MODULE 2

Dynamic Programming

TEACHING SUGGESTIONS
Teaching Suggestion M2.1: Overall Use of Dynamic Programming.

Dynamic programming is a general approach that can be used to solve a number of different
problems. The overall approach of breaking a larger problem into smaller stages is an important
principle. In addition to being essential for the solution of a dynamic programming problem, this
concept is a useful approach for general decision-making problems.

Teaching Suggestion M2.2: Use of the Shortest-Route Problem.

Dynamic programming can be a difficult topic for some students to understand. The shortest-
route problem was used in this Module to show students how the principles of dynamic
programming can be used to solve a familiar problem. Once students understand the use of
dynamic programming to solve the shortest-route problem, more complex and difficult problems
can be undertaken.

Teaching Suggestion M2.3: QA in Action Box in This Module.

Because dynamic programming is a difficult and advanced topic, we selected an application that
might interest the average student.

Teaching Suggestion M2.4: Use of Terminology.

Understanding dynamic programming terminology is one approach to handling larger and more
complex problems. Learning how the terminology of dynamic programming is applied to the
shortest-route problem can help students understand larger and more complex dynamic
programming problems.
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ALTERNATIVE EXAMPLE

Alternative Example M2.1: Darrell Washington would like to use dynamic programming to
solve the shortest-route problem shown in the following figure.
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Beginning with stage 1, we begin to solve the problem. The distance from node 5 to node 7 is 4
and the distance from node 6 is 8. These values are put in boxes by the nodes. The results are

shown in the following network.
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Next, we solve stage 2. The minimum distances between nodes 2, 3, and 4 and the ending node 7
are 12, 8, and 12. These distances are also put in boxes by the nodes. The results for stage 2 are
shown in the following network.
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Finally, we solve stage 3. The minimum distance is through node 3. The distance from node 1 to
node 3 is 2, and the minimum distance from node 3 to the end of the network is 8 as seen in the
results for stage 2. Thus the shortest route through the network is 10.
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SOLUTIONS TO QUESTIONS AND PROBLEMS

M2-1. A stage in dynamic programming is a period or a logical subproblem. Dynamic
programming divides problems into a number of decision stages, whereby the outcome of a
decision at one stage affects the decision at each of the next stages.

M2-2. State variables include all of the possible beginning situations or conditions of a stage.
These have also been called the input variables. Decision variables, on the other hand, represent
the alternatives or possible decisions that exist at each stage. Thus, state variables are possible
existing situations or conditions at the beginning, while decision variables include the
alternatives and possible actions or decisions that can exist at each stage.

M2-3. A decision criterion is a statement concerning the objective of the problem. In the
shortest-route example in the module, the decision criterion was to minimize the total distance
between two points or nodes.

M2-4. The optimal policy is a set of decision rules, developed as a result of the decision criteria.
The optimal policy is necessary for all dynamic programming problems to give those problems
optimal decisions for any entering condition at any stage.

M2-5. A transformation is important for dynamic programming problems because it allows us to
determine the relationship between stages. This permits us to go from one stage to the next in
solving dynamic programming problems. In the shortest-route problem, the following
transformation was used: the distance from the beginning of a given stage to the last node is
equal to the distance from the beginning of the previous stage to the last node plus the distance
from the given stage to the previous stage. This relationship is how we were able to go from one
stage to the next in solving for the optimal solution to the shortest-route problem.

M2-6. The shortest route is 1-2—6—7 with a total distance of 8 miles. See the network below.
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M2-7. The shortest route is 1-2—5—7 with a total distance of 20 miles. See the network below.
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M2-9. The distances are summarized in Table M2.1. The stages are the same stages that were
used to minimize the distance.

Stage 1
Beginning Longest distance  Arcs along this
node to node 7 path
5 14 5-7
6 2 67
Stage 2
Beginning Longest distance  Arcs along this
node to node 7 path
4 24 4-5
5-7
3 26 3-5
5-7
2 18 2-5
5-7
Stage 3
Beginning Longest distance  Arcs along this
node to node 7 path
1 31 1-3
3-5
5-7

The longest distance to node 7 is 31. The shortest distance that was found in the module was 13.
Thus, using the shortest-route method can potentially save 31 — 13 = 18 miles.

M2-10. The shortest route is 1-2—5-8-9 with a total distance of 19 miles. See the network
below.
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M2-11. The solution, route 1-2-4-8-11 with a total distance of 11, for this shortest-route problem
can be seen in the following network:
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M2-12. The optimal decision is to ship 4 units of item 1, 1 unit of item 2, and no units of items 3
and 4.

M2-13. Given the data presented in this problem, the shortest route for Leslie is the following:
1,3,5,7,10, and 12.

Other optimal solutions for Problem M2-13 are:
a) 1,4,6,9,11, 12
b) 1,3,6,9,11, 12
c) 1,3,5,8, 11,12
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M2-14. Given the data presented in this problem, the following number of units should be
shipped for each item:

Item Items to Ship Optimal Return
1 6 $18
2 1 9
3 1 8
4 0 0
5 0 0
6 0 _0
Total 8 $35

M2-15. With these changes, the new shipping pattern is:

Item Items to Ship Optimal Return
1 6 $18
2 1 9
3 1 8
4 0 0
5 0 0
6 1 _2
Total 9 $37

As you can see, the shipping pattern is slightly different.

M2-16. The shortest route for this problem is 1, 3, 6, 11, 15, 17, 19, and 20 for a total distance
of 18. The optimal solution is shown in the following network.

M2-17. The optimal solution is now 1, 3, 7, 12, 15, 17, 19, and 20 for a total distance of 19.

M2-18. The shortest route is 6, 11, 15, 17, 19, and 20. The total distance is 13. If the road from
node 6 to node 11 is not available, the shortest route is 6, 10, 14, 17, 19, and 20. The total
distance is 16.

M2-19. The optimal solution is to carry 1 unit of item A and 3 units of item C. The total
nutritional value is 5,100. The total weight is 18 pounds.
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SOLUTION TO UNITED TRUCKING CASE
1. The optimal shipping pattern is shown in the following table.

Item Items to Ship Optimal Return
1 2 $20
2 1 10
3 0 0
4 1 7
5 0 0
6 1 11
7 0 0
8 1 50
9 2 20
10 0 _ 0
Total 8 $118

2. Increasing the total capacity to 20 tons has a dramatic impact on the optimal decision, as can
be seen in the following table. This does include 11 items instead of 10, and assumes that the
maximum number of items increased when the weight increased.

Item Items to Ship Optimal Return
1 2 $20
2 1 10
3 0 0
4 1 7
5 2 50
6 1 11
7 1 30
8 1 50
9 2 20
10 0 _ 0
Total 11 $198
M2-9
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SOLUTION TO INTERNET CASE

Briarcliff Electronics

The apportionment of the $100,000 among the various models can be accomplished by means of
dynamic programming. This can be viewed as a five stage process—at stage 1, an amount Xx; is
invested in “Standard”, at stage 2, an amount X, is invested in the “Micro” model, and so on
through stage 5 where an amount xs is invested in the “Network” model. Even though in
actuality the allocation is not made in stages, treating the situation as if it were multi-stage allows
the use of the dynamic programming approach.

Define fy(x) as the maximum increased profit that can be realized over stages n through 5
given that the amount not yet invested at stage n is x. (Note that some texts number the stages
backwards so that stage n would correspond to n allocations still to be made. Since the stages are
an artificiality used in this problem, it makes no difference which sequence is used). Define g,(y)
as the increased profit at stage n if y is invested at that stage. Then, if at the start of stage n the
amount not yet invested is X,

fa(ylx) = ga(y) + fari(x —y)

is the increased profit that would be realized over stages n through 5 if y is invested at stage n
and the remaining x —y is invested optimally over stages n + 1 through 5. Then

fu(x) = max fi,(y[x) = max [gn(y) + far1(X — y)]

is the recursive relationship that allows one to start at stage 5 and successively determine the
optimum allocation for each stage—note that the maximization in this expression is taken over
ally <x.

For stage 5, the calculations are shown in Table 1. If there is still x5 dollars not yet invested
at this last stage, the optimum is clearly to invest as much as possible at that stage; either all of it
or $50,000, whichever is less. Note that all profit figures in this and subsequent Tables represent
thousands of dollars. The indicated optimum f values are the profit increases due to investing the
indicated x5 in the “Network™ model.

Table 1 Stage S5 Calculations

Xs y fs5(xs)

0 0 0

10 10 27
20 20 64
30 30 101
40 40 199
50 50 248
>50 50 248

Proceeding to stage 4, Table 2 summarizes the analysis. To illustrate, suppose x4 = 20, there
is $20,000 remaining after allocations at stages 1, 2, 3. If none is invested at stage 4 (x4 = 0) the
increased profit at stage 4 is zero and the surviving $20,000 carries over to stage 5 where it
generates $64,000. On the other hand, if $10,000 is invested at stage 4, it will increase profit by
$37,000 and the remaining $10,000 will increase the stage 5 profit by $27,000—a total of
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$64,000 again. If all $20,000 is invested at stage 4, the increased profit is $59,000 at that stage
with zero to invest at stage 5 yielding no profit at that stage. Since no other investment would be
possible at stage 4, it is clear that if there is $20,000 available, either 0 or $10,000 should be
invested on the “Extended” model since y = 0 or y = 10 yields the maximum f4(y|20). The entries
in the other rows are obtained in a similar manner.

Table 2 Stage 4 Calculations

X4y 0 10 20 30 40 50 fy(ylxs)  Optimal y
0 0 — — — — — 0 0
10 27 37 — — — — 37 10
20 64 64 59 — — — 64 Oor 10
30 101 101 86 96 — — 101 Oor 10
40 199 138 123 123 156 — 199 0
50 248 236 160 160 183 287 287 50
60 248 285 258 197 220 314 314 50
70 248 285 307 295 257 351 351 50
80 248 285 307 344 355 388 388 50
90 248 285 307 344 404 486 486 50
100 248 285 307 344 404 535 535 50

Table 3, on the previous page, shows the equivalent stage 3 calculations for the “Major”
model and Table 4 shows the stage 2 calculations for the “Micro” model. At stage 1, all
$100,000 is available. The calculations for the “Standard” model are shown in Table 5. This
reveals that zero should be invested in the Standard model leaving $100,000 for stage 2. Table 4
shows that $10,000 should be invested in the Micro model leaving $90,000 for stage 3. Table 3
shows that zero should be invested in the Major model leaving $90,000 for stage 4. Table 2
shows that $50,000 should be invested in the Extended model leaving $40,000 for stage 5
investment in the Network model. The $10,000 investment in the Micro returns $71,000, the
$50,000 investment in the Extended returns $287,000, and the $40,000 investment in the
Network returns $199,000, a total return of $577,000.

Table 3 Stage 3 Calculations

xaly 0 10 20 30 40 50  fi(y|xs) Optimaly
0 0 — — — — — 0 0
10 37 60 — — — — 60 10
20 64 97 119 — — — 119 20
30 101 124 156 151 — — 156 20
40 199 161 183 188 183 — 199 0
50 287 259 220 215 220 243 287 0
60 314 347 318 252 247 280 347 10
70 351 374 406 350 284 307 406 20
80 388 411 433 438 382 344 438 30
90 486 448 470 465 470 442 486 0
100 535 546 507 502 497 530 546 10
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Table 4 Stage 2 Calculations

xaly 0 10 20 30 40 50 fo(y|xz) Optimal y
0 0 — — — — — 0 0

10 60 71 — — — — 71 10

20 119 131 92 — — — 131 10

30 156 190 152 112 — — 190 10

40 199 227 211 172 134 — 227 10

50 287 270 248 231 194 188 287 0

60 347 358 291 268 253 248 358 10

70 406 418 379 311 290 307 418 10

80 438 477 439 399 333 344 477 10

90 486 509 498 459 421 387 509 10
100 546 557 530 518 481 475 557 10
Table 5 Stage 1 Calculations
xily 0 10 20 30 40 50 fi(y|lxy)) Optimal y
100 557 525 533 498 552 530 557 0
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