy

dy _fy _x

dx f, 2y

or, in differential form, 2ydy = xdx. Integrating,

we have

y2=%x2+c or 2y? —x?=K.

Separation of Variables: Quantitative Analysis

Orthogonal trajectories

Hence, the preceding equations give a family of hyperbolas that are orthogonal to the original

family of hyperbolas y = < Graphs of the two orthogonal families of hyperbolas are shown.

X2
xy =c. Here f(x, y)=xy so fy=y, f,=x.The
orthogonal trajectories satisfy

dy Ty

X
dax f, vy
or, in differential form, ydy = xdx. Integrating,
we have the solution
y2-x2=C.

Hence, the preceding family of hyperbolas are
orthogonal to the hyperbolas xy = ¢. Graphs of

the orthogonal families are shown.

Calculator or Computer

y = ¢. We know the orthogonal trajectories of

this family of horizontal lines is the family of
vertical lines x = C (see figure).

g

Orthogonal hyperbolas

H M W <
Il
T

W N K

Orthogonal trajectories

49



50 CHAPTER1 First-Order Differential Equations

53.

54.

95.

4x2 +y2 =c. Here
f(X, y)=4x2 +y?

and f, =8x, f, =2y, so the orthogonal trajecto-

ries satisfy

d_y: fy 2y y

dx f

8x 4x

X

or Ady = d_x which has the implicit solution the
y X

Orthogonal trajectories
family y* = Cx where C is any constant different

from zero. These orthogonal families are shown
in the figure.

x? = 4cy3. Here

X2
f(x,y) =4—y3

2
X ¢ =—3L The differential equa-

23 Y a4yt

tion of the orthogonal family is

and f, =

dx f, 2y

Orthogonal trajectories

or 2ydy = —3xdx, which has the general solution 2y? + 3x2 = C, where C is any real constant.
These orthogonal families are shown in the figure.

2,2
X% +y? =cy. Here f(x, y):x Yy

, SO

The differential equations of the orthogonal family are
2_y2
% oy

dx f, Z—yx 2xy

dy _fy _

We are unable to solve this equation analytically, so we use a different approach inspired by
looking at the graph of the original family, which consists of circles passing through the origin
with centers on the y-axis.
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Completing the square of the original equation, we can write x? + y2 =cy as

2 2
X2 + (y —%) = CI which confirms the description and locates the centers at (0, %)
We propose that the orthogonal family to the original family consists of another set of

: Cy ., C? C : -
circles, X—E +y =7 centered at > 0 | and passing through the origin.

To verify this conjecture we rewrite this

equation for the second family of circles as

2,2
x2 + y2 = Cx, which gives C = g(x, y) =~

X2

or gy = , Oy =2—Xy. Hence the proposed

second family satisfies the equation

ﬂ:&: 2Xy
d g, K2y

Orthogonal circles

which indeed shows that the slopes are perpendicular to those of the original family derived
above. Hence the original family of circles (centered on the y-axis) and the second family of
circles (centered on the x-axis) are indeed orthogonal. These families are shown in the figure.

The Sine Function

The general equation is

y2+(y)* =1
or
dy 2
T -y
dx y

Separating variables and integrating, we get

+sin"ty=x+c or y =sin(£(x+c)) = £sin(x +c).

This is the most general solution. Note that cos x is included because cosx = sin(x —%)
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58.

First-Order Differential Equations

Disappearing Mothball

(a)

(b)

We have (;_\::_kA’ where V is the volume, t is time, A is the surface area, and k is a

. 4 . . .
positive constant. Because V = E;rr3 and A=4xr?, the differential equation becomes
47rrZﬂ =—4krzr?
dt

or

Integrating, we find r(t)=-kt+c. At t=0, rzé; hence c=%. Att=6,r =%; hence
k ==, and the solution s
24

1, 1
rt)=——t+=,
O="2417

where t is measured in months and r in inches. Because we can’t have a negative radius
ortime, 0<t<12.

Solving —2—14t +% =0 gives t =12 months or one year.

Four-Bug Problem

(a)

(b)
(©)

According to the hint, the distance between the bugs is shrinking at the rate of 1 inch per
second, and the hint provides an adequate explanation why this is so. Because the bugs
are L inches apart, they will collide in L seconds. Because their motion is constantly
towards each other and they start off in symmetric positions, they must collide at a point
equidistant from all the bugs (i.e., the center of the carpet).

The bugs travel at 1 inch per second for L seconds, hence the bugs travel L inches each.

This sketch of text Figure 1.3.8(b) shows a typical bug at
P =(r, 0) and its subsequent position A,(r +dr, &+d6)

as it heads toward the next bug at Q = (r, 0+§). Note

that dr is negative, and consider that dé is a very small

angle, exaggerated in the drawing.
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Consider the small shaded triangle ABP. For small d&:

. angle BAP is approximately a right angle,
. angle APB =angle OQP:%,
. side BP lies along QP.

Hence triangle ABP is similar to triangle OQP, which is a right isosceles triangle,
so —dr ~rdé.

Solving this separable DE gives r =ce~?, and the initial condition r(0)=1 gives
¢ =1. Hence our bug is following the path r =e~¢, and the other bugs’ paths simply shift

6y % for each successive bug.

Radiant Energy

Separating variables, we can write ﬁ = —kdt. We then write

1 1 1 1
T4-M* (T2+ M2 T2-M2) 2M2(T2-M?) 2M2(T2+M?)

Integrating
1 1
- dT = -2kM?dt,
{Tz -M2 T2+ MZ}
we find the implicit solution
iIn‘ M-T —itan‘l(lj =-2kM2t +c
2M [M+T| M M

or in the more convenient form
M+T

In

+2 arctan(%) =4kM3t +C.

Suggested Journal Entry

Student Project
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1.4 Euler's Method: Numerical Analysis _

[ Easy by Calculator y'=l, y(0)=1
y

1. @ Using step size 0.1 we enter t, and Y,, then calculate row by row to fill in the following

table:

Euler’s Method (h=0.1)

n t,=t_,+ h Yn=Ynat hyr,1—1 yr'] = t_“
Yn
0 0 1 L
1
1 0.1 1 E =0.1
1
2 0.2 1.01 02 _ 51980
3 0.3 1.0298 _03 =0.2913
1.0298

The requested approximations at t=02 and t=03 are y,(0.2)~1.01,
Y5(0.3)~1.0298 .

(b) Using step size 0.05, we recalculate as in (a), but we now need twice as many steps. We
get the following results.

Euler’s Method (h=0.05)

n t, Ya Ya

0 0 1 0

1 005 1 0.05

2 0.1 1.0025 0.0998
3 0.15 1.0075 0.1489
4 0.2 1.0149 0.1971
5 0.25 1.0248 0.2440
6 0.3 1.03698 0.2893

The approximations at t=0.2 and t=0.3 are now y,(0.2)~1.0149, y;(0.3)~1.037.
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(©) Solving the IVP y’=l, y(0)=1 by separation of variables, we get ydy=tdt.
y

Integration gives

1
5y

2 _ltz

=—t’+c.
2

The initial condition y(0)=1 gives c:% and the implicit solution y? —t? =1. Solving

for y gives the explicit solution

y(t

)=1+t2.

To four decimal place accuracy, the exact solutions are y(0.2):1.0198 and

y(0.3) = 1.0440. Hence, the errors in Euler approximation are

h=0.1:

h=0.05:

error=y(0.2) -
error=y(0.3) -
error =y(0.2) -

Y,

Y4

(0.2) =1.0198 -1.0100 = 0.0098,
Y5(0.3)=1.0440-1.0298 = 0.0142,
(0.2) =1.0198 - 1.0149 = 0.0050,

error = y(0.3) - v, (0.3) =1.0440 - 1.0370 = 0.007

Euler approximations are both high, but the smaller stepsize gives smaller error.

Calculator Again y'=ty, y(0)=1

@) For each value of h we calculate a table as in Problem 1, with y'=ty . The results are

summarized as follows.

Euler’s Method
Comparison of Step Sizes

h=0.5
t y =
0 1
0.5 1
1 1.25

h=0.25
t y =
0 1
025 1
0.50 1.062
0.75 1.195
1 1.419

h=0.125

0125 1

0.250 1.0156
0.375 1.0474
0.50  1.0965
0.625 1.1650
0.750 1.2560
0.875 1.3737
1 1.5240
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(b) Solve the IVPy' =ty y(O) =1 by separating variables to get v =tdt. Integration yields
y

2
In|y|=t?+c, or y=Ce"/2. Using the initial condition y(0)=1 gives the exact solution

y(t)= e'’? so y(1) =e€"? ~1.6487 . Comparing with the Euler approximations gives

h=1: error =1.6487 -1 =0.6487

h=0.5: error =1.6487-1.25  =0.3987

h=0.25: error=1.6487-1.419 =0.2297

h=0.125: error=1.6487-1524 =0.1247
[ | Computer Help Advisable

3. y'=3t> -y, y(0)=1; [0, 1]. Using a spreadsheet and Euler’s method we obtain the following

values:

Spreadsheet Instructions for Euler’s Method

A B C D
1 | n t, Yo=Yoa+thyis | 32—y,
2 | o 0 1 —3%t*B2/2-C
3 | =A241 —B2+.1 —C2+.1%D2

Using step size h=0.1 and Euler’s method we obtain the following results.

Euler’s Method (h=0.1)

t y =~ t ~

0 1 0.6 0.6822
0.1 0.9 0.7 0.7220
0.2 0.813 0.8 0.7968
0.3 0.7437 0.9 0.9091
0.4 0.6963 1.0 1.0612
0.5 0.6747

Smaller steps give higher approximate values vy, (tn). The DE is not separable so we have no

exact solution for comparison.
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Using step size h=0.01, and Euler’s method we obtain the following results. (Table shows only

selected values.)

Euler’s Method (h=0.01)

t y= t R

0 0 1.2 1.2915
0.2 0.1855 1.4 1.6740
0.4 0.3568 1.6 2.1521
0.6 0.5355 1.8 2.7453
0.8 0.7395 2.0 3.4736
1.0 0.9858

Smaller steps give higher approximate values vy, (tn). The DE is not separable so we have no

exact solution for comparison.

y'=Jt+y, y(1)=1; [1, 5]

Using step size h=0.01 and Euler’s method we obtain the following results. (Table shows only

selected values.)

Euler’s Method (h=0.01)

t y t y

1 1 3.5 6.8792
1.5 1.8078 4 8.5696
2 2.8099 45 10.4203
2.5 3.9942 5 12.4283
3 5.3525

Smaller steps give higher vy, (tn). The DE is not separable so we have no exact solution for

comparison.
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6. y'=t?-y?, y(0)=1; [0, 5]

Using step size h=0.01 and Euler’s method we obtain following results. (Table shows only
selected values.)

Euler’s Method (h=0.01)

t y t y

0 1 3 2.8143
0.5 0.6992 35 3.3464
1 0.7463 4 3.8682
15 1.1171 45 4.3843
2 1.6783 5 4.8967
25 2.2615

Smaller steps give higher approximate values y, (t, ) The DE is not separable so we have no
exact solution for comparison.

7. y'=t-y, y(0)=2

Using step size h=0.05 and Euler’s method we obtain the following results. (Table shows only
selected values.)

Euler’s Method (h=0.05)

t y= t R

0 2 0.6 1.2211
0.1 1.8075 0.7 1.1630
0.2 1.6435 0.8 1.1204
0.3 1.5053 0.9 1.0916
0.4 1.3903 1 1.0755
0.5 1.2962

Smaller steps give higher vy, (tn). The DE is not separable so we have no exact solution for

comparison.
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, t

y'==3v(0)=t

Using step size h=0.1 and Euler’s method we obtain the following results.

Euler’s Method (h=0.1)

t y = t ~

0 1 0.6 0.8405
0.1 1.0000 0.7 0.7691
0.2 0.9900 0.8 0.6781
0.3 0.9698 0.9 0.5601
0.4 0.9389 1 0.3994
0.5 0.8963

The analytical solution of the initial-value problem is
y(t)=+v1-t*,

whose value at t =1 is y(l) =0. Hence, the absolute error at t =1 is 0.3994. (Note, however, that

the solution to this I'VP does not exist for t>1.) You can experiment yourself to see how this

error is diminished by decreasing the step size or by using a more accurate method like the
Runge-Kutta method.

Using step size h=0.05 and Euler’s method we obtain the following results. (Table shows only
selected values.)

Euler’s Method (h=0.05)

t y~ t ~
2 1 2.6 1.2366
2.1 1.0418 | 27 1.2727
2.2 1.0827 | 2.8 1.3079
2.3 11226 | 2.9 1.3421
2.4 11616 | 3 1.3755
25 1.1995

Smaller stepsize predicts lower value.
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10. y'=-ty, y,=1

Using step size h=0.01 and Euler’s method we obtain the following results. (Table shows only
selected values.)

Euler’s Method (h=0.01)

t y= t ~

0 1 0.6 0.8375
0.1 0.9955 0.7 0.7850
0.2 0.9812 0.8 0.7284
0.3 0.9574 0.9 0.6692
0.4 0.9249 1 0.6086
0.5 0.8845

Smaller step size predicts lower value. The analytical solution of the initial-value problem is
y(t)=e""
whose exact value at t =1 is y(l) =0.6065 . Hence, the absolute error at t =1 is

error =|0.6065 — 0.6086| = 0.0021.



W Stefan’s Law Again %:0.05(34—T4), T(0)=4.

11. @

(b)

(©)

SECTION 1.4  Euler’s Method: Numerical Analysis

Euler’s Method

h=0.25 h=0.1
n t, T, n t, T,
0 0.00 4.0000 0
1 0.25 1.8125 1
2 0.50 2.6901 2
3 0.75 3.0480 3
4 1.00 2.9810 4
5
6
7
8
9
10

The graph shows that the larger step
approximation (black dots) overshoots
the mark but recovers, while the smaller
step approximation (white dots) avoids
that problem.

There is an equilibrium solution at T =3,
which is confirmed both by the direction

field and the slope ((jj—: This is an exact

solution that both Euler approximations
get very close to by the time t =1.

\\\\\\\\\\\\\\\\\\\

N R B

—
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| Nasty Surprise

' 2
12. y'=y*, y(0)=1

Using Euler’s method with h =0.25 we obtain the following values.

Euler’s Method (h=0.25)

t y = y'=y?
0 1 1
025 125 1.5625

0.50 1.6406 2.6917
0.75 2.3135 5.3525
1.00 3.6517

Euler’s method estimates the solution at t=1 to be 3.6517, whereas from the analytical solution
y(t)=1—1t, or from the direction field, we can see that the solution blows up at 1. So Euler’s
method gives an approximation far too small.

[ | Approximating e

13. y'=y, y(0)=1

Using Euler’s method with different step sizes h, we have estimated the solution of this IVP at
t=1. The true value of y=¢' for t=1is e~2.7182818... .

Euler’s Method
h y(1) =~ e-y(1)
0.5 2.25 0.4683
0.1 2.5937 0.1245
0.05 2.6533 0.0650
0.025  2.6850 0.0332
0.01 2.7048 0.0135
0.005  2.7115 0.0068
0.0025 2.7149 0.0034
0.001  2.7169 0.0013
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We now use the fourth-order Runge-Kutta method with the same values of h, getting the

following values.

Note that even with a large step size of h=0.5 the Runge-Kutta method gives y(l) correct to

Runge-Kutta Method

h y(1) e-y(1)
0.5 2.717346191 0.00093
0.1 2.718279744 0.21x10°°
0.05  2.718281693 0.13x10°°
0.025  2.718281820 0.87x10°®
0.01 2.718281828 0.22x107™

within 0.001, which is better than Euler’s method with stepsize h =0.001.

Double Trouble or Worse

y=y**, y(0)=0

(a)

(b)

63

The solution starting at the initial point y(O) =0 never gets off the ground (i.e., it returns

all zero values for y, ). For this IVP, y, (6)=0.

Starting with y(0)=0.01, the solution increases. We have given a few values in the

following table and see that y, (6)~7.9134.

Euler’s Method y' = y¥*,

y(0)=0.01 (h=0.1)

t y t y

0 0.01 35 3.5187
0.5 0.2029 4 4.3005
1 0.5454 4.5 5.1336
1.5 0.9913 5 6.0151
2 1.5213 55 6.9424
25 2.1241 6 7.9134
3 2.7918
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15.

16.

c The direction field of y’' = y¥® for y
©) y =y 04/ /7770770077077 11 77

0<t<6,0<y<10 LSS
N NN

confirms the values found in (b). SIS LSS

e — — e e —

Roundoff Problems
If a roundoff error of & occurs in the initial condition, then the solution of the new IVP y'=vy,
y(0)=A+e¢ is
y(t)=(A+e)e' = Ae' +ce'.
The difference between this perturbed solution and Ae' is ee'. This difference at various

intervals of time will be
t=1= difference=ce
t =10 = difference = ¢e'® ~ 22,026¢
t = 20 = difference = £€*° = 485,165,195¢.

Hence, the accumulate roundoff error grows at an exponential rate.

Think Before You Compute

Because y=2and y=-2 are constant solutions, any initial conditions starting at these values
should remain there. On the other hand, a roundoff error in computations starting near y =-2 is
not as serious as near y =2, because near y=-2 the perturbed solution will move towards the

stable solution -2.
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| Runge-Kutta Method
17. y'=t+y,y(0)=0,h=1
@ By Euler’s method,
Yy1=Yo+ h(ty +y,)=0

By 2" order Runge Kutta

Y1 = Yo + hKog,
koi=to+yo=0
h h y; 1.0
k02: t0+— + y0+—k01 A Y P P Y Y D P A A I I A
2 2 A A A A A A |
P P P N P P S A I ST R B R4
1 D I R e A T I B B T
==+0 P R R A A N I A |
2 A A A A A A T A A A
;;;;;;;; B N P P I R
1 1 A S A A S A A A )
yl:0+ _:E:O-S N P P N S éf 4
-
2 o ER I A A R A o 4
RV R N N ’(\Q}Q ’ P
th R N A I I s ¥
By 4" order Runge Kutta. A A
h LI I
— LI
yl_y0+ g(k01+2k02+2k03+k04) a0y
LRI
ER
koi=to+Yyo=0 ;s
soF 77

h h
Koz = (to +§]+£YO+EI(01

h h 1 1(1 3
k03: [to +Ej+[y0 +EKOZJ=E+E(EJIZ

h 133
k04 = (tO + h) + (yo +Ek03j =1+[Ej[2j =1.375
y1=0+ 1 0+2 1 +2 3 +1.375 | = l(3.875) ~ 0.646
6 2 4 6
(b) Second-order Runge Kutta is much better than Euler for a single step approximation, but
fourth-order RK is almost right on (slightly low).
(©) If yt)=—t—1+¢',

then y(1)=-2+e~0.718.
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18. y'=t+y,y(0)=0,h=-1

(@)

(b)

(©)

First-Order Differential Equations

By Euler’s method,
Yi=Yo+ Nty +Y,)=0
By 2" order Runge Kutta
Y1 = Yo + hkopg,

Kt=to+Yo=0

h h 1
k02: (to +E\J+(yo +Ek01j = —E

1
Y1=Yo— 1[-;} =05

e
e
\.,
~
u
.
u
\.
\.

By 4™ order Runge Kutta.

h
y1= Yo+ g(kOl + 2Kg + 2Kgg + Koy )

Kt =to+yo=0

h h 1
k02 = (to +Ej+[yo +EkOl\J :_E =-05

h h 1 1 1 1
k03 = (to +Ej+(y0 +Ek02j:_E+(_Ej(_5j:_zz_o'25

h 1 1 7
k04 = (to + h) + [yo +Ek03j = —1+(—Ej(—zj = —gz -0.875

ya=0+ —Hos2[ Lo L)L) = L2375 ~0.396
6 2 4)" 8) 6

Second-order Runge Kutta is high though closer than Euler. Fourth order R-K is very
close.

If yit)=—t—1+¢',

then  y(-1)=e '~ 0.368.
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Runge-Kutta vs. Euler
y'=3t> -y, y(0)=1;[0,1]

Using the fourth-order Runge-Kutta method and h=0.1 we arrive at the following table of

values.

Runge-Kutta Method, y'=3t* -y, y(0)=1

t y t y

0 1 0.6 0.7359
0.1 0.9058 0.7 0.7870
0.2 0.8263 0.8 0.8734
0.3 0.7659 0.9 0.9972
0.4 0.7284 1.0 1.1606
0.5 0.7173

We compare this with #3 where Euler’s method gave y(l) ~1.0612 for h=0.1. Exact solution
by separation of variables is not possible.

y'=t-y, y(0)=2

Using the fourth-order Runge-Kutta method and h=0.1 we arrive at the following table of

values.

Runge-Kutta Method, y'=t-y, y(0)=2

t y t y

0 2 0.6 1.2464
0.1 1.8145 0.7 1.1898
0.2 1.6562 0.8 1.148
0.3 1.5225 0.9 1.1197
0.4 1.4110 1.0 1.1036
0.5 1.3196

We compare this with #7 where Euler’s method gives y(1)z1.046 for step h=0.1;
y(l)zl.07545 for step h=0.05. Exact solution by separation of variables is not possible.
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21. y'=—l, y(0)=1

y

Using the fourth-order Runge-Kutta method and h=0.1 we arrive at the following table of

values.

Runge-Kutta Method, y'=—£, y(0)=1
y

t Y t y

0 1 0.6 0.8000
0.1 0.9950 0.7 0.7141
0.2 0.9798 0.8 0.6000
0.3 0.9539 0.9 0.4358
0.4 0.9165 1.0 0.04880
0.5 0.8660

We compare this with #8 where Euler’s method for step h=0.1 gave y(1)z0.3994, and the
exact solution y(t)=v1-t* gave y(1)=0. The Runge-Kutta approximate solution is much
closer to the exact solution.

22. y'=—ty, y(0)=1

Using the 4th-order Runge Kutta method and h=0.01 to arrive at the following table. (Table
shows only selected values.)

Runge-Kutta Method,

y'=-ty, y(0)=1
t y t y
0 1 0.6 0.8353

0.1 0.9950 | 0.7 0.7827
0.2 0.9802 | 0.8 0.7261
0.3 0.9560 | 0.9 0.6670
0.4 09231 1 0.6065
0.5 0.8825

We compare this with #10 where Euler’s method for step h=0.1 gave y(l) ~0.6086, and the
exact solution y(t)ze‘tz/2 gave y(1)=0.6065. The Runge-Kutta approximate solution is exact

within given accuracy.
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Euler’s Errors

(a)

(b)

(©)

(d)

Differentiating y'= f (t, y) gives
y'=fi+fy="f+ff.

Here we assume f,, fy and y'=f are continuous, so y” is continuous as well.
The expression
2 1 n(4+* 2
y(t,+h)=y(t,)+y (tn)h+5y (tn)h

is simply a statement of Taylor series to first degree, with remainder.

Direct computation gives

We can make the local discretization error e, in Taylor’s method less than a preassigned
2

<E, where M is the maximum of the

~2E
M

value E by choosing h so it satisfies e, <

second derivative of y” on the interval [t t ,]. Hence, if h< , we have the

desired condition e, <E .

Three-Term Taylor Series

(a)

(b)

(©)

Starting with y'= f (t, y), and differentiating with respect to t, we get
y'=f(ty)+ (L y)y="f(t y)+f(t y)f(ty).
Hence, we have the new rule

1
yn+1:yn+hf (tn’ yn)"'zhz[ft(tn’ yn)+ fy(tn’ yn)f(tm yn)}

The local discretization error has order of the highest power of h in the remainder for the
approximation of y,.,, which in this case is 3.

For the equation y'= f(t, y)=l we have f(t, y)=£, f,(t, y)=—L2 and so the
y y
preceding three-term Taylor series becomes
t 1,1 ¢t
Yo :yn+h |+ -h? | ——— .
1 (VJ 2 {yn yﬁ}

Using this formula and a spreadsheet we get the following results.
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Taylor’s Three-Term Series

Approximation of y’:l, y(0)=
y

t y t y

0 1 0.6 1.1667
0.1 1.005 0.7 1.2213
0.2 1.0199 0.8 1.2314
0.3 1.0442 0.9 1.3262
0.4 1.0443 1.0 1.4151
0.5 1.1185

The exact solution of the initial-value problem y’=£, y(0)=11is y(t)=v1+t*,sowe
y

have y(1)=\/§z1.4142.... Taylor’s three-term method gave the value 1.4151, which
has an error of
‘\/E —1.4154 ~0.0009 .

(d) For the differential equation y'= f (t, y)=ty we have f(t, y)=y, f (t, y)=t,so the

Euler three-term approximation becomes
1
yn+1 yn—i—ht yn+2h [yn_tﬁyn]-

Using this formula and a spreadsheet, we arrive at the following results.

Taylor’s Three-Term Series
Approximation of y'=ty, y(0)=

t Y t y

0 1 0.6 1.1962
0.1 1.005 0.7 1.2761
0.2 1.0201 0.8 1.3749
0.3 1.0458 0.9 1.4962
0.4 1.1083 1.0 1.6444
0.5 1.1325

The solution of y'=ty, y(0)=1is y(t)=¢e"/?,s0 y(1)=+/e ~1.649.... Hence the error

at t =1 using Taylor’s three-term method is

‘\/E —1.6444‘ ~0.0043.
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| Richardson’s Extrapolation

Sharp eyes may have detected the elimination of absolute value signs when equation (7) is rewritten as
equation (9). This is legitimate with no further argument if y’ is positive and monotone increasing, as is

the case in the suggested exercises.

25. y'=y, y(0)=1.
Our calculations are listed in the following table. Note that we use y, (0.1) as initial condition
for computing yx (0.2).

One-step Euler Two-step Richardson Exact solution
Euler approx. yq (t')=
t” y(t*,h) y(t*,h) Zy(t*,h)—y(t*,h) y=e'
01 11 1.1025 1.1050 e =1.1052
02 12155 1.2183 1.2211 %% =1.2214

26. y'=ty, y(0)=L1.
Our calculations are listed in the following table. Note that we use yg (0.1) as initial condition

for computing yx (0.2).

One-step Euler Two-step Richardson Exact solution
Euler approx. Yg (t) =
t* y(t*,h) y(t*,h) 2y(t*,h)—y(t*,h) y=g"
01 10 1.0025 1.005 %% =1.0101
0.2  1.01505 1.0176 1.02005 e®* =1.0408

27. y'=y*, y(0)=1.
Our calculations are listed in the following table (on the next page). Note that we use yg (0.1) as
initial condition for computing yg (0.2).
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One-step Euler Two-step Richardson Exact solution
Euler approx. Yg (t*)z
Coen) o) ay(en)y(en) v=ya-y
0.1 11 1.1051 1.1102 1.1111
0.2 1.2335 1.2405 1.2476 1.2500

y'=sin(ty), y(0)=1.
Our calculations are listed in the following table. Note that we use yg (0.1) as initial condition
for computing yx (0.2).

One-step Euler Two-step Richardson Exact solution
Euler approx. yg (t*):
t* y(t*, h) y(t*, h) 2y(t*, h)— y(t*, h) no formula
0.1 11 1.0025 1.0050
0.2 1.0150 1.0176 1.0201 1.02013 by

Runge-Kutta

Integral Equation

@) Starting with
t
y(t) =Y, +It f(s. y(s))ds
we differentiate respect to t, getting y'= f (t, y(t)). We also have y(t,)=y,.

Conversely, starting with the initial-value problem
y'=f(t y(t), y(to)=Yo

we integrate getting the solution

y(t):jt f (s, y(s))ds+c.

)
Using the initial condition y(to)zyo, gives the constant c=y,. Hence, the integral

equation is equivalent to 1\VP.
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(b) The initial-value problem, y’'= f (t), y(0)=y,, is transformed into the integral equation
y(t) =Y +'[

To find the approximate value of the solution at t =T , we evaluate the preceding integral

t f(s)ds.

0

at t=T using the Riemann sum with left endpoints, getting

Y(T):yo"‘J‘O
~ Yo +h[ £(0)+ f(h)+...+ f(T-h)].

T

f(s)ds

If we, however, write the expression as
y(T)=yo+h[ £(0)+ f(h)+...+ f(T-h)]
=y, +hf (h)+...+hf (T —h)
=y, +hf (2h)+...+hf (T -h)
=y, +hf (3h)+...+hf (T—-h)+y,, +hf (T-h)

=Y,..+h(T -h)
= yn .
we get the desired conclusion.

b
(©) The Riemann sum only holds for integrals of the form I f (t)dt .

Computer Lab: Other Methods

Sample study of different numerical methods. We solve the IVP of Problem 5 y'=t+y,
y(1)=1 by several different methods using step size h=0.1. The table shows a printout for

selected values of y using one non-Euler method.

Fourth Order Runge-Kutta Method

t Y t y

1 1 3.5 6.8910
1.5 1.8100 4 8.5840
2 2.8144 4.5 10.4373
2.5 4.0010 5 12.4480
3 5.3618
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We can now compare the following approximations for Problem 5:
Euler’s method h=0.1 y(5)~12.2519

(answer in text)

Euler’s method h=0.01 y(5)~12.4283

(solution in manual)
Runge-Kutta method h=0.1 y(5) ~12.4480

(above)
We have no exact solution for Problem 5, but you might use step h=0.1 to approximate y(5)

by other methods (for example Adams-Bashforth method or Dormand-Prince method) then
explain which method seems most accurate. A graph of the direction field could give insight.

Suggested Journal Entry |
Student Project
Suggested Journal Entry 11

Student Project
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Picard’s Theorem: Theoretical Analysis _

Picard’s Conditions

(a)

(b)
(©)
(a)

(b)

(©)

y'=f(t y)=1-ty, y(0)=0

Hence fyz—t. The fact that f is

A

continuous for all t tells us a solution

NN N ——— - —
NN
NN NSNS N N ——

VNS~ - - ——

N~~~ ——

exists passing through each point in the ty

plane. The further fact that the derivative

f, is also continuous for all t and y tells

&

——— - —— =N
—_———— — ==~ S e e~

Y|
ey
P

- s s/

Py
ESSSSEEENNI
NN

us that the solution is unique. Hence,

there is a unigue solution of this equation
passing through y(0)=0. The direction

field is shown in the figure.
Picard’s conditions hold in entire ty plane.

Not applicable - the answer to part (a) is positive.

Here f(t, y)=$, fy =—%. The functions f and fy are continuous for t#0, so
there is a unique solution passing through any initial point y(to) =Y, with t; #0. When
t, =0 the derivative y’ is not only discontinuous, it isn’t defined. No solution of this DE

passes through points (t,, y,) with t;=0. In particular the DE with IC y(0)=1 does

not make sense.

Uniqueness/existence in either the right half plane t >0 or the left half plane t<0; any
rectangle that does not include t =0 will satisfy Picard’s Theorem.

y

If we think of DEs as models for physical

phenomena, we might be tempted to
replace t, in the IC by a small number

and examine the unique solution, which

we know exists. It would also be useful

to draw the direction field of this equa-

tion and see the big picture. The direction

field is shown in the figure.
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3. @
(b)
(©)
4 (a)
(b). (c)

First-Order Differential Equations

yr: y4/3, y(O):O

Here

NN - ——
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VNN S S S~ e~
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f(t,y)=y"

4 us
fyzzgyﬂ.

A

NN
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Here fand f, are continuous for all t and y, so by Picard’s theorem we conclude that the
DE has a unique solution through any initial condition y(to)z Y, - In particular, there
will be a unique solution passing through y(0)=0, which we know to be y(t)=0. The

directions field of the equation is shown in the figure.
Picard’s conditions hold in entire ty plane.

Not applicable - the answer to part (a) is positive.
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are continuous for t and y except when y =—t . Hence, there is a unigque solution passing
through any initial condition y(to) =Y, aslong as y, #-t,. When y =—t the derivative

y
to Picard’s theorem to conclude there is no solution passing through such points.

!

is not only discontinuous but also not even defined, so there is really no need to resort

Picard’s conditions hold for the entire ty plane except the line y=-t, so any rectangle
that does not include any part of y =—t satisfies Picard’s Theorem.
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1
'=—— —  y(0)=0
V= Y0
Here both
1
f(t, y)=
(L y)=
2y
£t y)=—y
’ (t2+y2)2

are continuous for all t and y except at the point y=t=0. Hence, there is a unique
solution passing through any initial point y(t,)=y, except y(0)=0. In this case f does

not exist, so the IVP does not make sense. The direction field of the equation illustrates
these ideas (see figure).

Picard’s Theorem gives existence/uniqueness for any rectangle that does not include the
origin.

It may be useful to replace the initial condition y(0)=0 by y(0)=y,with small but

nonzero vy, .

y'=tany, y(O):%

Here

f(t, y)=tany
f, =sec’y

are both continuous except at the points

Vs 3z
=t—, t—,....
y 2 2

Hence, there exists a unique solution passing through y(to) =Y, except when

3

VA
=t— t— ...
y 2 2

The VP problem passing through % does not have a solution. It would be useful to look

at the direction field to get an idea of the behavior of solutions for nearby initial points.
The direction field of the equation shows that where Picard’s Theorem does not work the
slope has become vertical (see figure).
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(b)

(©)
(a)

(b), (c)
(@)

(b)

First-Order Differential Equations

Existence/uniqueness conditions are satisfied over any rectangle with y-values between

. . T
two successive odd multiples of —.

There are no solutions going forward in time from any points near (0,
y

y'=Inly-1], y(0)=2

Here

e~

are both continuous for all t and y as long

NONN NN NN
SANNNN AN
NANNN A
NONN NN NN
SNV
NN NN NN N
SANNNN VNN
NN N VA TAY
NONNN N NN
NNNNNANVAA

as
y=1,

where neither is defined. Hence, there is a unique solution passing through any initial
point y(to)z Y, with y, =1. In particular, there is a unique solution passing through

y(O) = 2. The direction field of the equation illustrates these ideas (see figure).

The Picard Theorem holds for entire ty plane except the line y =1.
y' —L_t, y(1)=1
Here
f(t, y)_ﬁ
t
g RS

are continuous for all t and y except when y =t where neither function exists. Hence, we
can be assured there is a unique solution passing through y(to)zy0 except when

t, =Y,. When t, =y, the derivative isn’t defined, so IVP problems with these IC does
not make sense. Hence the IVP with y(l) =1 is not defined. See figure for the direction

field of the equation.
The Picard Theorem holds for the entire ty plane except the line y =t, so it holds for any

rectangle that does not include any part of y =t.
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(©) It may be useful to replace the initial condition y(1)=1 by y(1)=1+&. However, you
should note that the direction field shows that ¢ >0 will send solution toward o, & <0
will send solution toward zero.
| Linear Equations
9. y'+p(t)y=aq(t)
For the first-order linear equation, we can write y'=q(t)— p(t)y and so
f(t y)=a(t)-p(t)y
fy(ty)==-p(t).
Hence, if we assume p(t) and q(t) are continuous, then Picard’s theorem holds at any point
y(t)=Yo-
] Eyeballing the Flows

For the following problems it appears from the figures given in the text that:

10. A unique solution will pass through each point A, B, C, and D and the solutions appear to exist
for all t.
11. A unique solution passes through A and B defined for negative t; no unique solution passes

through C where the derivative is not uniquely defined; a unique solution passes through D for
positive t.

12. Unique solutions exist passing through points B and C on intervals until the solution curve

reaches the t-axis, where finite slope does not exist. Nonunique solutions at A; possibly unique
solutions at D where t=y=0.

13. A unique solution will pass through each of the points A, B, C, and D. Solutions appear to exist
for all t.

14. A unique solution will pass through each of the points A, B, C, and D. Solutions appear to exist
for all t.

15. A unique solution will pass through each of the points B, C, and D. Solutions exist only for t >t,

or t<t, because all solutions appear to leave from or go toward A, where there is no unique

slope.

16. Unique solutions will pass through each of the points A, B, C, and D. Solutions appear to exist for
all t.



80

17.

18.

19.

CHAPTER 1
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A unique solution will pass through each of the points A, B, C, and D. Solutions appear to exist

for all t.

A unique solution will pass through each of the points A, B, C, and D. Solutions appear to exist

for all t.

Local Conclusions

(@)

(©)

(d)

f(t, y)=y?, f,=2y, y(0)=1 (b)

are both continuous for all t, y so by
Picard’s theorem there is a unique

solution passing through any pointt, y.

Hence the existence and uniqueness AR F Py
L. L. A A AN VA A A A
conditions hold for any initial A M T
. ) A L R A N R A 4-3)—/ [ Y
condition in the entire ty plane.
- r_ 2 _
However, this example exhibits an Solution of y'=y*,y(0)=1

important weakness of Picard’s Theorem: For any particular initial condition, the solution
may not exist over the entire plane. In the given I\VVP the solution exists only for t <1.

The separated equation is y“dy=dt. Integrating gives the result —y*=t+c and

solving for y, we get —ti. Substituting the initial condition y(0)=1, gives c=-1.
+C

Hence, we have y(t):ﬁ, t<1, y>0. The interval over which this solution is
defined cannot pass through t =1, and the solution with IC y(O) =1 exists on the interval
(—oo, 1).

Because Picard’s theorem holds for all t, y we conclude there exists a unigque solution to
y'=y%, y(ty)=y, for any (t,, y,). To find the size of the interval of existence, we

must solve the IVP, getting
1

y(t)=———7

t_to_yo

. . . L . 1
Hence, the interval over which this solution is defined cannot pass through t=t, + —,

Yo
g
Yo

which implies an interval of

for positive y, and
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1
o=
(0 Yol Ooj

for negative vy, .

Nonuniqueness
y'=y", y(0)=0
Because f =y¥® is continuous for all (t, y), Picard’s theorem says that there exists a solution

23 is not continuous when y =0 so Picard’s

through any point y(to) =Y, . However, f, :%y‘
theorem does not guarantee a unique solution through any point where y=0.

In fact we can find an infinite number of solutions passing through the origin. We first
separate variables, getting y‘”dy =dt, and integrating gives

3 o3
— =t+cC.
2y

Picking the initial condition y(O):O, we find ¢=0. Hence, we have found one solution of the

initial-value problem as

But clearly, y(t)=0 is another solution. In fact, y 0, c=-1
3t c=

we can paste these solutions together at t=0. )
Futhermore, we can also paste together y=0 2
with infinitely many additional solutions, using y=0 t
any c¢ <0, getting an infinite number of solutions 4

to the initial-value problem as Xy

0 t< |C| c=-1

" (2 o o

for any ¢<0. A few of these solutions are

Nonuniqueness of solutions through
y(0)=0

plotted (see figure).
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More Nonuniqueness
y' =4y, y(0)=0,t,>0

For t<t,, the solutionis y(t)=0. For t>t,, we have yzi(t—to)z.

At t=t, the left-hand derivative of y(t)=0 is 0, and the right-hand derivative of

y(t) =%(t ~t,)° is 0, so they agree.

Seeing vs. Believing

No, the solution does not “merge” withy = —1.

Consider y'=3t*(L+y) = f(t,y). Note thaty =—1 is an equilibrium solution.

We observe:

1. f(t, y) is continuous for all tand y.

2. (;i = 3t% is continuous for all tand y
y

By Picard’s Theorem, we know there is a unique solution through any initial point. Because the
line y = —1 passes through every point with y-coordinate = 1, no other solution can merge with
y = -1 and can only approach y = —1 asymptotically.

Converse of Picard’s Theorem Fails

y y<0

dy -
a Note that —= =|y|= f (t,y), sothat f(t,y)=
@ G l= e s te= YT

-1 0
has a partial derivative a = y<
oy (1 y >0,

that is not continuous at y = 0. Consequently the hypothesis of Picard’s Theorem is not
fulfilled by the DE in any region containing points on the x-axis.

(b) Note that y = 0 is a solution of the IVP

dy _ -
" =|y| y(0)=0

When y < 0, the DE becomes y’ =—y, which has the general solutiony = Ce™.
When y > 0, the DE becomes y’ =y, which has general solution y = Ce".

Note that the only solution that satisfies the 1VP occurs when C = 0, which is precisely
the function y = 0, so that is a unique solution.
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| Hubbard’s Leaky Bucket

24, dn N

e
of k
a f(t, h)=—k'h, =—=———
@ (t.h) oh  2n
Because % is not continuous at h=0, we cannot be sure of unique solutions passing
through any points where h(t)=0.
(b) Let us assume the bucket becomes empty h(t)

at t=T<t,. Solving the IVP with hox — —
h(T)=0, we find an infinite number of

solutions.
h(t)=%(kT “kt)? fort<T

h(t)

0 fort>T.

various T values

Each one of these functions describes the bucket emptying. Hence, we don’t know when
the bucket became empty. We show a few such solutions for T <t,.
©) If we start with a full bucket when t =0, then (b) gives
h(0) :%kZTZ =hy.

Hence the time to empty the bucket is
T2 k.
| The Melted Snowball
25. @ We are given d—Vz—kA, where A is the surface area of the snowball and k >0 is the

rate at which the snowball decreases in volume. Given the relationships between the

volume of the snowball and its radius r, which is V =%7z r®, and between the surface

area of the snowball and its radius, given by A=4zr?, we can relate A and V by

2/3
A=4r (41) V23 =336V 73,

T
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(b)

(©)

(d)

First-Order Differential Equations

Here

f(t,V)=-kv?
o 2

L Ly,
EVARE

Because the uniqueness condition for Picard’s theorem does not hold when V =0, we
cannot conclude that the VP

v

=-kv? v(t,)=0
dt (t)

has a unique solution. Hence, we cannot tell when the snowball melted; the backwards
solution is not unique.

. av 2/3 y

Separating T —kV where k>0, 201
we have

V234V = —kdt .

10 +

Integrating, we find

VY= _kt+c. t

0
Let T<t, be the time the snowball 3 2 !
various T values

melted. Then using the initial condition
V(T)=0 we find IV _ k2 Solutions with y(t)=0.

dt
v(t):—K(%)3

for K=k® and t<T . But we know V(t)sO is also is a solution of this initial-value

problem, so we can piece together the nonzero solutions with the zero solution and get
for T <t, the infinite family of solutions

The function f(t, V)=V2/3 does not satisfy the unigqueness condition of Picard’s

theorem when V =0.
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The Accumulating Raindrop

(a)

(b)

We are given av =kA, where A is the surface area of the raindrop and k >0 is the rate
dt
at which the raindrop increases in volume. We substitute into (:j_\t/ =KkA the relationships

V=%7ZI"3, A=4zxr®

for the volume V and area A of a raindrop in terms of its radius r, getting

2/3
A= 4;{%) V23 =336V 73,

T

Hence

OI—V=kv2/3.
dt

Separating variables in the above DE, we have
V23V =kdt.
Integrating, we find
V¥ =kt+c.

Using the initial condition V (to) =0, we get the relation ¢ =—kt,, and hence

v(t)=}<(t_3t°j3

where K =k3.
But clearly, V(t)sO is also a solution of this initial-value problem, so we can piece

together the nonzero solutions with the zero solution, to get the infinite family of
solutions




Ce'.

t<a

Ce'=vy.
t<a

(t—-a)* t>a

0

|

we obtain a continuous derivative

2(t-a)t>a

0

2+/s for both parts of the curve.

Ce' is a solution for every a € R.

s'(t)

y has an infinite family of solution of the formy

et—a

First-Order Differential Equations

Note that for any real number a,

(To check: y'=(Ce")
y

Differentiating s(t)
Note that s’

Different Translations
yl

(@)
(b)
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2V

y , solutions y
2+/s, solutions y

Some solutions for s’
For (a), with y’
For (b), with s’

(©)
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Picard Approximations
Yo(t)=1

t t 1
yl(t)=1+jo(s_yo)ds=1+jo(s_1)ds=1+5t2 —t

Yz(t)=1+j;{s—(1+%sz —s]}ds:—%t3+t2 —t+1

Y3(t)=1+J‘;{s—[—%s3 +5° —s+1}}ds:2—14t4—%t3+t2 —t+1

Yo (t)=1+t
yl(t):]-‘i‘J.;(S_ Yo )ds =1+I;[s—(l+ s) |ds =1+j'_d3 _1-t
Y2 (t)=1+I;(S—(l—s))ds —t?—t+1

y3(t)=1+J‘(:[s—(s2 —S+1):|ds=—%t3+t2 ~t+1

87
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| Computer Lab

32. @ We show how the computer algebra system Maple can be used to estimate the solution of
#29 y'=t—y, y(0)=1 with starting function y,(t)=t—1. We leave for the reader the

other starting functions for #28, 30, and 31. In Maple open a new window and type the
int() command. In this problem, because f(t, y)=t—y, y(0)=1, we can find the

sequence of approximations

Voo ()= Yo + [ £(5. ¥a(5))ds =L+ [ (5=, (s))ds

by typing
Yo =t-1
y, =1+int(t—yq, t);
y, =1+int(t-y,, t);
y, =1l+int(t-y,, t);

);
ys =1l+int(t—y,, t);

(t
(
y, =l+int(t—ys, t);
(
Yo =1+int(t—ys, t).

If you then hit the enter key you will see displayed

Yo =t-1
y, =t+1
y, =-t+1
y, =t?—t+1

1
Vs =—§t3+t2—t+l
1., 1

=t t? -t 41

5T 73

Ve et e
60 12 3

Of course you can find more iterates in the same way. E.g., if
you type
y7 =1 +int(t - g, 1),
then hit Enter, you will see
1 5 1

y, =———t i le leseoin
360 60 12 3
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To get a plot of y, and the solution
y(t)=2e"+t-1
(see part (b)) as shown (see figure), type
the Maple command
plot({2*exp(-t)+t-1, y6},

t=0..4, y=0..2).

(b) If you recall the Maclaurin series e zl—2t+§

Picard’s Theorem: Theoretical Analysis 89

1

(—2t)2 +—(—2t)3 +...

Picard’s sixth approximation to

y'=t-y, y(0)=1

; and carry out a

little algebra, you will convince yourself that these Picard’s approximations are
converging to the analytical solution y(t)= 2e”' +t—1. For most initial-value problems,

however, such a nice identification is not possible.

Calculator or Computer

y=f(t y)=y"
o 1

oy 4
Note the direction field is only defined when
y>0. Picard’s theorem guarantees existence

through any point y(t, )= Y, but not unigueness
for points y(t,) =Y, when y, =0. The direction

field shown illustrates these ideas.
y'=f(t, y)=sin(ty)

of

— =tcos(ty

oy ~teo(v)

Picard’s theorem guarantees both existence and
uniqueness for any point (t,, y,). The direction

field shown also indicates these ideas.

y
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y' = y¥*: DE does not exist for y<0.
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y/ = f (t, y) — y5/3

of

35.

yz/s

5

oy 3

existence and

uniqueness for all initial conditions y(t;)=y,.

Picard’s

theorem guarantees

The direction field shown also illustrates this

fact.

B o

y'=f(ty)=(y)"”

of

36.

tl/3y—2/3

1

3

(ty)72/3 t

1

y 3

(t’ y)l
0. Hence, we are

The function f is continuous for all

f, is not continuous when 'y

through  points

is zero. See figure for this

uniqueness

guaranteed
(to, Yo) When vy,
direction field.

not

> NN NN \/

TN
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NN NN
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37.

(t’ y)l
t (it doesn’t

the DE has a solution through

every point (t,, y,) but Picard’s theorem does

The function f is continuous for all
f, is not continuous when 'y

exist). Hence

not guarantee uniqueness through points for

t, . See figure for this direction field.

which y,
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38. y'=f(t,y)=6t2—%y 1
/
*__3 |
v ot %

The function f is continuous except when t=0,

hence there exists a solution through all points
(ty. Yo) except possibly when t;=0. Also f, is

e NS

P
————

[REN

continuous except when t =0, and so the DE has

a unique solution for all initial conditions except
possibly when t, =0. The direction field of the

equation as shown indicates that no solutions
pass through initial points of the form (0, yo).
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